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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Today’s production technologies strive hard to meet customers demand in terms of quality, quantity and cost of products. Many new 
technologies are coming forward with huge capabilities.  Additive Manufacturing processes have an immense influence on existing production 
technologies. Because of their nature and freedom of manufacture, they are popular in many production plants. 3D printing is a process 
employed in many industrial sectors such as aircraft, cars , buildings and several medical fields to fabricate products. One of the common 
processes used for 3D printing of plastics and composite plastic parts is Fusing Deposition Modeling (FDM). The performance of FDM is 
governed by diverse process parameters that can have a great impact on cost and quality of the 3D printed parts. This article focuses on the 
optimization of FDM process parameters using an approach based on Desirability Function. 
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1. Introduction 

The digital transformation of manufacturing involves the 
combination of manufacturing processes and advancing IT 
technologies working together to drive manufacturing forward 
and address inefficiencies in the current sector [1]. 

Additive manufacturing (AM) is a core component of the 
digital transformation of manufacturing as it can be viewed as 
a way to turn a digital model of the object to be fabricated into 
a physical one, starting from a (3D) software design [2]. 

In additive manufacturing (AM), the products are built by 
adding material layer by layer. It is employed in many 
industrial sectors, including aircraft, fuel, automotive, medical 
and consumer products [3]. Through AM processes, parts 
made of metals, plastics and composites can be produced. 
Many of the AM processes are utilised to manufacture various 
complex shapes used in a large variety of applications. 

Fused Deposition Modeling (FDM) is an important AM 
process applied to fabricate plastic and plastic composite 
parts. In FDM, a plastic filament is extruded through a heated 
extruder and the material is deposited layer by layer through a 
nozzle. The nozzle moves according to codes generated by a 
3D model of the object to be printed.  

Figure 1 shows the steps of 3D printing by FDM. The 3D 
printing process starts with the creation of a 3D model of the 
object to be printed. After this, the model is converted into a 
STL file which is later sliced into a number of layers by a 
suitable slicing software. Finally, the parts are fabricated and 
cleaned according to the end part requirements [3]. 

As an AM process, FDM is governed by several process 
parameters with multiple responses. This makes it a rather 
complex process from point of view of analysis. Extensive 
research is going on to study the effect of various process 
parameters of FDM on the different responses involved in it. 
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Fig. 1. Steps in 3D printing with FDM 

Bahr and Westkamper [4] reported that the quality of FDM 
parts is greatly influenced by the material composition, the 
slicing and deposition procedure, and the cooling process. 

According to Simon et al. [5], printing speed and material 
flow have an effect on particle emission rate but this effect is 
very small. 

More work is required on FDM process parameters such as 
pattern and density of infill, temperature of extrusion, and 
number of contours [6].  

Raster angle and direction of printing have a major impact 
on the polymer's mechanical properties. Edge position 0° 
layer orientation is very suitable in terms of mechanical 
properties for improved performance [7]. 

According to Mohamed et al. [8-10], a great deal of work 
has been attempted to improve the mechanical properties and 
component quality of the ABS parts produced by FDM 
through statistical design optimization. Their literature review 
shows that process parameters, including air gap, layer 
thickness, raster angle, raster width and construction 
orientations, are the critical factors and must be studied and 
thoroughly analyzed.  

The current status of analysis of FDM indicates that there 
is a need to develop optimization paradigms for FDM process 
parameters which will help the FDM community to select the 
optimum process parameters for best performance of FDM. 

This paper demonstrates the use of Desirability Function 
for Multi Objective Optimization of FDM process parameters. 

2. Set up Details 

2.1 Printing Details 
 

A 3D Printer with machine size (400*450*450) mm, build 
size (300*300*300) mm (L*W*H) and nozzle diameter  0.4 
mm is used for printing the components.  

The components consist of cam levers used for adjustment 
and locking purposes. These components are manufactured 
with PLA filaments of 1.75 mm diameter. 
 
2.2 Process Parameters 

For the optimization procedure, three important FDM 
governing process parameters, namely layer thickness, infill 
% and speed, are selected. To optimize the above process 
parameters, printing time, length of filament consumed and 
weight of product are selected as responses.  

Table 1 shows the process parameters and their levels. A 
L16 Taguchi array with three fac tors, each with four levels, is 
used for design of experiment. Table 2 shows the L16 array 
with the measured responses. Fig. 2 shows the components 
manufactured using this array. 

 

Table 1. Process Parameters and Their Levels 

Parameters Level 1 Level 2 Level 3 Level 4 

Layer  Thickness 0.15 0.2 0.25 0.3 

Speed  70 80 90 100 

Infill Percentage 55 65 75 85 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2. Cam Levers Manufactured by FDM 

3. Optimization Using Desirability Function 

First, the Desirability Function approach transforms the 
estimated responses to a scale-free value (di), called 
desirability, to increase the quality characteristic (yi). 
Desirability (di) is a value between 0 and 1 and increases with 
increasing desirability of the corresponding response.  

The desirability of individuals is combined into an overall 
desirability value D [11]. In what follows, the equations used 
to solve optimization problems with desirability are reported. 
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Table 2. L16 Array with Measured Responses 

Layer 
thickness 
(mm) 

Speed 
(mm 
/sec) 

Infill 
 ( %) 

Time 
 (Min) 

Weight of 
Product 
(gm) 

Filament 
length 
(meter) 

0.15 70 55 37 5.98 2.14 

0.15 80 65 36 7.12 2.23 

0.15 90 75 36 7.09 2.31 

0.15 100 85 35 6.95 2.4 

0.2 70 65 31 7.21 2.2 

0.2 80 55 28 5.69 2.11 

0.2 90 85 30 7.02 2.38 

0.2 100 75 28 7 2.29 

0.25 70 75 28 6.89 2.3 

0.25 80 85 27 7.15 2.38 

0.25 90 55 23 5.99 2.13 

0.25 100 65 23 7.03 2.21 

0.3 70 85 26 7.02 2.37 

0.3 80 75 23 7.11 2.29 

0.3 90 65 21 6.88 2.21 

0.3 100 55 20 6 2.13 

 
The goals of any optimization are to maximize, minimize 

or target a response to find out the optimal processing 
parameters. In desirability, the goals can be calculated as [11, 
12]. 

 
I. Maximize the Response Desirability 
di = 0     if yi < Li 
di =( (yi–Li )/(Ti –Li))ri  if  Li ≤ yi ≤   Ti 
di = 1      if  yi > Ti 
 
II. Minimize the Response Desirability  
di = 0     if yi > Ui 
di =((Ui – yi  )/(Ui - Ti))ri if  Ti ≤ yi ≤ Ui 
di = 1       if  yi<Ti 
 
III. Target the Response Desirability  
di = ( (yi –Li )/(Ti –Li))ri if  Li  ≤yi ≤ Ti 
di = ( (Ui – yi )/(Ui - Ti))ri  if  Ti ≤ yi ≤ Ui 
di = 0     if yi < Li 
di = 0     if yi > Ui 
 
If the importance is the same for each response, the 

composite desirability can be computed as: 
 
D = (d1× d2×d3×……. × dn) 1/n 

 
where: 

Di = Desirability for individual responses 
D = Composite desirability 
n = Total number of responses 
yi = Predicted value of response under consideration 
Ti = Target value of response under consideration 
Li = Lowest value of response under consideration 
Ui = Highest value of response under consideration 
 

Based on process parameters and responses in this 
investigation, and optimization paradigm based on 
Desirability Function is applied using the Minitab 17 
software. The following goals are defined for the various 
responses for optimization. All the responses are to be 
minimized. Therefore, targets for optimization are set for the 
lowest values of these responses. The weights assigned to the 
responses are: Time = 0.5, Weight = 0.25 and Length = 0.25. 
For simplicity, an optimization problem with same 
importance is assigned to all the responses, i.e. 1. Table 3 
shows the optimization problem details. 

Based on equations of desirability, a composite desirability 
for each option is calculated. The preference is given to the 
highest desirability. The remaining preferences are arranged 
according to their ranks based on desirability values. Based on 
composite desirability values, the ranks are provided for 
different options. The optimization plot shown in Fig. 3 is 
generated based on process parameter settings and goals of 
optimization. Table 4 shows the ranks of different options. 
The first rank, which is the best option for process parameters, 
is: 0.3 mm layer thickness, 100 mm/sec speed and 55 % infill. 
The last rank is: 0.15 mm layer thickness, 90 mm/sec speed 
and 75 % infill. The composite desirability for the first rank is 
0.9660 and the one for the last rank is 0.0000.  

Table 3. Optimization Goals 
Response Goal Target Upper Weight Importance 

Filament 
length (m) 

 
Minimize 2.11 2.40 0.25 1 

Weight of 
Product 

(g) 
 

Minimize 5.69 7.21 0.25 1 

Time 
(min) 

 
Minimize 20.00 37.00 0.5 1 

Table 4. Composite Desirability and Ranks 

Layer 
thickness 
(mm) 

Speed 
(mm/s) 

Infill 
(%) 

Composite 
Desirability

(D) 

Ranks 

0.15 70 55 0.4864 13 

0.15 80 65 0.4845 14 

0.15 90 75 0.0000 16 

0.15 100 85 0.4287 15 

0.2 70 65 0.7037 6 

0.2 80 55 0.8847 3 

0.2 90 85 0.5564 12 

0.2 100 75 0.6417 9 

0.25 70 75 0.5772 11 

0.25 80 85 0.5969 10 

0.25 90 55 0.9599 2 

0.25 100 65 0.8217 5 

0.3 70 85 0.6589 8 

0.3 80 75 0.6967 7 

0.3 90 65 0.8461 4 

0.3 100 55 0.9660 1 
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Fig. 2. Cam Levers Manufactured by FDM 

3. Optimization Using Desirability Function 
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Desirability (di) is a value between 0 and 1 and increases with 
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where: 
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Based on process parameters and responses in this 
investigation, and optimization paradigm based on 
Desirability Function is applied using the Minitab 17 
software. The following goals are defined for the various 
responses for optimization. All the responses are to be 
minimized. Therefore, targets for optimization are set for the 
lowest values of these responses. The weights assigned to the 
responses are: Time = 0.5, Weight = 0.25 and Length = 0.25. 
For simplicity, an optimization problem with same 
importance is assigned to all the responses, i.e. 1. Table 3 
shows the optimization problem details. 

Based on equations of desirability, a composite desirability 
for each option is calculated. The preference is given to the 
highest desirability. The remaining preferences are arranged 
according to their ranks based on desirability values. Based on 
composite desirability values, the ranks are provided for 
different options. The optimization plot shown in Fig. 3 is 
generated based on process parameter settings and goals of 
optimization. Table 4 shows the ranks of different options. 
The first rank, which is the best option for process parameters, 
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Response Goal Target Upper Weight Importance 

Filament 
length (m) 

 
Minimize 2.11 2.40 0.25 1 
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Layer 
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(mm/s) 

Infill 
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Composite 
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0.15 80 65 0.4845 14 
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0.3 100 55 0.9660 1 
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Fig.3 Optimization Plot 

 
Once the optimization is completed, the optimized process 

parameters found are: Layer thickness = 0.3 mm, Speed = 
81.5152  mm/s  and     Infill % =  55. This is shown in red 
colour in the optimization plot. For these optimum 
parameters, the responses are: filament length consumed = 
2.12 m, weight of component = 5.69 g, time required for 
printing = 20.65 min.  

The composite desirability for optimum parameters is 
equal to 0.9897 and that for first rank is equal to 0.9660. 
Therefore, a significant improvement in composite 
desirability is found for the optimum parameters. The 
improvement of 2.45 % in composite desirability as compared 
to the best rank from the array of L16. With optimized process 
parameters, the individual desirabilties of responses can be 
also found from the optimization plot. Desirability for time 
for printing is 0.9806 with the time of 20.65 minutes. 
Desirability for length of filament consumed is 0.9887 with a 
length of 2.12 m. Desirability for weight of product is 0.9996 
with weight equal to 5.69 g. 

To confirm the predicted values of the responses using 
optimum process parameters, confirmation experiments are 
carried out with optimized settings of layer thickness equal to 
0.3 mm, speed equal to 81.5152 mm/sec and infill % equal to  
55 %. For these optimum parameters, the actual responses are 
filament length consumed equal to 2.10 m, weight of 
component equal to 5.68 g, time required for printing equal to 
20.01 min. Thus, the match between predicted and actual 
responses is quite good and this indicates the suitability of 

Desirability Function for the optimization of processes 
involving multiple responses. 

4. Conclusions 

Based on the obtained results, the following conclusions can 
be drawn. 

1. The Desirability Function approach is a very useful 
technique to optimize process parameters for 
manufacturing processes with multiple responses. 

2. For the FDM process under investigation, the 
optimum parameters are Layer thickness = 0.3 mm, 
Speed = 81.5152  mm/sec,  and Infill % = 55 %. 

3. For these optimum parameters, the predicted 
responses are: filament length consumed = 2.12 m, 
weight of component = 5.69 g, and time required for 
printing = 20.65 min.  

4. For these optimum parameters, the actual responses 
are: filament length consumed = 2.10 m, weight of 
component = 5.68 g, time required for printing = 
20.01 min.  
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