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Abstract 
 
 
Despite numerous important contributions, the investigation of brain connectivity with 
magnetoencephalography (MEG) still faces multiple challenges. One critical aspect of source-
level connectivity, largely overlooked in the literature, is the putative effect of the choice of 
the inverse method on the subsequent cortico-cortical coupling analysis. We set out to 
investigate the impact of three inverse methods on source coherence detection using 
simulated MEG data. To this end, thousands of randomly located pairs of sources were 
created. Several parameters were manipulated, including inter- and intra-source correlation 
strength, source size and spatial configuration. The simulated pairs of sources were then used 
to generate sensor-level MEG measurements at varying signal-to-noise ratios (SNR). Next, the 
source level power and coherence maps were calculated using three methods (a) L2-
Minimum-Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV) 
beamforming, and (c) Dynamic Imaging of Coherent Sources (DICS) beamforming. The 
performances of the methods were evaluated using Receiver Operating Characteristic (ROC) 
curves. The results indicate that beamformers perform better than MNE for coherence 
reconstructions if the interacting cortical sources consist of point-like sources. On the other 
hand, MNE provides better connectivity estimation than beamformers, if the interacting 
sources are simulated as extended cortical patches, where each patch consists of dipoles with 
identical time series (high intra-patch coherence). However, the performance of the 
beamformers for interacting patches improves substantially if each patch of active cortex is 
simulated with only partly coherent time series (partial intra-patch coherence). These results 
demonstrate that the choice of the inverse method impacts the results of MEG source-space 
coherence analysis, and that the optimal choice of the inverse solution depends on the spatial 
and synchronization profile of the interacting cortical sources. The insights revealed here can 
guide method selection and help improve data interpretation regarding MEG connectivity 
estimation. 
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1. Introduction 

 

Interactions between neural assemblies in different brain structures are a hallmark of healthy 

brain function (Mesulam 1990; Varela et al. 2001; Luo et al. 2010; Mišić & Sporns 2016). The 

ability to reliably measure the dynamics of cerebral networks is therefore of utmost 

importance when it comes to elucidating the neural basis of large-scale integration in health 

and monitoring its breakdown in disease (Schnitzler & Gross 2005; Lopes da Silva 2013; 

Pittau & Vulliemoz 2015). Given the diversity of available neuroimaging and brain recording 
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techniques, numerous functional brain connectivity measures have been used (e.g. Schoffelen 

& Gross 2009; Friston et al. 2013; Engel et al. 2013; O’Neill et al. 2015). One technique that is 

particularly well suited for the detection of large-scale interactions among neural assemblies 

is magnetoencephalography (MEG) (Hämäläinen et al. 1993; Dalal et al. 2009; Baillet et al. 

2001; Gross et al. 2013; O’Neill et al. 2015). The millisecond-range temporal resolution of 

MEG allows us to probe the electrophysiological mechanisms that underlie functional brain 

connectivity (Schölvinck et al. 2013), and its role in sensory, motor and higher-order cognitive 

tasks (Lopes da Silva 2013; Jerbi et al. 2007; Gross et al. 2003; Schnitzler & Gross 2005; 

Meeren et al. 2013; Simanova et al. 2015) as well as in the resting-state (Cabral et al. 2014; de 

Pasquale et al. 2012; Hipp et al. 2012; Schölvinck et al. 2013; O’Neill et al. 2015; Henson et al. 

2007; van Diessen et al. 2015; Garcés et al. 2016; Colclough et al. 2016). 

 

Although sensor-level analyses of MEG recordings have provided important insights into 

brain function, the estimation of neuronal interactions at the source level is key to elucidating 

the role of large-scale brain networks in health and disease. To achieve this goal, one needs, 

first of all, to reconstruct the source time series that underlie the sensor-level measurements.  

 

This is an ill-posed inverse problem since there is no unique solution (an infinite number of 

current density distributions result in zero magnetic field outside the head) and furthermore 

there is no continuous dependency of the solution from the data (i.e. small variations in 

source space can lead to large perturbations in data space). Given that the Maxwell equations 

are linear, it is impossible to choose between an infinite number of equally good solutions, 

without prior knowledge, additional constraints or both. Numerous methods have been 

proposed to tackle this inverse problem (Baillet et al. 2001; Küçükaltun-Yildirim et al. 2006; 

Gross et al. 2013). The specificity of each technique depends on the assumption that is made 

about the properties of the neural sources and on the way it incorporates various forms of a 

priori information, if any is available. One of the earliest and most widely used inverse 

methods is the Minimum Norm Estimate (MNE) (Dale & Sereno 1993; Hämäläinen & 

Ilmoniemi 1984; Hämäläinen & Ilmoniemi 1994; Sarvas 1987; Matsuura & Okabe 1995; Wang 

et al. 1993; Baillet et al. 2001; Hauk 2004; David et al. 2002; Attal & Schwartz 2013; Lin et al. 

2006; Liu et al. 1998; Grave de Peralta Menendez et al. 1997; Hsiao et al. 2015; Cheng et al. 

2015; Stenroos & Hauk 2013; Meeren et al. 2013; Palva et al. 2010; Mattout et al. 2005; Chang 

et al. 2015; Simanova et al. 2015; Kanamori et al. 2013). In principle, MNE searches for a 
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source distribution with the minimum (L2-norm) current that gives the best account of the 

measured data. Another popular family of MEG inverse methods is the beamformer approach 

(Van Veen et al. 1997; Gross et al. 2001; Hadjipapas et al. 2005; Küçükaltun-Yildirim et al. 

2006; Barnes & Hillebrand 2003; Barnes et al. 2004; Ikezawa et al. 2011; Sekihara et al. 2001; 

Quraan et al. 2011; Hillebrand & Barnes 2005; Kujala et al. 2012; Kujala et al. 2008; Darvas et 

al. 2004; Popescu et al. 2008; Litvak et al. 2010; Laaksonen et al. 2012; Gross et al. 2003; 

Spaak et al. 2014; Rossiter et al. 2012; Muthuraman et al. 2015; Hui et al. 2010; Diwakar et al. 

2011). Beamformers scan the source space through a set of spatial filters designed to pass the 

brain activity from a specified location while attenuating activity originating at other 

locations. Interestingly, although beamformers and MNE are among the most commonly used 

methods in MEG source level analysis (Sorrentino & Pascarella 2011; Hansen et al. 2010; 

Baillet et al. 2001), these techniques have primarily been compared in terms of source 

localization accuracy, but their effect on subsequent source-level connectivity reconstruction 

is only poorly understood and has been largely overlooked in the literature. 

 

The differences between available methods are largely driven by the assumptions they make 

on the sources or on the character of the noise. While MNE assumes a Gaussian distribution 

for the noise, beamformers assume that the noise is uncorrelated with the sources. One 

theoretical difference regarding connectivity analysis is that beamformers assume the sources 

underlying the measurements to be uncorrelated (Van Veen et al. 1997) while MNE does not 

(Hämäläinen & Ilmoniemi 1984; Hämäläinen & Ilmoniemi 1994). Several studies have sought 

to assess the effect of method selection on source localization and power mapping (Liljeström 

et al. 2005; Darvas et al. 2004; Küçükaltun-Yildirim et al. 2006; Mattout et al. 2006; Sekihara 

et al. 2005; Hauk et al. 2011; Lin et al. 2006; Haufe et al. 2011), yet there are hardly any 

studies that have directly assessed the impact of method selection on the subsequent source-

level coupling analysis (cf. Schoffelen & Gross 2009; Hui et al. 2010).  

 

Because MNE and spatial filters are widely used inverse solutions in MEG, it would be helpful 

to understand whether they differentially impact source-level connectivity estimations and, in 

particular, what parameters affect their potential difference in performance. Although 

beamformers are by construction tuned to work with uncorrelated sources, they have been 

shown to be stable to moderately correlated sources and to even localize completely 

correlated point-like sources in the presence of noise (Van Veen et al. 1997; Gross et al. 2001; 
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Hadjipapas et al. 2005; Sekihara et al. 2005; Küçükaltun-Yildirim et al. 2006; Kujala et al. 

2008; Quraan & Cheyne 2010). Given that this assumption about uncorrelated sources is 

embedded in beamformer reconstructions, one may ask how it affects the identification of 

coherent sources, compared to inverse solutions that do not make such an assumption (for 

instance MNE)? Furthermore, how do the connectivity-detection performances of MNE and 

beamforming compare when the coupled sources vary in size, or in coupling strength? And 

how does the noise level affect the performance of both methods when it comes to detecting 

interacting sources? These are all open questions which we address here via extensive data 

simulations. 

 

More specifically, the goal of the current study is to investigate the effect of the inverse 

method selection on the quality of subsequent source-space connectivity analyses. In 

particular, we evaluated the difference in the ability to correctly uncover oscillatory coupling 

in source-space following an initial source estimation step that is either performed with (a) 

Minimum Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV) 

beamformer or (c) Dynamic Imaging of Coherent Sources (DICS) beamformer. This was 

achieved using numerous simulations of oscillatory signals where we varied a range of 

parameters, including source size, inter-patch and intra-patch coherence strengths and signal-

to-noise ratio (SNR). 

 

 

 

 

 

2. Methods and Materials 

 

Although our main objective is to evaluate the effect of using different methods to estimate 

coherence between cortical areas, we also compare the performance of the methods to 

localize active sources by evaluating their accuracy in determining the levels of oscillatory 

power. This power estimation also allows us to compare our results with other studies.  For 

the analysis with MNE and LCMV, the time-series of the signals are first reconstructed and 

then spectral coherence and power can be calculated. DICS operates in the frequency domain 

allowing for a direct reconstruction of coherence and power. As shown in section 2.3 and 2.4, 
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LCMV and DICS beamformers are based on the same filtering principle, but DICS was 

especially designed to detect coherent sources and has the advantage of a very low 

computational cost. In this section, we first define the inverse methods used and then describe 

the simulation, reconstruction and performance assessment procedures.  

 

2.1 The MEG Inverse Problem  

 

The inverse solution seeks to identify an estimate of the active sources S (3nsources x time 

points) that generate the measurements M (nchannels x time points) recorded at the sensors. The 

dimension 3n of the columns of S accounts for the three components of the source n in the x, y 

and z directions.  According to anatomical observations, the main generators of MEG are 

located in the grey matter and their orientation is perpendicular to the cortical sheet (Nunez 

& Srinivasan 2006). Here, we used a constrained orientation approach (elemental dipoles 

perpendicular to the cortical surface), and the dimensions of S are therefore reduced to 

(nsources x time points). Assuming a linear relationship between the measurements and the 

active sources, the problem can be modeled as: 

              (1) 

where L is the Lead field matrix (nchannels x nsources) and N is additive noise applied at the MEG 

channels (nsources x time points). The lead field matrix describes how each source contributes to 

the measurements at each sensor, given a specific head conductivity model and a source 

space. As the number of sources is typically much higher than the number of sensors, the lead 

field matrix is highly underdetermined and thereby not invertible.  The estimation of the 

activity of the sources requires the definition of an inverse operator W: 

 ̂           (2) 

where Ŝ represents the estimated sources (nsources x time points) and the superscript T denotes 

matrix transpose.  

 

2.2 Minimum Norm Estimate (MNE) 

 

Since the MEG inverse problem is ill-posed, a regularization scheme is needed (Hämäläinen & 

Ilmoniemi 1984; Hämäläinen & Ilmoniemi 1994). The most common options are SVD 

truncation or Tikhonov regularization (Tikhonov & Arsenin 1977; Foster 1961). MNE 

calculates an inverse operator W by searching for a distribution of sources Ŝ with minimum 
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currents (L2-norm) that produces an estimation of the measurements (LŜ) most consistent 

with the measured data (M). The solution is a trade-off between the norm of the estimated 

regularized source currents   ‖ ̂‖
 

 and the norm of the quality of the fit they provide to the 

measurements ‖    ̂‖
 

.  If we assume  the noise N and the source strengths S to be 

normally distributed with zero mean and covariance matrices Q and R respectively, a general 

form of the MNE inverse solution is given as (Dale & Sereno 1993; Dale et al. 2000; Lin et al. 

2004): 

 

 ̂         {‖ 
   ⁄ (    )‖

 
   ‖    ⁄  ‖

 
}  (3) 

 

where λ is the Tikhonov regularization parameter, Q the noise covariance matrix, and R the 

source covariance matrix. The inverse operator W is thus defined as: 

 

     (        )                                         (4) 

 

where the superscript -1 denotes matrix inverse.  

 

In a previous study, we used the same simulation procedure to investigate whether the 

optimal minimum-norm regularization coefficient  to estimate coherence was identical to the 

optimal one for power estimation (Hincapié et al. 2016). The mean optimal Tikhonov 

regularization coefficient for coherence detection turned out to be, in fact, two orders of 

magnitude lower than the one needed for power detection. This is largely due to the fact that 

increased regularization (i.e. smoothing) blows up the rate of false positives, a problem that 

appears to be amplified for cortico-cortical coupling (Hincapié et al. 2016). Therefore, in the 

current study, we used the mean optimal regularization parameters reported previously (i.e., 

1e-9 for coherence estimations and 1e-7 for power estimations). Note that, as the two terms 

in equation (3) are in the same units (fT/cm or fT), the regularization factor lambda has no 

unit. Moreover, when available, spatial priors can be incorporated in R (Mattout et al. 2005; 

Phillips et al. 2005). As we chose not to use priors, here R is the Identity matrix. The noise 

covariance matrix Q was computed from the actual noise which was added to the sensors in 

each simulation. 
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2.3 LCMV Beamforming 

 

The LCMV beamformer looks for signals coming from a few active but uncorrelated regions of 

unknown location. The inverse operator W is a set of spatial filters, calculated at each source 

location (r), to pass the signal from that location while suppressing signals from other 

locations.  The operator W minimizes the variance at the filter output subject to a linear 

constraint. This variance minimization assures the stopband response to be small at a location 

different to the one being filtered. The output variance or power of each filter (therefore at 

each source location) provides the estimation of the activity in the brain (Van Veen et al. 

1997). This is formulated as follows: 

 

         ( )       [  ( )  
   ( )]                                                   (5)               

 

    ( )        [  ( )  
   ( )]    subject to          ( )                 (6)  

 

Minimizing the corresponding Lagrangian function, the solution obtained is: 

 ( )  (  ( )  
   ( ))

  
  ( )  

                                                (7)      

        

Where Cm is the data covariance matrix. Inserting eq. (7) in eq. (2) gives an estimate of the 

signal at each location of interest r. This estimate of the signal is usually normalized by the 

estimated noise which van Veen et al. (1997) termed the neural activity index. The estimated 

noise signal at each location is calculated in analogy to the estimated signal, but replacing the 

data covariance matrix Cm by the noise covariance matrix Q. Note that we used a standard 

unregularized LCMV approach. 

 

 

2.4 DICS Beamforming 

 

DICS has the same filtering principle than the LCMV, but it works in the frequency domain and 

uses regularization to tune the resolution of the reconstructions (Gross et al. 2001).  The filter 

is defined as: 

 (   )  (  ( )  ( )
   ( ))

  
  ( )  ( )

                       (8)   
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where   ( )   ( )    , and C(f) is the cross spectral density matrix at frequency f (or 

averaged across a frequency band centered at f ) and α is a regularization parameter (its value 

is relative to the largest singular value in the data). 

 

The cross spectrum estimates at locations r1 and r2 at frequency f are calculated by: 

 

  (       )   (    ) ( ) 
 (    )                                     (9) 

 

When r1=r2, Cs is the power estimate matrix.  Noise normalization is done as described for the 

LCMV.  The cross spectrum estimates from equation (9) are used to calculate power and 

coherence as described by equations (10) and (11) in section 2.6. 

 

2.5 MEG data simulation 

 

We simulated oscillatory activity in pairs of cortical sources with various levels of coupling in 

the alpha frequency band (9-14 Hz). We calculated the resulting sensor-level data through 

forward modeling based on a 275 channel CTF MEG system configuration. The simulated 

sources consisted of current dipoles placed at the vertices of a MNI-Colin 27 cortical surface, 

which was segmented and tessellated using FreeSurfer (Fischl 2012), and down-sampled to 

15028 vertices. Different strengths of coupling were obtained by forcing the time series of the 

two simulated source to have a certain level of coherence. We calculated the fields at the 

sensors using a single sphere head model and constraining the orientations of the sources to 

be normal to the cortical surface. The simulated data were generated using a combination of 

custom code written in MATLAB (Mathworks Inc., MA, USA) and functions from Brainstorm 

(Tadel et al. 2011) and FieldTrip (Oostenveld et al. 2011) toolboxes. 

 

The source time courses were simulated by first setting the base frequency of the two 

oscillators (e.g. 12 Hz), and by inducing small, random jitters to the instantaneous frequencies 

of both oscillators at each time point. Both oscillators consisted of 70000 samples (i.e. approx. 

117 seconds, given a 600 Hz sampling frequency). The jittered instantaneous frequencies 

were then used to generate the sine wave oscillators using an exponential function and the 

cumulative sums of the instantaneous frequencies (Appendix A contains an algorithmic 
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description of the equation used to generate such time series). In practice, this approach 

generates two oscillators that operate on average at the same frequency (e.g. 12 Hz) and start 

off with a zero-phase lag. However, as the frequencies of the oscillators are jittered across 

time, the instantaneous phase relationship also fluctuates between positive and negative 

values. As the phase relationship between the two oscillators is not constant, the procedure 

allows us to achieve coherence levels below 1. The frequency jittering was performed 

randomly in a loop until the desired coherence level (e.g. 0.4) between the time courses of the 

two oscillators was obtained. The Matlab code developed to generate the coupled oscillatory 

time series has been made available online via github (see  

https://github.com/ahincap/create-coherent-time-series/tree/master ).  Futhermore, the 

formula used to generate each oscillatory time series is provided in Appendix A. 

 

We randomly selected two locations (seeds) for each simulated pair of sources (600 pairs). 

For each pair, we then varied the following three parameters in the simulations: (a) the spatial 

extent of the sources, (b) the strength of the coupling between the two sources and finally, (c) 

the signal-to-noise ratio (SNR) at the sensors. For a subset of source configurations, we also 

varied the intra-patch coherence levels, i.e. the coupling between elemental dipole time 

courses belonging to the same patch. These parameters are described in more detail below: 

 

(I) Patches and point-like sources: We simulated point-like sources (i.e. 1 dipole) and 

cortical patches (with surface areas of 2, 4 or 8 cm2). Note that the activity of a cortical patch 

was simulated by generating multiple identical time series at the vertices that make up the 

patch. As a result, dipoles within a single patch were perfectly coherent.  Patches with lower 

intra-patch coherence were also simulated (see IV below). 

(II) Coupling strength: The time series of elemental dipoles of the interacting pairs of sources 

were generated such that the alpha-band coherence was 0.1, 0.2 or 0.4. The simulated time 

series were 7000 samples long (600 Hz sampling frequency). Note here that because we 

actually simulate coherence at the source level, we subsequently assess the ability of the 

methods to recover truly coherent cortico-cortical activations. In other words, although 

ambiguities may arise from field spread effects, we do know by construction that the 

underlying generators are truly coherent. 
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(III) Signal to Noise Ratio (SNR): Three levels of SNR (0 dB, -20 dB and -40dB) were obtained 

by adding Gaussian uncorrelated noise to the sensor signals. The SNR was calculated as the 

ratio of the Frobenius norm of signal and noise amplitudes at the sensors.  

(IV) Partly-coherent patches: To take into account the putative effect of intra-source time 

series coherence on inter-source coherence estimation, we also simulated patches where 

intra-patch coherence was reduced (mean intra-patch coherence across conditions was 0.2, 

instead of the 1.0 intra-patch coherence for all previously described simulations). The mean 

intra-patch coherence is computed by taking the mean of coherences calculated across all 

possible pairs of dipoles between the two patches. These partly-coherent patches were 

simulated in 50 configurations of pairs of sources with the inter-mediate patch size of 2 cm2, 

three levels of SNR (0, -20 and -40dB) and inter-seed coherence value of 0.2 (i.e. coherence 

between the time series of the seeds of the two patches). These configurations are thus best 

described by three coherence measures: inter-seed coherence, intra-patch coherence and 

inter-patch coherence. 

(V) Inter-source distance: The putative effect of the distance between the two interacting 

sources on the connectivity estimation was also investigated. Although we did not specifically 

manipulate inter-source distance as a simulation parameter, we were able to evaluate the 

performance of connectivity detection as a function of inter-areal distance by plotting the 

performance as a function of inter-source distance across all simulated configurations (using 

linear regression). This was performed for each of the three reconstruction methods tested 

and for point-like sources and patches. 

 

To summarize, 600 different pairs of source locations were randomly chosen across the 

cortex and used to calculate MEG sensor data.  The time series in each pair were manipulated 

to generate various inter-source coupling strengths (3 levels: 0.1, 0.2 or 0.4) and source sizes 

were set to range across 4 levels (from point-like to 2, 4 or 8 cm2). Three levels of sensor-level 

SNR were used (0 dB, -20 dB and -40dB). Moreover, we also generated 50 additional 

configurations where the simulated coherence between the time series that make up each 

single patch (intra-patch coherence) was lowered to 0.2 on average. In this control condition, 

we fixed inter-seed coherence to 0.2, patch size to 2 cm2 and we used three SNR levels (0, -20 

and -40dB). In total, we created 21900 sets of simulated MEG sensor-level data 
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2.6 Power and Coherence Reconstructions 

 

Once the MNE and LCMV time series and the DICS cross-spectral density matrix were 

calculated, we estimated source-space spectral power (at any location r) and magnitude 

squared coherence (between two locations r1 and r2) as follows 

 

 (   )    (     )                                                                                 (10) 

 

   (       )  |  (       )|
  ( (       ) (       ))       (11) 

  

where Cs is the cross-spectral density matrix, and f the frequency bin. Power and MS 

coherence were calculated via built-in standard MATLAB functions based on Welch's 

averaged and modified periodogram method (Welch 1967). For coherence, we used a seed-

based approach where the reconstructed time series at one of the two simulated sources was 

used as reference, and we calculated its coherence with all other source time series across the 

brain. 

 

2.7 Receiver Operating Characteristic (ROC) Curves  

 

The performance of each method was evaluated using the area under the curve (AUC) from 

the ROC curves which are obtained by plotting the True Positive Fraction (TPF) against the 

False Positive Fraction (FPF) at variable threshold levels α:  

 

   ( )    ( )                            ⁄                                                     (12) 

 

   ( )    ( ) (                                                   )⁄   (13)               

   

where TP(α) represents the true positives (i.e. the intersection between simulated sources 

and active sources at threshold α) and FP(α) represents the false positives (i.e. all active 

sources excluding the true positives at activation threshold α). By computing TPF and FPF 

repeatedly for successive values of activation thresholds α we obtain the standard ROC curve. 

The AUC derived from the ROC curve is taken as a measure of performance, i.e. higher AUC 
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indicates higher performance. Statistical comparisons between AUC measures for the various 

methods across all configurations were performed using standard two-tailed t-tests. 

Note that for reference-based coherence reconstruction, computing true positives can be 

ambiguous if we consider the sources within the “reference patch” (location 1) to be true 

positives. Since we are primarily interested in assessing how well the distant coherent patch 

(location 2) is detected, we used the time series estimated at location 1 -as a seed- and 

considered only the simulated connectivity that make up the patch at location 2 to be the 

vertices we wish to detect (TP). 

 

Control for bias towards FPF: 

A potential problem in the ROC-based performance evaluation could in theory arise from the 

fact that the number of vertices in the source space (total number of dipoles) exceeded by far 

the number of active sources in our simulations (true positive dipoles). We used a source 

space grid of 15028 vertices (total number of dipoles) and our simulations consisted of 

dozens of simulated dipoles (60 dipoles for the largest patches), which can generate a bias 

towards the FPF. To investigate this, we randomly sampled a number of non-active dipoles 

(TN) equal to the number of simulated dipoles (TP) and calculated the TPF and the FPF. In 

other words, for a true active patch of, for instance 60 dipoles, we randomly selected 60 

dipoles from the TN, and used the activity values of these 120 dipoles for the ROC/AUC 

calculation. This allowed us to enforce a balance between TP and TN. This procedure was 

repeated 100 times for each TP patch. The resulting 100 AUC values were averaged to get a 

representative AUC for each configuration. A set of 50 source configurations was used in this 

analysis. This control analysis yielded AUC measures that are extremely close to the those 

obtained with the standard approach (see result section 3.5 and Table 1 for details). 

 

Control for spatial smoothing (source blur) 

Lastly, we analyzed the potential effect of seed blur (spatial smoothing) on the AUC 

performance metric. To this end, we asked whether a less conservative definition of the TPF 

would have an effect on the evaluation of the methods. To this end, we performed the analysis 

by including neighboring vertices (around the simulated source) in the definition of true 

positives. The pseudo true positives were defined as all vertices within a source patch 3 times 

bigger than the actual simulated patches (e.g. for a 2 cm2 patch, all dipoles with a 6 cm2 patch, 

centered on the same vertex, were all considered pseudo true positives).  In this control 
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analysis, we also took into account the bias towards FPF (cf previous section). As in the 

previous section, we used a subset of 50 configurations in this analysis. We found that the less 

conservative definition of the TPF did not affect the results (See section 3.5 and Table 1 for 

details). 

 

 

 

 

 

Figure 1. Overview of the simulation and analysis pipeline that was developed in this study to (A) 
create pairs of coherent cortical patches, (B) generate the corresponding MEG sensor data through 
forward modeling, (C) add noise, (D) reconstruct the underlying sources and calculate power or 
coherence maps, and (E) evaluate the detection performance using ROC curves and AUC, for a given 
inverse method. 
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3. Results 

 

In this section, we first describe the average results for the methods comparison; second and 

third, we show the effect of the SNR and the strength of coupling on the performance of the 

methods and lastly, we show the effect of low intra-correlation of the patches on the 

performance of the methods. As the size of the sources has an important effect on the 

performance of the three methods, we present the results separately for point-like (two 

coupled single-dipole sources) and for cortical patches. 

 

 

3.1 Methods Comparison: MNE, LCMV and DICS 

 

Globally, beamformers (LCMV and DICS) have a similar performance in all cases (there are no 

statistically significant differences between them) and, have a statistically significant 

(p<0.001) higher performance than MNE for power reconstructions and coherence 

reconstructions for point-like source configurations (Figure 2B, 2C and 2D). However, MNE 

provides better coherence performance than beamformers for the cortical patches (Figure 

2A).  The drop in beamformer performance when detecting interacting patches (compared to 

identifying interacting point-like sources) is most likely due to the fact the identical elemental 

dipole time series within a single patch give rise to more signal cancellation. 
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Figure 2. Performance comparison for coherence and power detection using all three inverse methods. 
(A) Mean AUC for coherence reconstructions of cortical patches (* indicates statistically significant 
differences at p<0.001, t-test). (B) Mean AUC for power reconstructions of cortical patches. (C) Mean 
AUC for coherence reconstructions of point-like sources. (D) Mean AUC for power reconstructions of 
point-like sources. 
 

 

3.2 Effect of SNR 

 

Regarding the effect of SNR on coherence reconstructions of patch simulations, MNE shows 

higher AUC values that expectedly decrease with decreasing SNR. There is a statistically 

significant effect of the values of SNR for MNE (p<0.001, t-test), but not for the beamformers 

(Figure 3A). For power reconstructions, although SNR has a statistically significant effect on 

the three methods, beamformers are more stable to different values of SNR and have a 

statistically significant higher performance than MNE (Figure 3B and 3D). For the highest SNR 

condition (0dB), MNE has a higher performance (p<0.001, t-test) than the filters for 
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coherence reconstructions of point-like sources and for power reconstructions of cortical 

patches (Figure 3A and 3D). For the lowest SNR condition (-40dB), DICS has the best 

performance for coherence reconstructions of point-like sources. The lower performance of 

MNE at 0dB for reconstructions of point-like sources is explained by the use of the average 

optimal lambda, which is one order of magnitude larger than the optimal value for these 

conditions. For the beamformers, the decrease in performance at the 0dB condition for point-

like sources is due to the fact the beamformers are spatially extremely focal at this SNR. As the 

maximum output for the beamformers was not always on the exactly right vertex, this led for 

many source configurations to a lower performance than at the lower SNR conditions. Note 

that as the SNR has been defined from the raw simulated signals, the effective SNRs at the 

studied, narrow frequency band are, in fact, about 20dB higher than what are given in the 

definitions (Fig 3D).  

 

 

 

 
Figure 3. Effect of SNR on coherence and power reconstructions. (A) Effect of SNR on coherence for 
coupled patches (extended sources). (B) Effect of SNR on power for patch sources. (C) Effect of SNR on 
coherence for point-like sources. (D) Effect of SNR on power for point-like sources.  
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3.3 Effect of strength of coupling 

 

According to the statistical analysis, there is a significant difference between the 

performances obtained with coupling strengths of 0.1 and 0.4 for beamformer power and 

coherence reconstructions of point-like sources. The reconstructions at 0.1 coupling have a 

better performance than those at 0.4 coupling for power reconstructions (Figure 4D). In 

contrast, the reconstructions at 0.4 have a better performance for coherence reconstructions 

(Figure 4C). There is no effect of the strength of coupling for the MNE power reconstructions 

(Figures 4B and 4D), but there is a significant effect for coherence reconstructions, showing 

higher AUC values that expectedly increase with increasing coherence between the simulated 

sources (Figures 4A and 4C).  

 

 

 

Figure 4. Effect of inter-source coherence strength (Coh=0.1, 0.2 and 0.4) on coherence  and power  
reconstruction results (mean AUC) with each of the three methods.  (A) Effect of strength of coupling 
on coherence detection for patch sources. (B) Effect of strength of coupling on power detection for 
patch sources. (C) Effect of strength of coupling on coherence detection for point-like sources (single 
dipole). (D) Effect of strength of coupling on power detection for point-like sources.  
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3.4 Results with alternative ROC performance metrics 

 

As described in section 2.7, we also used two modified approaches to the standard ROC in 

order to control for bias towards FPF (i.e. due to the imbalance between TN and TP in our 

simulated data) and for spatial smoothing (source blur). Table 1 shows the mean AUC for a 

subset of 50 configurations obtained with the standard approach (Method 1) and with the 

modified methods (Methods 2 and 3). The results indicate that the two modified ROC/AUC 

methods did not have a substantial effect on the mean AUC for coherence detection, neither 

for the patches nor for point-like configurations. Interestingly, the mean AUC obtained with 

patches using beamforming were below 0.5, which is in theory an indicator that the method 

performs below chance levels. This intriguing observation cannot be simply explained by the 

imbalance between true positives and true negatives because it was observed with all three 

ROC/AUC methods used here. A likely explanation is the full correlation between the times 

series of the elemental dipoles that make up each patch and the way this adversely impacts 

the beamformer approach, through signal cancellation. This issue is tackled in the next 

section.  

 

Table 1. Summary of mean method performance for coherence and power detection using standard 

and modified ROC/AUC approaches. Method 1: standard FPF-TPF ROC/AUC methodology. Method 2: 

Modified ROC/AUC controlling for the large imbalance between TN and TP. Method 3: Modified 

ROC/AUC taking into account spatial resolution or seed blur (by expanding the true positive set to 

include neighboring vertices) and controlling for the large imbalance between TN and TP. (See section 

2.7 for details). 

 Inverse 
Method 

Patches 
Mean AUC (±std) 

Point-like sources 
Mean AUC (±std) 

Method 1 
Standard ROC/AUC 

MNE 0,6145 ±0,1953 0,5730 ±0,2387 

LCMV 0,3822 ±0,1851 0,6750 ±0,3141 

DICS 0,3824 ±0,1861 0,6853 ±0,3064 

Method 2 
Modified ROC/AUC Control 
for imbalance between TN 
and TP  

MNE 0,6145 ±0,1955 0,5746 ±0,2416 

LCMV 0,3821 ±0,1851 0,6765 ±0,3148 

DICS 0,3825 ±0,1860 0,6847 ±0,3076 

Method 3 
Modified ROC/AUC 
Control for spatial resolution 
(seed blur) and TN/TP 
imbalance 

MNE 0,6052 ±0,1850 0,5510 ±0,2085 

LCMV 0,3844 ±0,1680 0,6081 ±0,2569 

DICS 0,3842 ±0,1688 0,6186 ±0,2510 
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3.5 Effect of intra- patch coherence 

 

As beamformers assume no correlation between the sources to be reconstructed, high within-

patch coherence (such as identical time series across the vertices of a single patch) is expected 

to adversely affect the results of beamformer coherence detection. This is a likely explanation 

of the results above where DICS and LCMV were outperformed by MNE for the detection of 

coupling among interacting patches, where each patch was made up of multiple identical time 

series). When the within-patch coherence was forced to be substantially lower than 1 (mean 

intra-patch coherence of 0.2), the connectivity performance of the beamformers significantly 

improved (Figures 5). MNE coherence reconstructions were not affected by the reduction in 

within-patch coherence. Our findings confirm that total intra-patch coherence for extended 

patches impeded the coherence detection performance of beamformers. 

 

 

Figure 5. Comparison of results obtained with fixed between-patch coherence (i.e. inter-patch coh=0.2) 
but variable within-patch coherence (i.e. intra-patch coh= 1.0 or 0.2). Bar plots show mean AUC for 
coherence detection for coupled patches of 2 cm2. Left column correspond to cases of fully coherent 
patch time series, i.e. all dipoles inside each patch are fully coherent (i.e. intra-patch coherence =1.0) 
and the right column represents results of partly coherent patch time series (intra-patch coherence set 
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to 0.2). The right columns depict the positive effect of reduced intra-patch coherence on beamformer 
performance. The performance of MNE remains stable. 
 

 

Figure 6 illustrates the effect of (i) inverse method selection and (ii) changes in intra-patch 

coherence on the detection of MEG cortico-cortical coupling. The simulated configuration (Fig 

6A) shows a pair of cortical patches (one on each hemisphere), with inter-patch coherence 

strength set to 0.2, patch size to 2 cm2 and SNR to -20dB. Figure panels 6B and 6C show the 

obtained cortical coherence maps estimated with respect to the reference seed (indicated in 

panel A), after using each one of the 3 inverse methods. In Fig 6B the simulated dipole time 

series inside each patch are entirely coherent (intra-patch coherence set to 1, Config 1), while 

in 6C, the time series of the dipoles that make up each patch were forced to have lower 

coherence (intra-patch coherence set to 0.2, Config 2). 
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Figure 6. Illustrative examples of the effect of inverse method, and intra-patch coherence on the 
detection of MEG cortico-cortical coupling. (A) Illustrative configuration of simulated alpha-band long-
range cortico-cortical coherence (patch size=2 cm2, inter-patch coh=0.2, SNR=-20dB). The coherence 
among the time series of dipoles inside each single patch were either totally coherent (intra-patch 
coherence =1, Config 1), or only partly coherent (intra-patch coherence=0.2, Config 2). (B) 
Reconstructed coherence maps for Config 1, obtained using source 1 as seed (see panel A), and with the 
three inverse methods (MNE, LCMV and DICS). (C) Same as Panel (B) but for Config 2 (i.e. mean intra-
patch coherence reduced to 0.2 while the inter-patch and inter-seed coherences were both maintained 
at 0.2). The maps in B and C are thresholded at 0.01, and extend up to 1, i.e. max coherence. (D,E) 
Standard ROC-curves for each method corresponding to the coherence results in (B,C), respectively 
(see Methods section for details). 
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Figure 6B, and the associated ROC curves in Fig 6D, illustrate how MNE can outperform the 

beamformer for coherence detection when the individual dipole time series that make up 

each single patch are all coherent (identical time series). Note here, that the inter-patch 

coherence (i.e. cortico-cortical coupling) and the inter-seed coherence here was 0.2. The 

beamformer reconstructions of coherence were associated with a high false positive fraction. 

Although MNE coherence reconstruction also depicts a relatively high false positive fraction, 

the highest reconstructed values are located around the true location of the sources, giving 

rise to a true positive fraction that remains high through all the ROC threshold sampling steps. 

These differences yield lower AUC values for DICS and LCMV compared to MNE. The results 

differ substantially for configuration 2 (Figures 6C and 6E). Here, coherence reconstructions 

using both LCMV and DICS clearly improve because of the lower intra-patch coherence (0.2, 

instead of 1.0 as in Fig 6B,D). This is likely due to the fact that the beamformer performance 

was hindered in configuration 1 by the presence of fully correlated time series inside each 

patch (intra-patch coherence =1). In contrast, the performance of MNE slightly dropped in 

configuration 2. This could be due to the use of a regularization parameter lambda that is 

optimal for fully coherent patches, and is sub-optimal here. It is very important to keep in 

mind that the examples shown in figure 6 are just configurations that we chose to illustrate 

and visualize aspects that are representative of the global findings obtained across all the 

simulations (see for example Figure 5). One may very well find configurations that show 

different results.  

 

3.6 Effect of inter-source distance 

 

The investigation of the impact of inter-source distance on connectivity performance suggests 

that the distance between sources has little if any effect on connectivity performance when 

the interacting sources are modeled as point-like sources (Fig 7A). Yet, when it comes to pairs 

of coupled cortical patches, beamformers show a decrease in performance (quantified by 

AUC) with increasing inter-source distance (Fig 7B). As shown in Fig 7C, this effect was 

weaker, though still present, when the individual dipole time series within each patch were 

simulated with low coherence (intra-patch coh =0.2). The interpretation of these observations 

is non-trivial. One cannot rule out, that factors such as the specific geometry of the distant 
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sources provide conditions that are less favorable for the beamformer approach (e.g. more 

vulnerable to signal cancellation). Most importantly, however, as shown in Fig 7C, the 

observed effect of inter-source distance is clearly reduced for partially coherent patches. 

Thus, the inter-source distance seems to affect the beamformer connectivity performance 

only in scenarios where there is a massive amount of correlated activity present in spatially 

extended patches, potentially leading to a violation of the beamforming principles. A more 

systematic simulation analysis tailored to determining the effect of inter-source distance 

would be needed, to fully and adequately address this question. 
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Figure 7. Effect of inter-source distance on connectivity estimation performance, for MNE, DICS and 
LCMV. (A) Effect of source distance on connectivity estimation performance when using pairs of point-
like sources (mean AUC across 3 coupling strengths and 3 SNR values i.e. 9 combinations for each of 
600 pair of locations). The correlation coefficients and associated p-values obtained using linear 
regression indicate that performance was independent of inter-source distance. (B) Same as in (A) but 
using data from interacting patches (case: intra-patch coh =1) and across 3 coupling strengths, 3 SNR 
values and 3 patch sizes (i.e. 27 combinations for each of the 600 pairs of locations). Statistically 
significant effects (negative correlations) were observed when using DICS and LCMV. (C) Same as in (B) 
but this time with the 50 configurations of coupled patches for which partially coherent time series 
were generated (case: intra-patch coh =0.2). For this condition, we used 2 patch sizes (0.6 cm2 and 2 
cm2) and the 3 SNR values (i.e. 6 combinations). Here weaker tendencies were observed in the 
correlation analyses. Note that, for patches, inter-source distance on the x-axis is calculated as the 
distance between the centroids of the two patches; yielding minimal distance of 10 cm (if we consider 
the distance between patch edges, the minimal distance is 7.3 cm). 
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4. Discussion 

 

The main objective of this study was to compare the effect of using one of three distinct MEG 

inverse solution methods on source-level cortico-cortical coherence estimation. This was 

carried out using extensive simulations of pairs of sources with variable sizes, levels of intra 

and inter-source coherence and noise (SNR) conditions. Our main findings suggest that, for 

point-like sources (two coupled single-dipole sources), the spatial filters (LCMV and DICS) 

provided a better estimation of coherence, whereas MNE provided better coherence 

reconstructions when the simulated sources consisted of extended patches. This was the case 

irrespective of inter-patch coherence level, as long as the time series inside each individual 

patch were perfectly coherent (intra-patch coherence of 1). More globally, the inverse method 

used and the form of the simulated sources clearly have an effect on the power and coherence 

reconstructions: beamformers (LCMV and DICS) have a similar performance in all cases and, 

on average, have a better performance than MNE for point-like interacting sources, but not for 

spatially extended sources, where MNE provided better coherence results.  

 

As far as the effect of noise is concerned, we observed that beamformers are more stable to 

the different values of SNR and have, on average, a better performance than MNE for power 

estimation, in accordance with (Küçükaltun-Yildirim et al. 2006). In contrast, for coherence 

reconstructions of coupled patches, MNE shows higher AUC values that expectedly decrease 

with decreasing SNR.  The three methods are sensitive to SNR in point-like simulations. 

Furthermore, LCMV and DICS perform actually better when the SNR drops from 0 dB to -20 

dB. This effect results from the prominent signal cancellation that can occur for beamformers 

when there is very little noise in the data. 

 

With respect to the strength of coupling, the three methods are sensitive to this parameter for 

coherence reconstructions.  An increasing strength of coupling leads to a better detection of 

the coherence between the sources and thus a better performance of the three methods.  MNE 

is stable to the different values of strength of coupling for power reconstructions of point-like 

sources, while the performance of the beamformers improves with the lowest value of 

strength of coupling. For power reconstructions of patches, all three methods are stable to the 

different values of strength of coupling.  
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High within-patch coherence (e.g. identical time series across the vertices of a single patch) 

adversely affects the results for beamformer-based coherence reconstructions. However, the 

performance of the beamformers clearly improved when intra-patch coherence was reduced 

to avoid total intra-patch coupling (Figure 5). This result demonstrates that the drop in 

connectivity performance observed with beamformers, when simulating each source as a fully 

coherent patch (identical time series), is caused by a greater propensity for signal 

cancellation. The mean MNE coherence reconstruction performance in these modified 

simulations remained stable (Figure 5).  

 

Our results agree with previous reports which conclude that the beamformers successfully 

reconstruct distant point-like correlated sources in presence of noise (Van Veen et al. 1997; 

Gross et al. 2001; Hadjipapas et al. 2005; Sekihara et al. 2005; Küçükaltun-Yildirim et al. 2006; 

Quraan & Cheyne 2010; Steinsträter et al. 2010; Hui et al. 2010). For totally intra-coherent 

patches, misallocation and cancellation of the signal due to interference of correlated sources 

reconstruction was observed in accordance to past reports (Barnes et al. 2004). Nonetheless, 

our results suggest that on average beamformers perform well for power reconstructions but 

poorly for coherence reconstructions when the elemental dipole activities inside each patch 

are fully coherent (perfect intra-patch coherence). This effect disappears if intra-patch 

coherence is reduced. 

 

The time series of the patches which consisted of totally coherent dipoles lead to some inner 

cancellation of the reconstructed signal, which adversely affects the coherence 

reconstructions for coupled cortical patches. For source configurations where the 

beamforming filtering causes partial inner cancellation of the patch signal, the remaining 

reconstructed signal was enough to contribute as a true positive and account for a high AUC in 

the power reconstructions but was too weak for coherence estimates. The filtering 

cancellation was overturned with the partially intra-coherent patches resulting in an 

improvement of performance for the coherence reconstructions with beamformers. This 

effect arises from the extended source configuration since the activity at distinct vertices of a 

patch can be seen as individual sources. When the activity at these vertices is fully coherent, 

the violation to the beamformer assumption of non-correlated sources negatively affects 

beamformer performance.  It is also interesting to recall, however, that beamforming 



 
 

28 
 

provided better coherence reconstructions when the coupled sources were each simulated as 

a single dipole (point-like source). 

Overall, the fairly similar performances of DICS and LCMV were to be expected, as both 

methods are based on the same algorithm. However, as the estimations of the data covariance 

are based on different computations, it is possible that the methods would show more marked 

differences for other types of data and other types of cortico-cortical interactions. It is 

noteworthy that, although no significant differences were found between the performance of 

the LCMV and the DICS, DICS shows a slight tendency to perform better for coherence 

reconstructions and requires substantially less computational time.  

 

Our evaluation of coherence detection was characterized by how accurately the second source 

is detected when using the first one as a seed point in a brain-wide coherence analysis. In 

other words, we do not use the result of a source localization procedure to identify the seed. 

Although this comes with certain limitations, it also allows us to address the two questions 

separately. In addition, cortico-cortical coupling is not exclusively performed on sources that 

show significant activations in the source localization step. A selection of a source or a region 

of interest (ROI) based on the literature (or on a specific hypothesis) is also used as a 

preliminary step to seed-based source-space coupling analyses. Our results directly apply to 

such approaches. 

 

It is also important to mention that, like many other coupling measures, coherence estimation 

is sensitive to field spread effects in MEG (Schoffelen & Gross 2009). In the current study we 

manually simulated coherence between pairs of sources with variable phase lags (including 

true zero-phase lag). This constitutes the real ground truth for which we test detectability 

after the estimation of the sources using different inverse methods. Instead of using arbitrary 

phase-lagged coherence, one could also specifically simulate interactions only with non-zero-

phase lags. This would allow for the assessment of the effect of different source estimators on 

the performance of a family of interaction measures designed to detect non-zero phase-lagged 

interactions exclusively (cf. Nolte et al. 2004; Stam et al. 2007; Vinck et al. 2011; Brookes et al. 

2012; Hipp et al. 2012; O’Neill et al. 2015; Colclough et al. 2015). Despite being over 

conservative, such metrics are widely used because they are less prone to false positives 

caused by source leakage. In the present study, we focused on the estimation of coherence 

because it’s a standard and widely established measure, making it a convenient choice given 
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that our objective is to focus on comparing the impact of various reconstruction methods on 

connectivity detection. Furthermore, invasive recordings in animals and humans provide 

evidence for the physiological relevance of coherence and partly suggest that neuronal 

interactions may indeed exhibit true zero-phase coupling (e.g. Wang et al. 2012; Roelfsema et 

al. 1997; Frien et al. 1994; Towle et al. 1999; Adhikari et al. 2010; Buffalo et al. 2011; Fries 

2005; Buzsáki & Schomburg 2015). This said, it would of course be useful to investigate if the 

findings reported here hold for a range of other widely-used connectivity metrics such as 

imaginary coherence, phase-lag index, orthogonalized amplitude coupling and inter-areal 

cross-frequency coupling metrics.  

 

The inter-source alpha-band interactions generated here yielded, by construction (see 

Appendix A), variable phase lags including true zero-phase lags. We thus used coherence to 

recover these interactions because it is in theory sensitive to zero and non-zero phase lag 

coupling. As mentioned earlier, this may be seen as a limitation which may minimize the 

implications on current research in the community. We argue that the general validity of 

coherence as a tool to detect interactions with arbitrary phase lags (including zero lags, which 

are biologically plausible) makes it a good general starting point to investigate the effect of 

inverse solution methods on source connectivity estimation. Future studies will have to 

investigate the performance obtained using other metrics, in particular measures that ignore 

zero-phase interactions.  

 

The present manuscript also considered cases where only two coherent sources are active 

simultaneously and where the sensor-level noise is Gaussian and uncorrelated across sensors. 

Future studies should address the effects of more complex source configurations (with several 

simultaneous active sources that are both coherent and non-coherent with each other) and 

more realistic noise profiles (e.g., correlated noise across sensors). 

 

Standard and modified ROC analyses and the associated AUC metrics have often been used to 

assess and compare the performance of different inverse methods with regards to EEG/MEG 

source reconstruction with simulated data (Lin et al. 2004; Küçükaltun-Yildirim et al. 2006; 

Darvas et al. 2004; Grova et al. 2006; Chowdhury et al. 2013; Mattout et al. 2006). Because of 

potential limitations related to performance evaluation with AUC/ROC metrics (e.g. in the 

presence of highly unbalanced data), we performed additional analyses where we compared 
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the results obtained with the standard ROC approach to the output obtained when using two 

types of modified ROC/AUC approaches (described in section 2.7). As seen in Table 1, there 

was no significant difference between the conclusions one would draw either from the 

standard ROC or the modified versions.  

 

Linear imaging methods used to solve the MEG inverse problem (such as MNE and 

beamformers) can be derived in a  Bayesian statistical framework (Auranen et al. 2005; Baillet 

& Garnero 1997; Belardinelli et al. 2012; López et al. 2014; Mattout et al. 2006; Trujillo-

Barreto et al. 2004; Wipf & Nagarajan 2009) within this framework, the estimate of the neural 

currents is the maximum a posteriori (MAP) of the posterior distribution of the sources given 

the data. Under Gaussian assumptions for both the noise and sources processes, the MAP 

coincides with the expected value of the posterior distribution. What really makes each 

method unique is the specific choice of the prior distribution for the spatio/temporal 

distribution of the neural current; thus, the various algorithms differ only in their prior 

assumptions about the structure of the source covariance matrix. Lopez et al (2014) describe 

how the Parametrical Empirical Bayes (PEB) could be exploited to implement most of the 

popular MEG inverse methods within the Bayesian framework in the SPM software package. 

They describe the different approaches to optimize the prior covariance parameters and how 

their form is related to different prior assumptions about the distribution of cortical activity. 

For a given dataset, the most likely priors are those that maximize the model evidence. The 

fitness of any prior covariance matrix to explain measured data can be quantified in terms of 

Variational Free Energy (Friston et al. 2007)). There are multiple constraints that can be used 

as prior source covariance matrix R. The simplest assumption, adopted in MNE solution, is 

that all dipoles have the same prior variance and no covariance, thus R_MNE is the identity 

matrix; while, in beamforming, the prior source covariance matrix R_BF is a diagonal matrix 

whose diagonal elements are the variance of the beamformer output. More structured prior 

covariance matrices are obtained as the weighted sum of multiple prior components and the 

hyperparameters have to be optimized to obtain the prior maximizing the evidence of the 

data. From a PEB viewpoint, both MNE and LCMV use a single empirical prior and only one 

parameter has to be optimized. Here, we only perform a straight-forward comparison of MNE 

and beamformers (with regards to cortico-cortical connectivity detection performance), and 

we do not focus on the optimal choice of the prior source covariance matrix. Future work 

could address the development and assessment of these methods within the PEB framework 
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in order to compare the performance of different priors under the same optimization 

framework. Different prior covariance matrices, such as Multiple Sparse Prior, could be taken 

into account (Wipf & Nagarajan 2009). Other techniques that have been developed to 

facilitate methods comparison within a common framework could potentially be used to 

confirm and extend the results of the current study (e.g. Hauk and Stenroos, 2014). 

 

It is noteworthy that the power detection results reported here across the three source 

estimation methods did not systematically follow the respective connectivity detection 

performances. For instance, even when failing to detect coherence between patches with total 

intra-patch coherence, beamformers still performed well on power estimation. This highlights 

critical differences in the impact of the source estimation methods depending on the type of 

measure one is trying to determine. One should thus avoid extrapolating insights from studies 

focusing on localizing brain activity to studies on brain connectivity. 

 

Taken together, the results of this study suggest that the accuracy of MEG connectivity 

analysis may be differently affected by the properties of the interacting sources depending on 

whether minimum-norm estimates or spatial filters are employed for source estimations. 

While coupling between point-like sources was more reliably determined using spatial filters, 

interacting pairs of extended patches were better identified using minimum-norm. However, 

the latter effect was no longer true if the intra-patch coherence (coherence between the time 

series of the adjacent dipoles that make up a single patch) was sufficiently reduced.  

 

One may ask how these observations can help us choose the appropriate inverse solution to 

use with a real MEG data where the source properties are by definition not known. If a priori 

information is available about the likely properties of the interacting sources (e.g. (i) close to 

point-like sources, (ii) focal and highly synchronized patches, or (iii) large and weakly 

synchronized), the current findings can be used to choose one method over the other. Of 

course, such a priori information is difficult to obtain. So rather than establishing that one 

technique is superior to the other in all cases, our findings help us understand potential 

discrepancies that may arise from applying both methods to a given data set. They also 

indicate which parameters are critical and which ones matter less.  
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Unfortunately, the size of active cortical patches and, in particular, the degree of intra-patch 

synchrony they will typically portray at various sizes are not very well established. We 

therefore simulated fully and partially synchronous patches of different sizes in order to 

evaluate how different types of cortical activity would affect the connectivity performance, as 

a function of the source reconstruction algorithm. It is conceivable, however, that future 

invasive electrophysiological investigations may allow for a better characterization of patch 

size and the degree of within-patch and between-patch synchronization in real brain signals. 

Combining such insights with the findings reported here, may help us make more informed 

methodological choices.  

 

Paths for future research could include replicating this study with other measures of coupling 

such as phase-based measures, and using more complex source configurations. Moreover, 

although we compared three of the most widely used inverse methods, other equally 

interesting MEG inverse problems exist and are used in the field. The framework described 

here can be extended to other methods in future studies.  

 

Methods comparison is an important and challenging task, yet it is often an ungrateful 

endeavor. The use of simulated data and carefully controlled parameter space provides an 

important theoretical framework that can help us understand the factors that affect method 

performance. Yet, at the same time, practical implications of simulation-based comparisons 

are limited by the extent to which the simulations resemble real-life data.   Nevertheless, we 

hope that our findings will be useful to the MEG community, and in particular to researchers 

and clinicians that wish to use MEG to evaluate long-range coupling across brain areas. 
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Appendix A: Oscillatory time series generation  

 

The time series y(t) of each oscillatory source was generated using the following procedure: 

y(t) = exp(j*2*pi*fr(t))),   for   t=1,...,ntim   

where 

ntim is the total number of time points (we used ntim=70000) 

fr(t) = sum_{i=1:t}  iflaw(i) = cumsum(iflaw)(t) 

where  

iflaw is the normalized instantaneous frequency defined by: 

iflaw= base_freq + trand*randn(1,ntim)  

where 

base_freq is the base frequency of the oscillators relative to sampling frequency  

(we used base_freq=0.02, i.e. 12 Hz/600 Hz)     

trand=variation in the instantaneous frequency of the oscillators (we used trand= 0.0015) 

y(t) = y(t)*conj(y(1)),  t=1,...,ntim 

y(t) = real(y(t)) 

 

Coherent pairs of signals were generated by repeatedly simulating two time series, using the 

above procedure, in a loop until the required level of coherence was achieved. A Matlab 

implementation of the full procedure has been made available on github at the following 

address:  https://github.com/ahincap/create-coherent-time-series/tree/master 
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Highlights 
 The impact of inverse method selection on connectivity analyses in MEG is 

unknown 
 Extensive MEG data simulations of interacting sources were performed 
 Coherence and power cortical maps were reconstructed with MNE, LCMV and 

DICS 
 Coupling between point-sources was better detected with beamformers than 

MNE 
 Coupling between extended patches was better detected with MNE than 

beamformers 




