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Abstract

Surface grinding is one of the oldest and most widely used machining process: to date, there are still few alternatives available for producing
smooth and flat surfaces, satisfying both technical and economic constraints. The quality of a workpiece resulting from a grinding process is
strongly influenced by the static and dynamic behavior of the mechanical system, composed by machine tool, wheel, fixture and workpiece. In
particular, the dynamic compliance of the machine at wheel-workpiece interface may cause vibrations leading to poor surface quality. Starting
from the analysis of process-machine interaction according to self-excited vibrations theories (the most relevant), this paper outlines a path for
surface grinding machines design, focused on the identification of the most critical dynamic eigenmodes both in terms of dynamical parameters
and geometry (vibration direction). The methodology is based on the application of Nyquist stability criterion for MIMO systems. Firstly, the
methodology distinguishes between a limitation mainly ascribable to regenerative chatter and one ascribable to closed-loop eigenmodes
properties. In this latter case, it will be shown that stability properties are strongly influenced by the shape and orientation of the elliptical
movement of the wheel entailed by the limiting eigenmode (that, in general, is complex). Such an analysis can be also exploited to provide
some indications guiding machine structural modifications. Finally, the approach is demonstrated on a couple of grinding machine variants via
FE modeling.
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1. Introduction reason, the comprehension and modelling of grinding process

dynamics assume a paramount importance for both end-users

Grinding is one of the oldest and most widely used
machining process: to date, there are still few alternatives
available for producing smooth and flat surfaces, satisfying
both technical and economic constraints [1][2]. The quality of
a workpiece resulting from a grinding process is strongly
influenced by the static and dynamic behavior of the
mechanical system, composed by machine tool, wheel, fixture
and workpiece. In particular, the dynamic compliance may
cause vibrations leading to poor surface quality. For these

and grinder manufacturers [3].

The evolution of design criteria for grinding machines is
driven by functional requirements, general trends in machine
tools, and cost. The primary functional requirements, as
named by Mohring et al. [4], are similar for all machine tools:
high static and dynamic stiffness, fatigue strength, damping,
thermal and long term stability, low weight for moving parts.
Anyway, an effective design approach should take into
account the specificity of the particular process in a holistic
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perspective. Recently, dealing with milling process, a design
procedure has been proposed based on modeling the
interactions between process and machine by means of a

stability model of the milling process in modal coordinates [5].

The model allows the identification of the mechanical design
parameters that limit the productivity as well as the threshold
values that must be met to ensure the targeted productivity. On
the same line, in [6] the authors outline a method to traduce
the specifications in terms of cutting process in requirements
for machine tool dynamic compliance at tool tip. The outcome
is a domain of general-purpose machine tools that fit the
production requirements from both the dynamic and static
point of view.

Dealing with grinding machines, the stability analysis
proposed in [7] suggests that grinding machine performance
can depend on particular structural properties of the dynamic
compliance at wheel hub. It establishes a necessary condition
stating that instability can occur only if the vibration direction
is comprised between the feed direction and a particular angle
depending on grinding force direction. The sufficient
condition is a sub-interval whose extent depends on system
damping and grinding severity. The instability condition
represents a useful indication for a process-aware machine
design, suggesting optimal geometrical properties for the
dominant structural mode shapes that move the wheel.

The present article moves from these premises to provide a
comprehensive analysis of grinding dynamics to point out how
the dominant closed loop eigenmodes (machine + process) are
affecting machine stability. The approach considers both
regenerative phenomenon and force-field instability. In case of
force-field instability, this work extend the treatment

presented in [7], where only a 1DoF dynamics was considered.

In fact, when dealing with real dynamics, the closed loop
eigenmodes are generally complex, entailing an elliptical
displacement of the wheel. The eigenmodes properties are
traced back to machine structural properties that the designer
can take into account for machine design modifications.

The article is structure as follows. In section 2, the grinding
force model, together with machine-process dynamical
interaction and stability assessment via Nyquist criterion is
presented. The Section 3 develops the stability analysis
distinguishing between regenerative chatter problems or force-
field instability and, in this latter case, ascribing the instability
onset to particular properties of the close-loop eigenmodes. In
Section 4 the methodology is applied to a model of surface
grinding machine. Section 5 reports discussion and
conclusions.

2. Grinding model
2.1. Force model

In most of the literature, the grinding power is assumed a
monotonic function of the Material Removal Rate (MRR) [1].
Then, the tangential grinding force associated to that power
can be determined by knowing wheel velocity, while the
normal component is usually considered proportional to the
tangential one. These components are expressed with respect
to a reference frame located at the ideal contact point between
the wheel and the workpiece. In case of surface grinding, the

tangent component is directed like the feed velocity V,, (that

typically is given by the workpiece speed), while the normal

direction is orthogonal to the workpiece plane (see Fig. 1).
Mathematically,

/; sgnQ| ( MRR
{ x :b.kt en . (1)
y H Vs
with f. and f, tangential and normal force component
respectively, b width of cut, %, the tangential cutting

coefficient, sgnQ, V; the peripheral wheel velocity, u is £,/ f,
ratio and MRR the Material Removal Rate.

£ 6,

Fig. 1. Grinding parameters definition.

Linearizing the Eq.(1) w.r.t. small change in MRR [7], it
yields:
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where D,, is the equivalent diameter [1], a the infeed (in
case of surface grinding it coincides with the wheel diameter)
dx and &y small displacements in tangential and normal
direction respectively.

2.2. Grinding dynamics

Grinding dynamics can be effectively represented by the
block diagram depicted in Fig. 2, which includes wheel
regeneration mechanism. The parameters influencing
regenerative mechanism are the wheel rotation period
(denoted with 7) and the one-turn radial grinding ratio G,. This
latter defined as (V,/V;)G, where G is the usual volumetric
grinding ratio [1]. The displacements in tangential and normal
directions are firstly perturbed by the vibrations induced by
grinding force on the wheel-workpiece relative dynamics
(represented by the compliance matrix H(w)) and wheel
compliance (1/k.). Then, the sole displacement in normal
direction (that it is assumed to coincide with the infeed
direction) is modulated by wheel wear, which decreases the
actual infeed. Whereas grinding force is proportional to MRR,
infeed modulation and infeed rate modulate force as well, that
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may increase the vibration level leading the system to

instability.
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+

exp(-Tau's) . [0 G |«
+

Fig. 2. Block diagram of the grinding wheel regenerative chatter.

The open loop transfer function matrix, denoted by L(s,7),
becomes:

L(s,7)= R(s,T)(P +std)H(s) 3)

pos

where s is the laplacian variable and R(s,7) is the sub-transfer
function of the regeneration loop that assumes the form:

R(s,7) = ;r( (SS)) - [1 + {(?R }(1 f:s j{o 1}}4 @)

According to the Nyquist criterion for Multi-Input Multi-
Output (MIMO) systems, instability occurs when
det(L(w|r)+1), traced for the usual D-contour, makes at least
one clockwise circle around the origin. In other terms, if there
exists a frequency w such that arg(det(L(w,7)+I) < 180 °, the
system is unstable. Consequently, the stability limit is traced
by the solution of the following equation:

det(I+L(,7))=0 )

3. Design criteria

The efficacy of design parameters modification depends on
the specific instability phenomenon that must be tackled.
Therefore, the first step is aimed at distinguishing the nature
of the most critical stability source, according to the model
provided in Section 2.

Let the gain £, (a), T) be the solution of the stability limit
equation derived by Nyquist criterion of Eq.(5), i.e.:

k,

a

=k, (@,7):det(I+k, - L(@,7))=0 (©)

Whereas the gain £, (a), T) must be real for its physical
meaning, the imaginary part 3(k(@,7)) must vanish and
3(k(@,7))=0 can be solved w.r.t. 7 and substitute it into
the Eq.(6), obtaining:

7=7(®) ™

k=k(w) €R* ®)

Eq.(7) and Eq.(8) trace a parametric curve in k,-t plane:
such a curve is known as Stability Lobes Diagram (SLD). The
overall stability performance of the machine is usually well
represented by k&, nin:= min k,(w), that is the critical process
gain along all the possible wheel velocities. This KPI presents
the advantage to be independent from process planner
decisions about wheel velocity.

In order to distinguish if the overall limitation %, ,;, can be
traced back to wheel regenerative chatter or to other kind of
instability phenomenon, a new stability limit is computed,
pretending to cancel out the regeneration loop by posing
R(s,7)=I . On this premise, the stability limit equation
becomes:

ky = ky () : det (I+k, - L(@)) = 9)

with I:(a)) = (P

pos T SPyes ) H ((()) :
Analogously to &, i, the limiting gain kj ;= min ky(w)
can be defined. Now, the ratio

Q:=k“—min e[1,0] (10)

b min

can be used to measure how much instability is due to
regenerative phenomenon w.r.t. force field dynamical
properties. If O—1, the effect of regeneration exclusion is
negligible, meaning that regeneration does not have a
significant effect. If Q—0, the stability limit without
regeneration is extremely high (virtually, not existing),
meaning that the regeneration mechanism is dominating
chatter occurrence.

Let the case Q—1 be considered. In this case, the
instability is due to a particular properties of the process force
field, which is not conservative and allows closed path
integrals associated to energy accumulation. In other words,

Wyor =gsr,rf'dp (11

where p is the generic position vector, I a generic path and
I the velocity on the path.

The energy of Eq.(11) can be explicitly computed
considering the motion associated to the eigenmode of the
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closed loop system at stability limit (hereafter denoted by
o:={¢. ¢,}). This eigenmode corresponds to the null
eigenvalue entailed by Eq.(9) at a given chatter frequency ..
In time domain, this motion becomes:

x =4
y= |¢y|cos(a)ct+ay)

cos(wt+a,)

p(?) (12)

with o, =arg(¢,), @, = arg(q)y) and

The Eq.(12) corresponds to an ellipse expressed in
parametric form. Canceling out the temporal parameter, the
ellipse equation assumes the usual form:

2 2

Ax® +Bxy+Cy~ =1 (13)
with
A= ! ; B= =2 ;
‘q)x‘z sin(ay —ax), ‘(be@C‘tan(ay —ax)’
1
- “”y 2 Sin(“y _ax)’

The ellipse of Eq.(13) is centered in the origin and its
principal axes are rotated by an angle  w.r.t. to the reference
frame xy (see Fig. 3). The rotation angle £ can be computed as
follows:

L C—a+y(Cc-4) +B
f =tan 2 (14)

while the length of the principal axes 4; and A4, is given by
the following expressions:

1
A] = 2 . -2 ;
\/acos B +bcos Bsin f+csin” S

15)
1

4, = 2 . 2

asin® f+bcos fsin f+cos”
Then, Eq.(12) can be rewritten as follows:

x cosB —sinf || A4, cosa,t

p(r)=4 t=]| . L (16)
b% sinff  cosfB || 4,sinat

Let, now, Eq.(11) be analyzed. The overall energy Wror
transferred by the process to the machine can be decomposed
into two parts: W,,, (depending on the positional component
of the process force field f,,) and W, (depending on the
velocity-dependent component f,.;). Namely, the Eq.(11) can
be rewritten as follows:

2

WTOT = WpuA‘ + erl = rfpox : dp + j fvel : pdt =
0

" (17)

= gsr P,.p-dp+ aj P.p-pdt
0

where I' becomes the closed path of the limit cycle
associated to the asymptotic stability at stability limit, that in
our case is the ellipse of Eq.(16), properly scaled by a factor &
(i.e., 5-p(¥)) and w. the corresponding frequency.

A
/AX 4 ,6’/

Fig. 3. Rotated ellipse.
Whereas the term W, is given by the circulation of a
positional force field over the space domain, the Kelvin-
Stokes theorem can be applied, stating:

¢ P,,p-dp=[[ Vx(P,p)d4=Vx(P,,p)4 (18)

where Vx is the vector field curl and A the area of the
surface S delimited by the closed path I'. It can be noted that
for linear positional forces, curl operator is constant.
Therefore, substituting P, and 4 expressions into Eq.(18), it
yields:

bk,V.
Wpos = oA Ay It/ Y sgn Q (19)

N

Provided that all the terms except sgnQ and A, are
positive by definition, it can be noted that there exists energy
injection if and only if 4;4,sgn Q < 0. This condition implies
that wheel center trajectory is someway “orbital”.

On the other side, substituting P,,; expression into W,,; with
the same previous elliptical path, it yields:

.

ve

(C(B)+C)wns (20)

N

with
C(B)=(4;+4;)(4; —AJ)(,U aD,, —asgnQ)coszﬂ+

—( |aD,, sgnQ+ﬂa)(A1 +A;)(A; —Ay)sin Scos

and C; = —Alzﬂ |aDe, —AJzasgnQ
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The Eq.(20) shows that W, can be decomposed into two
distinct components: one dependent on the angle S
(proportional to C(/3)) and one independent (proportional to
C)). Obviously, when 4;=4, the effect of S vanishes, because
the ellipse becomes a circle and £ does not affect oscillation
path geometry.

In Fig. 4, the overall energy Wryor is plotted (by color scale)
w.r.t. B and A; for 6=4=1, for the process parameters of the
chatter frequency reported in Table 1. Due to the unitary 4,
the A,axis can be interpreted as the ratio 4,/ A4; that goes to 0
when the elliptical orbit collapses on a straight line. The only
possibility to incur in instability is when Wpor is negative,
namely, when the process injects energy into the system.
Otherwise, the process is dissipative and tends to damp
vibrations. The magenta line of Fig. 4 represents the border of
such necessary condition: (4,,0) pairs falling inside the ellipse
can lead to instability if the energy injected by the process is
greater than the energy dissipated by the structure. This result
agrees with that one obtained in [7], which represents the
section of the surface Wror{(A;, B) for A~0.

Table 1. Process parameters

ki b v, Q D. G a © o f
[V/mm’] [mm] [m/s] [rpm] [m] [mm] Hz
30 1 053  -1000 600 2.6 001 14 86

In Fig. 4, the necessary condition border is drawn also for
other different process parameters. It can be noted how the
border is surprisingly insensitive to infeed and feed velocity,
while it strongly depends of the u ratio (confirming the results
obtained in [7]).

The dependency of the necessary condition border on
and 4 /4, is the key to suggest which characteristics the closed
loop limiting eigenmode has to exhibit to ensure grinding
stability.

x10'?

Necessary condition for instability | [l W value
Nominal
Infeed -90%
Infeed x10
Vw -50

mu +50%

40 10

30

20

A [rad]

-0.5 0 0.5
AJ/AI

Fig. 4. Normalized Total cycle energy (Wror).
4. Application example

The outlined approach is applied to the design of a large
surface grinding machine with a gantry architecture (Fig. 5).
Machine strokes specifications are 5500mm for the
longitudinal axis X, 2000mm for the traverse axis Y and
1025mm for the vertical axis Z. The spindle is supposed to be
equipped with an Aluminium Oxide wheel (dimension:
610x100x127) that weighs about 60Kg. A FE model of the

first design variant has been built and the dynamic
compliances at wheel hub computed (see Fig. 6).

Fig. 5. FE model of the sample grinding machine.
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Fig. 6. FRFs at wheel hub.

Applying the methodology exposed in Section 3, with the
process parameters of Table 1, the k, and £, have been
computed. For sake of clarity, the SLD and the “flatted” SLD
due to regenerative loop elimination are depicted in Fig. 7 (a)
and (b) respectively.

OSogabilit Diagram without regeneration

06Stalbili': Diagram with regeneration i

0.06 i}
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(@) (b)

Fig. 7. SLD (a) and "flattened" SLD (b).

It yields 0=0.75, meaning that regeneration mechanism is
not the main concern for instability (as evident from the
figures).

Getting a reduce analytical representation of FEM
dynamics and coupling it with the grinding process model
without the regenerative loop (i.e., L(s)), it is possible to
compute the closed loop poles of the system for different
grinding parameters combinations. In Fig. 8, the maximum
real part among the overall poles is represented w.r.t. width of
cut and infeed: the red line, corresponding to a null value,
represents the stability limit.
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Stability analysis Max. poles real part
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Fig. 8. Stability analysis w.r.t. width-of-cut and infeed

In case of unstable cutting combinations, the eigenmode
associated to the most critical pole (whose real part is plotted
in Fig. 8) can be computed. The corresponding S angle and
Aj/A;are depicted in Fig. 9 with the indications (by color) of
the absolute value of the negative relative damping, which
measures the vibration growth rate, and the instability
necessary condition border.

Stability analysis

40 0.01
301 1 0.008
T 20| 1 0.006
g
@10 : 0.004
0 0.002
@Rel. damping for different 3 and AJ
-10 Necessary condition border 0
05— U 0.5

A A,

Fig. 9. Unstable fand A,/4;combitation with vibration growth rate

In the most critical zone, where the majority of grinding
operations fall (i.e. where a>1pm), £ is around 5 deg, while
AyA; is around 0.07: the closed loop eigenmode entails a
nearly straight trajectory that, according to the necessary
condition of Fig. 4, can lead to instability. In the region where
a<lpm, the instable region entails higher 4,/4; (around 0.12)
and higher £ (around 10 deg): in fact, according to necessary
condition locus, higher A,/4; needs higher S to fall into
instability.

Considering that, near the stability limit, the angle [ has
almost the same value independently from the infeed, it can
be stated that the process coupling does not affect eigenmode
geometry. Hence, the closed loop eigenmode is assumed to be
similar to the open loop one, i.e., the eigenmode that the
designer can control by the proper structural modification.

Root locus analysis highlights that the critical eigenmode is

associated to a resonance at about 97Hz. Consequently, it can
be stated that a good strategy for increasing machine stability
property is to change the structure in order to get the structural
eigenmode at 97Hz more “horizontal”, or rather “vertical” (i.e.
[>35°). The first solution weakly depends on u value, while
the second strongly depends on it, as shown in Fig. 4. A
complementary strategy would consist in increasing
eigenmode complexity, in order to obtain a more “orbital”
vibrational trajectory of the wheel hub; but this latter criterion
can be hardly traced back to design modification, since it
involves reasoning about structural and lumped damping,
which is notoriously uncertain.

5. Conclusions

This article presents a stability analysis for grinding
operations that relates the stability characteristics of the
process to the geometrical properties of the eigenmodes of the
closed loop machine-process system. In case regenerative
phenomenon can be neglected, a necessary condition for
instability has been identified, expressed in terms of principal
axes ratio and inclination the elliptical trajectory associated to
the most critical eigenmode. It is worthwhile to be noted that
such a necessary condition depends only on the ratio between
normal and tangential grinding force (as already pointed out
in [7] for a special case). Whereas the closed loop and open
loop critical eigenmode are similar, the indications about its
optimal characteristics can guide the designer to the proper
structural modifications.
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