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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Performance analysis and forecasting the evolution of complex systems are two challenging tasks in manufacturing. Time series 
data from complex systems capture the dynamic behaviors of the underlying processes. However, non-linear and non-stationary 
dynamics pose a major challenge for accurate forecasting. To overcome statistical complexities through analyzing time series, we 
approach the problem with deep learning methods. In this paper, we mainly focus on the long short-term memory (LSTM) 
networks for demand forecasts in supply chain management, where the future demand for a certain product is the basis for the 
respective replenishment systems. This study contributes to the literature by conducting experiments on real data to investigate 
the potential of using LSTM networks for final customer demand forecasting, and hence for increasing the overall value 
generated by a supply chain. Both forward LSTM and bidirectional LSTM (forward-backward) for short- and long-term demand 
prediction in supply chain management are considered in this study. 
© 2020 The Authors. Published by Elsevier B.V. 
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1. Introduction 

A supply chain consists of all the organizations, or business 
units within an organization, which are involved, directly or 
indirectly, in fulfilling the final customer demand. 

The extension of a supply chain goes from the final 
customers through retailers, wholesalers, and distributors, 
back to the manufacturers and their component and raw 
material suppliers. Within the chain, there are flows of goods, 
services, information, and finances moving from raw materials 
or parts supplier to manufacturer, wholesaler, retailer, and 
consumer. One of the main developments in the last decades 
has been the introduction of the supply chain management 
(SCM) system, which allows coordinating these flows. The 
entire area of SCM has many different aspects. In this paper, 
we focus on the topic related to the final customer demand 
forecasting, which sets the entire supply chain in motion. (For 
an extensive review on this topic, refer to [1]). 

Each product involved in a supply chain drives decisions 
regarding products to be purchased, purchase time, and 
quantities to be purchased using demand information from its 
respective customers. Actions taken by retailing organizations 
to respond to such demand, by having the necessary products 
and services in place to satisfy customers, involve the 
generation of demand at the previous level in the supply chain, 
at wholesalers or distributors, who ultimately respond by 
placing requests on manufacturers, and so on. This upstream 
flow of requests constitutes the transmission of information 
from one supply chain member to another. This information 
flow is complemented by a flow of materials/products 
downstream of the supply chain to satisfy these requests. 

If the final customer demand were known with certainty 
well in advance, because it is constant, then the operation of a 
supply chain would be a simple backward scheduling 
problem. However, in many real work applications, demand is 
not known. The uncertainty associated with it poses 
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difficulties in the SCM system. Therefore, demand forecasting 
is required, which allows reliable operations at low inventory 
costs throughout the entire supply chain. 

Many challenges that influence demand forecasting. One 
challenge is the ‘bullwhip effect’ [1], which is the distortion of 
true final customer’s demand that comes from forecasts not 
completely correct. This implies that any prediction based on 
it will increase variability and further distort the demand 
anticipated by each agent of the chain. Another challenge is 
the required frequency for forecasting, which varies 
considerably depending on the decision-making process. 
Retail inventory replenishments, for example, rely upon 
frequent short term forecasts, whereas aggregate sales 
planning may take place in a long term period. 

In the literature, much effort has been devoted to the 
development and improvement of demand forecasting models 
in SCM. Common statistical linear methods such as 
exponential smoothing, regression models, which include 
various driver variables, and time-series have the important 
advantage of easy interpretation and implementation [2]. 

A time series is a sequence of observations at regular 
intervals in chronological order over a specific time period. 
Common techniques for modeling sequential data involve 
estimating some parameters for fitting a given time series 
model, such as Autoregressive (AR), Autoregressive Moving 
Average (ARMA), and Autoregressive Integrated Moving 
Average (ARIMA) [2]. Due to the complex nature of 
nonlinear patterns in their constructs, the time series of final 
customer demand cannot be accurately captured by common 
linear methods. When linear models fail to perform well in 
both training (in-sample fitting) and testing (out-of-sample 
forecasting), more robust nonlinear models should be 
considered. 

To address challenges related to forecasting models, deep 
learning algorithms can be considered. Since deep learning 
algorithms can be employed to perform prediction and 
classification operations based on highly complex training 
data, they show superior performance in many areas of 
applications such as signal processing, speech recognition, and 
image classification. Due to the advances in deep learning, 
many scientific fields exploit deep learning algorithms to build 
efficient solutions to different kinds of problems [3]. Recent 
studies have also shown that exploring deep learning 
algorithms in business analytics, operations research [4], 
financial time series prediction [5], and supply chain demand 
forecasting [6], is an emerging area of research and a 
recommended solution for actual applications.  

Recurrent neural network (RNN) is one of the techniques 
employed in time series prediction. RNN can remember 
preceding data inputs while using current data to learn 
network weights. Long Short-Term Memory (LSTM) is a 
special case of RNN, which was initially introduced in [7] to 
deal with long input sequences to improve the network ability 
to preserve previous network states and capture longer-term 
dependencies. Another form of RNN is the bidirectional 
LSTM (BLSTM). The preceding and succeeding input 
sequences can be used to exploit all input data to satisfy the 

best learning process performance. A BLSTM is usually used 
to capture more complex patterns in the time series. 

In this paper, we describe the development of an LSTM-
based system for demand forecast, which helped to improve 
supply chain management. Both the LSTM and BLSTM 
architectures for short- and long-term demand prediction in 
supply chain management are considered. 

The remainder of the paper is organized as follows. Section 
2, presents the current state-of-the-art, related background, and 
preliminaries. In Section 3, the mathematical background of 
the LSTM methodology is introduced. Section 4 provides a 
comparison of the deep learning techniques and analyzes their 
respective advantages and weaknesses in forecasting data. 
Finally, conclusions are provided in Section 5. 

2. Preliminaries and related work 

Time series analysis is a research area whose aim is to 
study the path observations of time series, build a model to 
describe the structure of data, and predict future values. This 
field of research has a great number of applications in 
business, economics, finance, and computer science [2]. Due 
to the importance of time series forecasting in many branches 
of applied sciences and applications, it is essential to build an 
effective model to improve forecasting accuracy. A variety of 
time series forecasting models have been presented in the 
literature. 

Statistical linear models used in demand forecasting range 
from simpler moving averages to the exponential smoothing 
family or the ARIMA approach [2]. All of these statistical 
linear models have been commonly used in supply chain 
modeling and forecasting (see reference [8]). Differently from 
statistical linear models, deep learning algorithms allow 
arbitrary non-linear approximation functions derived (learned) 
directly from the data. This increased generality improves the 
potential to provide more accurate forecasts (though with an 
increased danger of over-fitting). 

Deep learning algorithms generalize neural networks. A 
neural network consists of at least three layers: 1) an input 
layer, 2) hidden layers, and 3) an output layer. The number of 
features of the data set determines the number of units in the 
input layer. These units are connected through links to the 
units created in the hidden layer(s). The links carry some 
weights for every unit in the input layer. The weights basically 
play the role of a decision-maker to decide which signal, or 
input, may pass through and which may not. A neural network 
basically learns by adjusting the weight for each link created 
in the hidden layer(s). 

2.1. Recurrent Neural Network 

A recurrent neural network (RNN) is a special case of a 
neural network where the objective is to predict the next step 
in the sequence of observations, for previous steps observed in 
the sequence. The idea behind RNNs is to make use of 
sequential observations and learn from the earlier stages to 
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forecast future trends. In the earlier stages, data need to be 
remembered when guessing the next steps. 

In RNNs, the hidden layers act as internal storage for 
storing the information captured in earlier stages of reading 
sequential data. RNNs are called ‘recurrent’ because they 
perform the same task for every element of the sequence, with 
the characteristic of utilizing information captured earlier to 
predict future unseen sequential data. The major challenge 
with a typical generic RNN is that these networks remember 
only a few earlier steps in the sequence and thus are not 
suitable for remembering longer sequences of data. This 
challenging problem is solved using the ‘memory line’ 
introduced in the LSTM recurrent network. 

2.2. Long Short-Term Memory 

LSTM is an RNN with additional features to memorize the 
sequence of data. An LSTM is a set of connected memory 
cells, where the data streams are captured and stored. Each 
memory cell connects out to another one conveying data from 
the past and gathering them for the present elaboration. Due to 
the use of some gates in each memory cell, data can be 
deleted, filtered, or added for the next cells. Each gate is a 
sigmoid unit and yields numbers in the range between zero 
and one. Three types of gates are involved in each memory 
cell to control the state of the cell. 

1. Input Gate: chooses which new data need to be stored in 
the cell. Specifically, the input information will be stored in 
the cell when the input gate records high activation. 

2. Output Gate: decides what will be yield out of each cell. 
The yielded value will be based on the cell state along with the 
filtered and newly added data. In practice, if the output gate 
records high activation, then it will release the stored 
information in the cell to the next one. 

3. Forget Gate: outputs a number between 0 and 1, where 1 
shows ‘completely keep this’; 0 implies ‘completely ignore 
this.’ In practice, the stored information will be cleared if the 
forget gate records high activation. 

3. Mathematical Background 

A memory cell has a state, say  c t , at the time of index t . 
The information that flows in and out the cell is controlled by 
three gates. Each gate is characterized by a state, namely: 
input gate  i t , output gate  o t , and forget gate  f t . Each 
gate receives the same input, the newly added vector of data 
 x t  at time instant t, and the previous vector of hidden states 
  1 .h t The three gates are sigmoid units according to the 

standard logistics sigmoid function defined as follows: 

     1
  1 exp - .z z


                                                           (1) 

The input gate   i t controls the input information flowing into 
the memory cell, which derives the following: 

          1 1 .xi hi ci ii t W x t W h t W c t b                         (2) 

Forget gate  f t  controls the forgetting information of the 
cell, where: 

          1 1 .xf hf cf ff t W x t W h t W c t b                     (3) 

The memory cell is updated by moderated input features and 
the partial forgetting of the previous cell, where the input 
features are calculated by combining newly added data  x t  
at time instant t and the previous hidden state   1 h t  and by 
using a hyperbolic tangent layer. This yields to: 

               1  tanh  1 .xc hc cc t f t c t i t W x t W h t b         (4) 

The output gate  o t  controls the output information flowing 
out of the cell, which derives the following: 

           1 .xo ho co oo t W x t W h t W c t b                          (5) 

Ultimately, the hidden output state  h t  is calculated by 
output gate  o t  and memory cell state  c t , where: 

         tanh .h t o t c t                                                          (6) 

Thus, the univariate output of LSTM  y t  is computed as: 

    ˆ   .hy yy t W h t b                                                         (7) 

The *W  terms denote weight values. In particular, 
, , xi xf xoW W W  and  xcW  are the input weight values; , , hi hf hoW W W  

and  hcW  are the recurrent weight values; hiW  represent the 
hidden output weight value. Finally, *b  terms represent the 
corresponding bias values. The actual values for these 
parameters are defined during the training of the model. 

The model of a baseline LSTM, which is described by 
previous equations from (1) to (7), can process data only in the 
forward direction of the time series. In many applications, we 
may need to consider dependencies/correlations in both 
forward and backward. In this case, bidirectional LSTM 
(BLSTM) is introduced, which can process data in both 
directions with two separate hidden layers. Both hidden layers 
are connected to the same output layer. The major difference 
to a baseline LSTM is that a BLSTM computes the forward 
hidden sequence and the backward hidden sequence 
separately, then the output layer is computed by iterating the 
backward layer from   t T  to  1  t  and the forward layer from 
 1  t  to   t T . 

4. Experimental study 

In this section, LSTM and BLSTM are both evaluated on 
the actual time series of final customer’s demand for 10 
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specific products in a market. We first describe some 
preliminary data elaboration and error measures used in our 
experiments. 

4.1. Variance stabilization using power transformation 

In our study, we considered a data set of 10 series, each 
related to the final customer’s demand for a specific product 
in a market, and for three years 2015, 2016, and 2017. Each 
time series consisted of the monthly sales of the product. Data 
lengths are equal to 36 (35 in three specific cases, which 
presented one missing value each). Given such a short length, 
a preliminary step was required in data, a variance 
stabilization by a power transformation. 

Although power transformations may alter the original 
non-linearity in a time series, in our preliminary experiments, 
we found that such a step is required to enable the deep 
learning algorithm to learn dynamics in data, as trend or 
periodicity, which otherwise could be difficult to identify in 
such small-length time series. A common type of 
transformation for variance stabilization is the power family 
of transformations [2] defined in the following equation (8). 

 
  

  
log  0

  .
1 0

y t
w t

y t



 

 
 

                                             (8) 

A difficulty with this transform is the choice of a proper 
value for the parameter  , which could be suitable for 
variance stabilization. The procedure implemented in our 
study to choose   automatically is the procedure in reference 
[9]. 

However, in preliminary experiments, we found that this 
procedure has its shortcomings, and the parameter   is 
difficult to choose in practice. From equation (8), it can be 
observed that the transform resembles, depending on its 
parameter  , the logarithm or the identity in its most extreme 
case (   0   or  1  , respectively). In particular, the logarithm 
is a strongly non-linear transformation that should be used 
with caution, as small differences in log space may result in 
large differences in the original space, and therewith the 
training phase can yield sub-optimal results.  

Therefore, we use the power transform in (8) through a 
more conservative approach, consisting in forcing    to be 
equal to  1  , i.e., avoiding the transformation of data, when 
the optimal value of  , which resulted from the procedure in 
[9] for variance stabilization, was close to zero (specifically, 
when  0.005 ). 

4.2. Error measures 

Different choices to evaluate forecasts exists in the 
forecasting literature. Overviews are provided in references 
[10] and [11]. In our study, to compare time series modeling 
performance, we calculate 4 measures. 

The forecast error is      ˆ   e t y t y t  , regardless of how 
the forecast was produced. Here,  y t  denotes the 
observation at the time of index t  and  ŷ t  is the respective 
forecast. This forecast error is on the same scale as the data. 
Hence, accuracy measurements based on  e t  is scale-
dependent. 

The most commonly used scale-dependent metrics are 
based on absolute errors or squared errors are the Mean 
Absolute Error (MAE) and the Root Mean Squared Error 
(RMSE). They are defined respectively as follows: 

 1

1  h

t
MAE e t

h 
  ,                                                             (9) 

 2
1

1  ,h

t
RMSE e t

h 
                                                       (10) 

where h denotes the number of data points in the test set. 
To compare forecast performance between different data 

series, percentage errors should be used instead, having the 
advantage of being scale independent. The most commonly 
used metric is the symmetric Mean Absolute Percentage Error 
(sMAPE) defined as follows. 

 
   1

200  .
ˆ

h

t

e t
sMAPE

h y t y t

 
    

                                    (11) 

However, if the actual value   y t is zero, the forecast 
 ˆ t  y is likely to be close to zero too. In this case, the measure 

in (1) will involve division by a number close to zero. 
Additional shortcomings of measures such as the sMAPE are 
that they are skewed, they have lack of robustness, lack of 
interpretability. To address some of these issues, we use as a 
second evaluation metric in our experiments the Mean 
Absolute Scaled Error (MASE), as proposed in [11]. 

MASE is a scale-independent error measure, which also 
offers interpretability, as it measures the forecasting accuracy 
relative to the seasonal ‘naïve’ forecast error. We use MASE 
in the following definition 

 

   
1

1

1  ,
1   

h

t

n

t M

e t
MASE

h y t y t M
n M



 


 






                       (12) 

where n denotes the number of data points in the training set 
of a time series. The seasonal period of a time series is 
represented by  M . That is, assuming the time series is 
seasonal,   1 MASE  means that on average the method 
performs better than the ‘naïve’ seasonal forecast computed 
on the training data while  1 MASE  indicates that the method 
performs worse. 
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4.3. Implementation 

LSTM and BLSTM were both implemented in MATLAB 
using the DEEP LEARNING TOOLBOX. We trained LSTM and 
BLSTM models using the stochastic gradient descent with 
momentum algorithm, learning rate equal to 0.008, and 
learning rate drop factor equal to 0.2 applied each 40 training 
epochs. We used a mini-batch size of 36, and normalization 
for each vector of a sequence by using the mean and standard 
deviation computed from the training set. Training and testing 
were done on a single CPU (Intel Core I7, 2.5 GHz, 16 GB 
memory). The training time for each time series of 35-36 data 
averages 7 sec. in the case of LSTM and 11 sec. in the case of 
BLSTM. The maximum number of epochs was equal to 360. 
An example of a MATLAB window showing training progress 
for deep learning is reported in Fig. 1. 

Table 1 summarizes the parameters of the LSTM 
[BLSTM] implemented. According to our experiments, 
multiple layers should be preferred rather than one layer. In 
our study, we implemented a double-layer stacked LSTM 
[BLSTM] network to guarantee the predictive effect. 

The model adopts the traditional input-hidden-output 
structure of the neural network. In the input layer, the number 
of units equals the data dimension of each input. The hidden 
layer has the number of units that are arbitrarily determined 
(200 units for each hidden layer, in our case study). Since the 
problem solved is a single-valued prediction problem, the 
output layer was set to a single neuron. An additional 
regression layer, which computes the half-mean-squared-error 
loss for regression problems, was added in the model to 
normalize the response and hence stabilizing and speeding up 
the training of the LSTM algorithm. 

LSTM networks require sequences of input features for 
training. We opted for a sequence of 10 input features. Hence 
the number of units in the input layer is equal to 10. 
Specifically, at each time of index t, we used as input a 
sequence of 10 values of time series with indexes 
        1 4 , ,  11 ,  6 , ,  1t t t t      . The target value at 

each time of index t was set equal to  x t . As a consequence, 
the LSTM algorithm provided a forecast  ˆ  y t only for  1 4t . 

Training performance (in-sample fitting) are in Table 2. 
The benchmark method here is a common Exponential 
Moving Average (ExpMA) approach [2] of lag 12. From 
Table 2, the three methods implemented, ExpMA, LSTM, and 
BLSTM, have a  1 MASE  meaning that each of them 
performs better than the ‘naïve’ seasonal forecast computed 
on the dataset. Given that each time series represented 
monthly sales, in computing MASE  the seasonal period was 
set equal to  1 2M   From Table 2, it can be observed that 
BLSTM presents better training results, which in some cases 
resulted in a null forecast error (products no. 2, 3, 4, 6, 8). 

Testing performance (out-of-sample forecasting) is in 
Table 3, where only LSTM and BLSTM methods are included 
in the comparison for brevity. Both LSTM and BLSTM have 

 1 MASE  for each data set (for testing data, the seasonal 
period was set to  1M  ). Results in Table 3 show that LSTM 
and BLSTM algorithms do not over-fit training data set, 

despite the high number of parameters of them. For testing, 
the BLSTM algorithm presents better performance when 
compared to a baseline LSTM one. Therefore, BLSTM 
appears as the preferred approach for consumers’ demand 
modeling and forecasting. 

5. Conclusions 

Nowadays, large quantities of time series data are available 
in many application cases. One promising approach in these 
applications is LSTM, which is a special type of RNN, for 
modeling a time series and forecasting future values.  

 

 

Fig. 1. An example of a MATLAB window for deep learning progress. 

Table 1. LSTM [BLSTM] implemented by the Deep Learning toolbox. 

Level Type Learnable States 

1 
Sequence Input 

with 10 
dimensions 

- - 

2 
LSTM [BLSTM] 

with 200 hidden 
units 

Input Weights 
800[1600]x10 

Recurrent Weights 
800 [1600]x200 

Bias 800[1600]x1 

Hidden State 
200[400]x1 

CellState 
200[400]x1 

3 
LSTM [BLSTM] 

with 200 hidden 
units 

Input Weights 
800[1600]x10 

Recurrent Weights 
800[1600]x200 

Bias 800[1600]x1 

Hidden State 
200[400]x1 

CellState 
200[400]x1 

4 1 fully connected 
layer 

Weights 
1x200[400] 

Bias 1x1 
- 

5 Regression Output - - 
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Table 2. Training performance of LSTM and BLSTM for 10 demand time 
series of length 36 and 35 data. In bold the outperforming method. 

Exp. Method RMSE MAE sMAPE MASE 

Prod. 1 ExpMA 3,046 2,560 34,545 0,723 

 LSTM 0,853 0,545 8,457 0,176 

n = 36 BLSTM 0,564 0,318 5,023 0,103 

Prod. 2 ExpMA 2,072 1,625 40,824 0,719 

 LSTM 0,369 0,136 3,838 0,055 

n = 35 BLSTM 0,000 0,000 0,000 0,000 

Prod. 3 ExpMA 2,425 1,800 32,462 0,559 

 LSTM 0,769 0,409 6,272 0,141 

n = 35 BLSTM 0,000 0,000 0,000 0,000 

Prod. 4 ExpMA 2,366 2,080 25,059 0,846 

 LSTM 0,879 0,591 7,392 0,191 

n = 36 BLSTM 0,000 0,000 0,000 0,000 

Prod. 5 ExpMA 5,396 4,720 29,086 0,558 

 LSTM 2,680 2,091 13,001 0,188 

n = 36 BLSTM 2,477 2,045 13,180 0,184 

Prod. 6 ExpMA 2,577 2,160 41,272 0,720 

 LSTM 0,213 0,045 0,826 0,014 

n = 36 BLSTM 0,000 0,000 0,000 0,000 

Prod. 7 ExpMA 3,027 2,520 22,341 0,720 

 LSTM 0,477 0,227 1,709 0,058 

n = 36 BLSTM 0,213 0,045 0,293 0,012 

Prod. 8 ExpMA 3,240 2,750 45,390 0,821 

 LSTM 0,816 0,476 9,773 0,165 

n = 35 BLSTM 0,000 0,000 0,000 0,000 

Prod. 9 ExpMA 2,209 1,680 42,760 0,568 

 LSTM 0,213 0,045 1,010 0,017 

n = 36 BLSTM 0,213 0,045 1,010 0,017 

Prod. 10 ExpMA 3,644 2,960 20,525 0,646 

 LSTM 1,477 1,182 8,767 0,303 

n = 36 BLSTM 1,000 0,818 5,795 0,210 

 
In this study, LSTM has experimented with demand 

forecasts using 10 actual data sets related to a market. 
Performances of both training and testing phases have been 
evaluated. The results indicate that LSTM is a competitive 
method, it effectively models the non-linearity of the time 
series and therewith it appears being able to outperform state-
of-the-art linear forecasting method. The BLSTM, which can 
process data in both forward and backward directions of the 
time series, augments the accuracy of the baseline LSTM 
approach in all of the cases considered in our study. 
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Table 3. Testing performance of LSTM and BLSTM for 10 demand time 
series of length 12 data. In bold the outperforming method. 

Exp. Method RMSE MAE sMAPE MASE 

Prod. 1 LSTM 1,190 0,750 17,631 0,196 

h = 12 BLSTM 0,816 0,500 12,611 0,131 

Prod. 2 LSTM 0,707 0,500 12,381 0,262 

h = 12 BLSTM 0,408 0,167 3,492 0,087 

Prod. 3 LSTM 1,414 1,000 18,792 0,478 

h = 12 BLSTM 0,408 0,167 2,797 0,080 

Prod. 4 LSTM 1,443 1,250 13,791 0,550 

h = 12 BLSTM 0,764 0,583 5,875 0,257 

Prod. 5 LSTM 3,651 2,167 8,486 0,681 

h = 12 BLSTM 2,291 1,917 7,057 0,602 

Prod. 6 LSTM 0,645 0,417 11,886 0,127 

h = 12 BLSTM 0,289 0,083 5,556 0,025 

Prod. 7 LSTM 1,080 0,833 6,673 0,655 

h = 12 BLSTM 0,500 0,250 2,185 0,196 

Prod. 8 LSTM 0,707 0,500 8,757 0,108 

h = 12 BLSTM 0,577 0,333 3,762 0,072 

Prod. 9 LSTM 1,041 0,750 18,479 0,516 

h = 12 BLSTM 0,645 0,417 9,498 0,286 

Prod. 10 LSTM 1,414 1,167 10,103 0,377 

h = 12 BLSTM 1,155 1,000 8,656 0,324 

References 

[1] Syntetos AA, Babai Z, Boylan JE, Kolassa S, Nikolopoulos K. Supply 
chain forecasting: Theory, practice, their gap and the future. European J. 
of Operational Research 2016;252:1-26. 

[2] Montgomery DC, Jennings CL, Kulahci M. Introduction to Time Series 
Analysis and Forecasting. 2nd edition. Hoboken: Wiley; 2015. 

[3] Hatcher WG, Yu W. A Survey of Deep Learning: Platforms, Applications 
and Emerging Research Trends. IEEE Access 2018;6:24411-32.  

[4] Fischer T, Krauss C. Deep learning with long short-term memory 
networks for financial market predictions. European J. of Operational 
Research 2018;270:654-69. 

[5] Kraus M, Feuerriegel S, Oztekin A. Deep learning in business analytics 
and operations research: models, applications and managerial 
implications. European . of Operational Research 2020;281:628-41. 

[6] Weng T, Liu W, Xiao J. Supply chain sales forecasting based on 
lightGBM and LSTM combination model. Industrial Management and 
Data Systems 2019;120:265-279. 

[7] Hochreiter S, Schmidhuber J. Long Short-Term memory. Neural 
Computation 1997;9:1735-80. 

[8] Svetunkov I, Boylan JE. State-space ARIMA for supply-chain 
forecasting. Int. J. of Production Research 2020;58:818-27. 

[9] Guerrero VM, Perera R. Variance stabilizing power transformation for 
time series. J. of Modern Applied Statistical Methods 2004;3:357-69. 

[10] Hyndman RJ, Koehler AB. Another look at measures of forecast 
accuracy. Int. J. of Forecasting 2006;22:679-88. 

[11] Davydenko A, Fildes R. Measuring forecasting accuracy: the case of 
judgmental adjustments to SKU-level demand forecasts. Int. J. of 
Forecasting 2013;29:510-22. 

 

 


