
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 99 (2021) 604–609

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.
10.1016/j.procir.2021.03.081

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘20

Evaluation of deep learning with long short-term memory networks for time
series forecasting in supply chain management

 Massimo Pacellaa,*, Gabriele Papadiaa
aDepartment of “Ingegneria dell’Innovazione”, University of Salento, Piazza Tancredi 7, 73100 Lecce – ITALY

* Corresponding author. Tel.: +39 0832 297812; fax: +39 0832 297825. E-mail address: massimo.pacella@unisalento.it

Abstract

Performance analysis and forecasting the evolution of complex systems are two challenging tasks in manufacturing. Time series
data from complex systems capture the dynamic behaviors of the underlying processes. However, non-linear and non-stationary
dynamics pose a major challenge for accurate forecasting. To overcome statistical complexities through analyzing time series, we
approach the problem with deep learning methods. In this paper, we mainly focus on the long short-term memory (LSTM)
networks for demand forecasts in supply chain management, where the future demand for a certain product is the basis for the
respective replenishment systems. This study contributes to the literature by conducting experiments on real data to investigate
the potential of using LSTM networks for final customer demand forecasting, and hence for increasing the overall value
generated by a supply chain. Both forward LSTM and bidirectional LSTM (forward-backward) for short- and long-term demand
prediction in supply chain management are considered in this study.
© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Time series analysis; Deep learning; Long short-term memory; Bidirectional long short-term memory

1. Introduction

A supply chain consists of all the organizations, or business
units within an organization, which are involved, directly or
indirectly, in fulfilling the final customer demand.

The extension of a supply chain goes from the final
customers through retailers, wholesalers, and distributors,
back to the manufacturers and their component and raw
material suppliers. Within the chain, there are flows of goods,
services, information, and finances moving from raw materials
or parts supplier to manufacturer, wholesaler, retailer, and
consumer. One of the main developments in the last decades
has been the introduction of the supply chain management
(SCM) system, which allows coordinating these flows. The
entire area of SCM has many different aspects. In this paper,
we focus on the topic related to the final customer demand
forecasting, which sets the entire supply chain in motion. (For
an extensive review on this topic, refer to [1]).

Each product involved in a supply chain drives decisions
regarding products to be purchased, purchase time, and
quantities to be purchased using demand information from its
respective customers. Actions taken by retailing organizations
to respond to such demand, by having the necessary products
and services in place to satisfy customers, involve the
generation of demand at the previous level in the supply chain,
at wholesalers or distributors, who ultimately respond by
placing requests on manufacturers, and so on. This upstream
flow of requests constitutes the transmission of information
from one supply chain member to another. This information
flow is complemented by a flow of materials/products
downstream of the supply chain to satisfy these requests.

If the final customer demand were known with certainty
well in advance, because it is constant, then the operation of a
supply chain would be a simple backward scheduling
problem. However, in many real work applications, demand is
not known. The uncertainty associated with it poses

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘20

Evaluation of deep learning with long short-term memory networks for time
series forecasting in supply chain management

 Massimo Pacellaa,*, Gabriele Papadiaa
aDepartment of “Ingegneria dell’Innovazione”, University of Salento, Piazza Tancredi 7, 73100 Lecce – ITALY

* Corresponding author. Tel.: +39 0832 297812; fax: +39 0832 297825. E-mail address: massimo.pacella@unisalento.it

Abstract

Performance analysis and forecasting the evolution of complex systems are two challenging tasks in manufacturing. Time series
data from complex systems capture the dynamic behaviors of the underlying processes. However, non-linear and non-stationary
dynamics pose a major challenge for accurate forecasting. To overcome statistical complexities through analyzing time series, we
approach the problem with deep learning methods. In this paper, we mainly focus on the long short-term memory (LSTM)
networks for demand forecasts in supply chain management, where the future demand for a certain product is the basis for the
respective replenishment systems. This study contributes to the literature by conducting experiments on real data to investigate
the potential of using LSTM networks for final customer demand forecasting, and hence for increasing the overall value
generated by a supply chain. Both forward LSTM and bidirectional LSTM (forward-backward) for short- and long-term demand
prediction in supply chain management are considered in this study.
© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Time series analysis; Deep learning; Long short-term memory; Bidirectional long short-term memory

1. Introduction

A supply chain consists of all the organizations, or business
units within an organization, which are involved, directly or
indirectly, in fulfilling the final customer demand.

The extension of a supply chain goes from the final
customers through retailers, wholesalers, and distributors,
back to the manufacturers and their component and raw
material suppliers. Within the chain, there are flows of goods,
services, information, and finances moving from raw materials
or parts supplier to manufacturer, wholesaler, retailer, and
consumer. One of the main developments in the last decades
has been the introduction of the supply chain management
(SCM) system, which allows coordinating these flows. The
entire area of SCM has many different aspects. In this paper,
we focus on the topic related to the final customer demand
forecasting, which sets the entire supply chain in motion. (For
an extensive review on this topic, refer to [1]).

Each product involved in a supply chain drives decisions
regarding products to be purchased, purchase time, and
quantities to be purchased using demand information from its
respective customers. Actions taken by retailing organizations
to respond to such demand, by having the necessary products
and services in place to satisfy customers, involve the
generation of demand at the previous level in the supply chain,
at wholesalers or distributors, who ultimately respond by
placing requests on manufacturers, and so on. This upstream
flow of requests constitutes the transmission of information
from one supply chain member to another. This information
flow is complemented by a flow of materials/products
downstream of the supply chain to satisfy these requests.

If the final customer demand were known with certainty
well in advance, because it is constant, then the operation of a
supply chain would be a simple backward scheduling
problem. However, in many real work applications, demand is
not known. The uncertainty associated with it poses

	 Massimo Pacella et al. / Procedia CIRP 99 (2021) 604–609� 605
 Pacella M., Papadia G./ Procedia CIRP 00 (2020) 000–000

difficulties in the SCM system. Therefore, demand forecasting
is required, which allows reliable operations at low inventory
costs throughout the entire supply chain.

Many challenges that influence demand forecasting. One
challenge is the ‘bullwhip effect’ [1], which is the distortion of
true final customer’s demand that comes from forecasts not
completely correct. This implies that any prediction based on
it will increase variability and further distort the demand
anticipated by each agent of the chain. Another challenge is
the required frequency for forecasting, which varies
considerably depending on the decision-making process.
Retail inventory replenishments, for example, rely upon
frequent short term forecasts, whereas aggregate sales
planning may take place in a long term period.

In the literature, much effort has been devoted to the
development and improvement of demand forecasting models
in SCM. Common statistical linear methods such as
exponential smoothing, regression models, which include
various driver variables, and time-series have the important
advantage of easy interpretation and implementation [2].

A time series is a sequence of observations at regular
intervals in chronological order over a specific time period.
Common techniques for modeling sequential data involve
estimating some parameters for fitting a given time series
model, such as Autoregressive (AR), Autoregressive Moving
Average (ARMA), and Autoregressive Integrated Moving
Average (ARIMA) [2]. Due to the complex nature of
nonlinear patterns in their constructs, the time series of final
customer demand cannot be accurately captured by common
linear methods. When linear models fail to perform well in
both training (in-sample fitting) and testing (out-of-sample
forecasting), more robust nonlinear models should be
considered.

To address challenges related to forecasting models, deep
learning algorithms can be considered. Since deep learning
algorithms can be employed to perform prediction and
classification operations based on highly complex training
data, they show superior performance in many areas of
applications such as signal processing, speech recognition, and
image classification. Due to the advances in deep learning,
many scientific fields exploit deep learning algorithms to build
efficient solutions to different kinds of problems [3]. Recent
studies have also shown that exploring deep learning
algorithms in business analytics, operations research [4],
financial time series prediction [5], and supply chain demand
forecasting [6], is an emerging area of research and a
recommended solution for actual applications.

Recurrent neural network (RNN) is one of the techniques
employed in time series prediction. RNN can remember
preceding data inputs while using current data to learn
network weights. Long Short-Term Memory (LSTM) is a
special case of RNN, which was initially introduced in [7] to
deal with long input sequences to improve the network ability
to preserve previous network states and capture longer-term
dependencies. Another form of RNN is the bidirectional
LSTM (BLSTM). The preceding and succeeding input
sequences can be used to exploit all input data to satisfy the

best learning process performance. A BLSTM is usually used
to capture more complex patterns in the time series.

In this paper, we describe the development of an LSTM-
based system for demand forecast, which helped to improve
supply chain management. Both the LSTM and BLSTM
architectures for short- and long-term demand prediction in
supply chain management are considered.

The remainder of the paper is organized as follows. Section
2, presents the current state-of-the-art, related background, and
preliminaries. In Section 3, the mathematical background of
the LSTM methodology is introduced. Section 4 provides a
comparison of the deep learning techniques and analyzes their
respective advantages and weaknesses in forecasting data.
Finally, conclusions are provided in Section 5.

2. Preliminaries and related work

Time series analysis is a research area whose aim is to
study the path observations of time series, build a model to
describe the structure of data, and predict future values. This
field of research has a great number of applications in
business, economics, finance, and computer science [2]. Due
to the importance of time series forecasting in many branches
of applied sciences and applications, it is essential to build an
effective model to improve forecasting accuracy. A variety of
time series forecasting models have been presented in the
literature.

Statistical linear models used in demand forecasting range
from simpler moving averages to the exponential smoothing
family or the ARIMA approach [2]. All of these statistical
linear models have been commonly used in supply chain
modeling and forecasting (see reference [8]). Differently from
statistical linear models, deep learning algorithms allow
arbitrary non-linear approximation functions derived (learned)
directly from the data. This increased generality improves the
potential to provide more accurate forecasts (though with an
increased danger of over-fitting).

Deep learning algorithms generalize neural networks. A
neural network consists of at least three layers: 1) an input
layer, 2) hidden layers, and 3) an output layer. The number of
features of the data set determines the number of units in the
input layer. These units are connected through links to the
units created in the hidden layer(s). The links carry some
weights for every unit in the input layer. The weights basically
play the role of a decision-maker to decide which signal, or
input, may pass through and which may not. A neural network
basically learns by adjusting the weight for each link created
in the hidden layer(s).

2.1. Recurrent Neural Network

A recurrent neural network (RNN) is a special case of a
neural network where the objective is to predict the next step
in the sequence of observations, for previous steps observed in
the sequence. The idea behind RNNs is to make use of
sequential observations and learn from the earlier stages to

606	 Massimo Pacella et al. / Procedia CIRP 99 (2021) 604–609
 Pacella M., Papadia G./ Procedia CIRP 00 (2020) 000–000 3

forecast future trends. In the earlier stages, data need to be
remembered when guessing the next steps.

In RNNs, the hidden layers act as internal storage for
storing the information captured in earlier stages of reading
sequential data. RNNs are called ‘recurrent’ because they
perform the same task for every element of the sequence, with
the characteristic of utilizing information captured earlier to
predict future unseen sequential data. The major challenge
with a typical generic RNN is that these networks remember
only a few earlier steps in the sequence and thus are not
suitable for remembering longer sequences of data. This
challenging problem is solved using the ‘memory line’
introduced in the LSTM recurrent network.

2.2. Long Short-Term Memory

LSTM is an RNN with additional features to memorize the
sequence of data. An LSTM is a set of connected memory
cells, where the data streams are captured and stored. Each
memory cell connects out to another one conveying data from
the past and gathering them for the present elaboration. Due to
the use of some gates in each memory cell, data can be
deleted, filtered, or added for the next cells. Each gate is a
sigmoid unit and yields numbers in the range between zero
and one. Three types of gates are involved in each memory
cell to control the state of the cell.

1. Input Gate: chooses which new data need to be stored in
the cell. Specifically, the input information will be stored in
the cell when the input gate records high activation.

2. Output Gate: decides what will be yield out of each cell.
The yielded value will be based on the cell state along with the
filtered and newly added data. In practice, if the output gate
records high activation, then it will release the stored
information in the cell to the next one.

3. Forget Gate: outputs a number between 0 and 1, where 1
shows ‘completely keep this’; 0 implies ‘completely ignore
this.’ In practice, the stored information will be cleared if the
forget gate records high activation.

3. Mathematical Background

A memory cell has a state, say  c t , at the time of index t .
The information that flows in and out the cell is controlled by
three gates. Each gate is characterized by a state, namely:
input gate  i t , output gate  o t , and forget gate  f t . Each
gate receives the same input, the newly added vector of data
 x t at time instant t, and the previous vector of hidden states
  1 .h t The three gates are sigmoid units according to the

standard logistics sigmoid function defined as follows:

     1
 1 exp - .z z


  (1)

The input gate   i t controls the input information flowing into
the memory cell, which derives the following:

         1 1 .xi hi ci ii t W x t W h t W c t b      (2)

Forget gate  f t controls the forgetting information of the
cell, where:

         1 1 .xf hf cf ff t W x t W h t W c t b      (3)

The memory cell is updated by moderated input features and
the partial forgetting of the previous cell, where the input
features are calculated by combining newly added data  x t
at time instant t and the previous hidden state   1 h t and by
using a hyperbolic tangent layer. This yields to:

             1 tanh 1 .xc hc cc t f t c t i t W x t W h t b      (4)

The output gate  o t controls the output information flowing
out of the cell, which derives the following:

         1 .xo ho co oo t W x t W h t W c t b     (5)

Ultimately, the hidden output state  h t is calculated by
output gate  o t and memory cell state  c t , where:

       tanh .h t o t c t (6)

Thus, the univariate output of LSTM  y t is computed as:

    ˆ .hy yy t W h t b  (7)

The *W terms denote weight values. In particular,
, , xi xf xoW W W and xcW are the input weight values; , , hi hf hoW W W

and hcW are the recurrent weight values; hiW represent the
hidden output weight value. Finally, *b terms represent the
corresponding bias values. The actual values for these
parameters are defined during the training of the model.

The model of a baseline LSTM, which is described by
previous equations from (1) to (7), can process data only in the
forward direction of the time series. In many applications, we
may need to consider dependencies/correlations in both
forward and backward. In this case, bidirectional LSTM
(BLSTM) is introduced, which can process data in both
directions with two separate hidden layers. Both hidden layers
are connected to the same output layer. The major difference
to a baseline LSTM is that a BLSTM computes the forward
hidden sequence and the backward hidden sequence
separately, then the output layer is computed by iterating the
backward layer from t T to 1 t and the forward layer from
 1 t to t T .

4. Experimental study

In this section, LSTM and BLSTM are both evaluated on
the actual time series of final customer’s demand for 10

	 Massimo Pacella et al. / Procedia CIRP 99 (2021) 604–609� 607
 Pacella M., Papadia G./ Procedia CIRP 00 (2020) 000–000

specific products in a market. We first describe some
preliminary data elaboration and error measures used in our
experiments.

4.1. Variance stabilization using power transformation

In our study, we considered a data set of 10 series, each
related to the final customer’s demand for a specific product
in a market, and for three years 2015, 2016, and 2017. Each
time series consisted of the monthly sales of the product. Data
lengths are equal to 36 (35 in three specific cases, which
presented one missing value each). Given such a short length,
a preliminary step was required in data, a variance
stabilization by a power transformation.

Although power transformations may alter the original
non-linearity in a time series, in our preliminary experiments,
we found that such a step is required to enable the deep
learning algorithm to learn dynamics in data, as trend or
periodicity, which otherwise could be difficult to identify in
such small-length time series. A common type of
transformation for variance stabilization is the power family
of transformations [2] defined in the following equation (8).

 
  

  
log 0

 .
1 0

y t
w t

y t



 

 
 

 (8)

A difficulty with this transform is the choice of a proper
value for the parameter  , which could be suitable for
variance stabilization. The procedure implemented in our
study to choose  automatically is the procedure in reference
[9].

However, in preliminary experiments, we found that this
procedure has its shortcomings, and the parameter  is
difficult to choose in practice. From equation (8), it can be
observed that the transform resembles, depending on its
parameter  , the logarithm or the identity in its most extreme
case (0  or 1  , respectively). In particular, the logarithm
is a strongly non-linear transformation that should be used
with caution, as small differences in log space may result in
large differences in the original space, and therewith the
training phase can yield sub-optimal results.

Therefore, we use the power transform in (8) through a
more conservative approach, consisting in forcing  to be
equal to 1  , i.e., avoiding the transformation of data, when
the optimal value of  , which resulted from the procedure in
[9] for variance stabilization, was close to zero (specifically,
when 0.005).

4.2. Error measures

Different choices to evaluate forecasts exists in the
forecasting literature. Overviews are provided in references
[10] and [11]. In our study, to compare time series modeling
performance, we calculate 4 measures.

The forecast error is      ˆ e t y t y t  , regardless of how
the forecast was produced. Here,  y t denotes the
observation at the time of index t and  ŷ t is the respective
forecast. This forecast error is on the same scale as the data.
Hence, accuracy measurements based on  e t is scale-
dependent.

The most commonly used scale-dependent metrics are
based on absolute errors or squared errors are the Mean
Absolute Error (MAE) and the Root Mean Squared Error
(RMSE). They are defined respectively as follows:

 1

1 h

t
MAE e t

h 
  , (9)

 2
1

1 ,h

t
RMSE e t

h 
  (10)

where h denotes the number of data points in the test set.
To compare forecast performance between different data

series, percentage errors should be used instead, having the
advantage of being scale independent. The most commonly
used metric is the symmetric Mean Absolute Percentage Error
(sMAPE) defined as follows.

 
   1

200 .
ˆ

h

t

e t
sMAPE

h y t y t

 
    

 (11)

However, if the actual value   y t is zero, the forecast
 ˆ t y is likely to be close to zero too. In this case, the measure

in (1) will involve division by a number close to zero.
Additional shortcomings of measures such as the sMAPE are
that they are skewed, they have lack of robustness, lack of
interpretability. To address some of these issues, we use as a
second evaluation metric in our experiments the Mean
Absolute Scaled Error (MASE), as proposed in [11].

MASE is a scale-independent error measure, which also
offers interpretability, as it measures the forecasting accuracy
relative to the seasonal ‘naïve’ forecast error. We use MASE
in the following definition

 

   
1

1

1 ,
1

h

t

n

t M

e t
MASE

h y t y t M
n M



 


 






 (12)

where n denotes the number of data points in the training set
of a time series. The seasonal period of a time series is
represented by M . That is, assuming the time series is
seasonal, 1 MASE means that on average the method
performs better than the ‘naïve’ seasonal forecast computed
on the training data while 1 MASE indicates that the method
performs worse.

608	 Massimo Pacella et al. / Procedia CIRP 99 (2021) 604–609
 Pacella M., Papadia G./ Procedia CIRP 00 (2020) 000–000 5

4.3. Implementation

LSTM and BLSTM were both implemented in MATLAB
using the DEEP LEARNING TOOLBOX. We trained LSTM and
BLSTM models using the stochastic gradient descent with
momentum algorithm, learning rate equal to 0.008, and
learning rate drop factor equal to 0.2 applied each 40 training
epochs. We used a mini-batch size of 36, and normalization
for each vector of a sequence by using the mean and standard
deviation computed from the training set. Training and testing
were done on a single CPU (Intel Core I7, 2.5 GHz, 16 GB
memory). The training time for each time series of 35-36 data
averages 7 sec. in the case of LSTM and 11 sec. in the case of
BLSTM. The maximum number of epochs was equal to 360.
An example of a MATLAB window showing training progress
for deep learning is reported in Fig. 1.

Table 1 summarizes the parameters of the LSTM
[BLSTM] implemented. According to our experiments,
multiple layers should be preferred rather than one layer. In
our study, we implemented a double-layer stacked LSTM
[BLSTM] network to guarantee the predictive effect.

The model adopts the traditional input-hidden-output
structure of the neural network. In the input layer, the number
of units equals the data dimension of each input. The hidden
layer has the number of units that are arbitrarily determined
(200 units for each hidden layer, in our case study). Since the
problem solved is a single-valued prediction problem, the
output layer was set to a single neuron. An additional
regression layer, which computes the half-mean-squared-error
loss for regression problems, was added in the model to
normalize the response and hence stabilizing and speeding up
the training of the LSTM algorithm.

LSTM networks require sequences of input features for
training. We opted for a sequence of 10 input features. Hence
the number of units in the input layer is equal to 10.
Specifically, at each time of index t, we used as input a
sequence of 10 values of time series with indexes
        1 4 , , 11 , 6 , , 1t t t t      . The target value at

each time of index t was set equal to  x t . As a consequence,
the LSTM algorithm provided a forecast  ˆ y t only for 1 4t .

Training performance (in-sample fitting) are in Table 2.
The benchmark method here is a common Exponential
Moving Average (ExpMA) approach [2] of lag 12. From
Table 2, the three methods implemented, ExpMA, LSTM, and
BLSTM, have a 1 MASE meaning that each of them
performs better than the ‘naïve’ seasonal forecast computed
on the dataset. Given that each time series represented
monthly sales, in computing MASE the seasonal period was
set equal to 1 2M  From Table 2, it can be observed that
BLSTM presents better training results, which in some cases
resulted in a null forecast error (products no. 2, 3, 4, 6, 8).

Testing performance (out-of-sample forecasting) is in
Table 3, where only LSTM and BLSTM methods are included
in the comparison for brevity. Both LSTM and BLSTM have

 1 MASE for each data set (for testing data, the seasonal
period was set to 1M ). Results in Table 3 show that LSTM
and BLSTM algorithms do not over-fit training data set,

despite the high number of parameters of them. For testing,
the BLSTM algorithm presents better performance when
compared to a baseline LSTM one. Therefore, BLSTM
appears as the preferred approach for consumers’ demand
modeling and forecasting.

5. Conclusions

Nowadays, large quantities of time series data are available
in many application cases. One promising approach in these
applications is LSTM, which is a special type of RNN, for
modeling a time series and forecasting future values.

Fig. 1. An example of a MATLAB window for deep learning progress.

Table 1. LSTM [BLSTM] implemented by the Deep Learning toolbox.

Level Type Learnable States

1
Sequence Input

with 10
dimensions

- -

2
LSTM [BLSTM]

with 200 hidden
units

Input Weights
800[1600]x10

Recurrent Weights
800 [1600]x200

Bias 800[1600]x1

Hidden State
200[400]x1

CellState
200[400]x1

3
LSTM [BLSTM]

with 200 hidden
units

Input Weights
800[1600]x10

Recurrent Weights
800[1600]x200

Bias 800[1600]x1

Hidden State
200[400]x1

CellState
200[400]x1

4 1 fully connected
layer

Weights
1x200[400]

Bias 1x1
-

5 Regression Output - -

	 Massimo Pacella et al. / Procedia CIRP 99 (2021) 604–609� 609
 Pacella M., Papadia G./ Procedia CIRP 00 (2020) 000–000

Table 2. Training performance of LSTM and BLSTM for 10 demand time
series of length 36 and 35 data. In bold the outperforming method.

Exp. Method RMSE MAE sMAPE MASE

Prod. 1 ExpMA 3,046 2,560 34,545 0,723

 LSTM 0,853 0,545 8,457 0,176

n = 36 BLSTM 0,564 0,318 5,023 0,103

Prod. 2 ExpMA 2,072 1,625 40,824 0,719

 LSTM 0,369 0,136 3,838 0,055

n = 35 BLSTM 0,000 0,000 0,000 0,000

Prod. 3 ExpMA 2,425 1,800 32,462 0,559

 LSTM 0,769 0,409 6,272 0,141

n = 35 BLSTM 0,000 0,000 0,000 0,000

Prod. 4 ExpMA 2,366 2,080 25,059 0,846

 LSTM 0,879 0,591 7,392 0,191

n = 36 BLSTM 0,000 0,000 0,000 0,000

Prod. 5 ExpMA 5,396 4,720 29,086 0,558

 LSTM 2,680 2,091 13,001 0,188

n = 36 BLSTM 2,477 2,045 13,180 0,184

Prod. 6 ExpMA 2,577 2,160 41,272 0,720

 LSTM 0,213 0,045 0,826 0,014

n = 36 BLSTM 0,000 0,000 0,000 0,000

Prod. 7 ExpMA 3,027 2,520 22,341 0,720

 LSTM 0,477 0,227 1,709 0,058

n = 36 BLSTM 0,213 0,045 0,293 0,012

Prod. 8 ExpMA 3,240 2,750 45,390 0,821

 LSTM 0,816 0,476 9,773 0,165

n = 35 BLSTM 0,000 0,000 0,000 0,000

Prod. 9 ExpMA 2,209 1,680 42,760 0,568

 LSTM 0,213 0,045 1,010 0,017

n = 36 BLSTM 0,213 0,045 1,010 0,017

Prod. 10 ExpMA 3,644 2,960 20,525 0,646

 LSTM 1,477 1,182 8,767 0,303

n = 36 BLSTM 1,000 0,818 5,795 0,210

In this study, LSTM has experimented with demand

forecasts using 10 actual data sets related to a market.
Performances of both training and testing phases have been
evaluated. The results indicate that LSTM is a competitive
method, it effectively models the non-linearity of the time
series and therewith it appears being able to outperform state-
of-the-art linear forecasting method. The BLSTM, which can
process data in both forward and backward directions of the
time series, augments the accuracy of the baseline LSTM
approach in all of the cases considered in our study.

Acknowledgments

This work has been funded by Puglia Region (Italy) –
Project ‘Cooperative Supply Chain’.

Table 3. Testing performance of LSTM and BLSTM for 10 demand time
series of length 12 data. In bold the outperforming method.

Exp. Method RMSE MAE sMAPE MASE

Prod. 1 LSTM 1,190 0,750 17,631 0,196

h = 12 BLSTM 0,816 0,500 12,611 0,131

Prod. 2 LSTM 0,707 0,500 12,381 0,262

h = 12 BLSTM 0,408 0,167 3,492 0,087

Prod. 3 LSTM 1,414 1,000 18,792 0,478

h = 12 BLSTM 0,408 0,167 2,797 0,080

Prod. 4 LSTM 1,443 1,250 13,791 0,550

h = 12 BLSTM 0,764 0,583 5,875 0,257

Prod. 5 LSTM 3,651 2,167 8,486 0,681

h = 12 BLSTM 2,291 1,917 7,057 0,602

Prod. 6 LSTM 0,645 0,417 11,886 0,127

h = 12 BLSTM 0,289 0,083 5,556 0,025

Prod. 7 LSTM 1,080 0,833 6,673 0,655

h = 12 BLSTM 0,500 0,250 2,185 0,196

Prod. 8 LSTM 0,707 0,500 8,757 0,108

h = 12 BLSTM 0,577 0,333 3,762 0,072

Prod. 9 LSTM 1,041 0,750 18,479 0,516

h = 12 BLSTM 0,645 0,417 9,498 0,286

Prod. 10 LSTM 1,414 1,167 10,103 0,377

h = 12 BLSTM 1,155 1,000 8,656 0,324

References

[1] Syntetos AA, Babai Z, Boylan JE, Kolassa S, Nikolopoulos K. Supply
chain forecasting: Theory, practice, their gap and the future. European J.
of Operational Research 2016;252:1-26.

[2] Montgomery DC, Jennings CL, Kulahci M. Introduction to Time Series
Analysis and Forecasting. 2nd edition. Hoboken: Wiley; 2015.

[3] Hatcher WG, Yu W. A Survey of Deep Learning: Platforms, Applications
and Emerging Research Trends. IEEE Access 2018;6:24411-32.

[4] Fischer T, Krauss C. Deep learning with long short-term memory
networks for financial market predictions. European J. of Operational
Research 2018;270:654-69.

[5] Kraus M, Feuerriegel S, Oztekin A. Deep learning in business analytics
and operations research: models, applications and managerial
implications. European . of Operational Research 2020;281:628-41.

[6] Weng T, Liu W, Xiao J. Supply chain sales forecasting based on
lightGBM and LSTM combination model. Industrial Management and
Data Systems 2019;120:265-279.

[7] Hochreiter S, Schmidhuber J. Long Short-Term memory. Neural
Computation 1997;9:1735-80.

[8] Svetunkov I, Boylan JE. State-space ARIMA for supply-chain
forecasting. Int. J. of Production Research 2020;58:818-27.

[9] Guerrero VM, Perera R. Variance stabilizing power transformation for
time series. J. of Modern Applied Statistical Methods 2004;3:357-69.

[10] Hyndman RJ, Koehler AB. Another look at measures of forecast
accuracy. Int. J. of Forecasting 2006;22:679-88.

[11] Davydenko A, Fildes R. Measuring forecasting accuracy: the case of
judgmental adjustments to SKU-level demand forecasts. Int. J. of
Forecasting 2013;29:510-22.

