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The planning, design and operational management of motorway toll booths are of great in-

terest in traffic engineering, as these facilities directly influence the quality of the service

offered to users. This paper focuses on a time-dependent queue model based on the co-

ordinates transformation criterion for operations assessment at a motorway tollgate. This

model allows to face the whole spectrum of situations that may characterize a toll booth,

some of which often fall outside the boundaries of the probabilistic theory for stationary

queues.

The paper proposes anM=G=1multi-class queuemodel for the evaluation of evolutionary

profiles of waiting times and queue lengths by closed-form equations. The results obtained

for three numerical test cases show a good approximation level, compared with the mean

values of queue parameters obtained reiterating a discrete-state simulation model.

The proposed time-dependent equations will be useful in technical cases, allowing to

operate quickly and compactly even when probabilistic queue theory is not applicable or

produce unrealistic results, and the burden of complexity of the simulation approach is not

conveniently absorbable. The discussion highlights a significant flexibility of the model

proposed in addressing situations with conventional vehicles, i.e., with total human con-

trol and proposes some considerations for application in future scenarios with the pres-

ence of connected vehicles (CVs).
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1. Introduction

Planning, designing andmanaging toll collection facilities is of

great interest in motorway engineering. Motorway toll sta-

tions and toll barriers, in fact, can represent a crucial problem

both for the concessionaire in relation to reductions in

motorway capacity that can result from their congestion

during the daily operations, and for the users who increase

their travel time because of the queues and delays in the toll

collection system. Operating conditions analysis of such in-

frastructures, therefore, represent a significant matter sup-

porting decisions and influencing both the service quality

offered by the management and the comfort and satisfaction

for the users.

The Highway Capacity Manual (HCM), published by the US

TRB since the 1950s of the last century, is a widely used

reference for the analysis of road transport systems. While

addressing several aspects that affect the conditions of the

motorway service, the manual in its various editions up to the

6th (TRB, 2015) (i.e., the most updated edition) does not

include guidelines or operating procedures for motorway toll

stations or barriers. From this point of view, therefore, there

are no standardized references and analytical procedures

that can serve in the various phases of planning, design,

operation and management.

Several studies, however, have dealt with this theme by

proposing methods and models for performance and service

levels assessment, differentiating themselves for the analyt-

ical or simulative approach and for the performance in-

dicators choice.

As regard the first topic, various researches consider the

analytic application of the queue theory (Boronico and Siegel,

1998; Chakroborty et al., 2016; Cherng et al., 2005; Edie, 1954;

Haight, 1958; Kim, 2009; Mehri and Djemel, 2011; Wang,

2017; Zarrillo et al., 1997) or the simulation analysis to

evaluate waiting times and queue lengths, sometimes

combining the two approaches and comparing the results

(Aksoy et al., 2014; Astarita et al., 2001; Ceballos and Curtis,

2004; Kim, 2011; Lin and Su, 1994; Obelheiro et al., 2011;

Sadoun, 2005; Shanmugasundaram and Punitha, 2014; Van

Dijk et al., 1999; Woo and Hoel, 1991).

Regarding the second topic, international researches pro-

pose the delays associated with the waiting time in the queue

(Al-Deek and Radwan, 1995; Edie, 1954; Klodzinski and Al-

Deek, 2002; Lin and Su, 1994; Zarrillo et al., 1997), the queue

lengths (Van Dijk et al., 1999; Zarrillo et al., 1997) or the

demand-capacity ratio (Al-Deek and Radwan, 1995; Woo and

Hoel, 1991) as main performance indicators, i.e., the so-

called measures of effectiveness (MOEs). Using these MOEs

or their combination, several studies have proposed service

level ranges, resorting to the HCM style (i.e., 6 levels of

service, LOS, in increasing order of criticality from A to F)

(Klodzinski and Al-Deek, 2002; Lin and Su, 1994; Obelheiro

et al., 2011; Woo and Hoel, 1991). Of great interest is

therefore the search for simple and compact models that

allow to estimate these parameters reliably, allowing to deal

with the different operating situations and with the best

possible level of approximation.
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Moreover, as will be discussed in the following literature

review, traffic engineers often assess waiting times and queue

lengths at a tollgate using the results of the probabilistic

theory for stationary queue. These results allow, in some

recurring cases of direct application, to identify closed-form

expressions for queue lengths and waiting times calculations.

It is also well known, however, that the probabilistic queue

theory does not allow to fully deal with all the situations in

which a motorway toll facility can be found, generating real-

istic results only in stationary situations sufficiently far from

saturation levels (Ceballos and Curtis, 2004; Lin and Su, 1994).

Discrete-state simulations (based on arrivals and services

probability distribution hypotheses) or micro-simulation

models (based on the formalization of vehicles interactions,

according to the traffic flow theory), still allow to treat such

situations. It should be emphasized that simulation

techniques may have some drawbacks, regarding for

example: the burden of implementation, verification,

calibration and validation of the models; the computational

effort to evaluate the possible variations in time profiles of

arrival and the service characterization for vehicles; the

difficulty of generalizing, often operating with case-by-case

models; the need to reiterate the simulation for a sufficiently

large number of times in order to produce statistically

significant results.

In light of the above, this paper aims to deepen the appli-

cation of the queue theory for a motorway tollgate in such

situations that cannot be tackled using the results of the sta-

tionary queue theory, due to the presence of statistical non-

equilibrium conditions, in whatever way they may occur.

In highway engineering the so-called time-dependent

models are of great interest. These models have been devel-

oped starting from the works of Catling (1977) and Kimber and

Hollis (1979) and allow to treat all the saturation cases of a

generic service counter through an unified approach. As

explained further below in the paper, a time-dependent

model identifies some closed-form expressions that allow to

conveniently combine the solutions deriving from the

stationary probabilistic queue theory with those from the

deterministic theory of the waiting phenomena (Pompigna,

2020).

The purpose of this work is, therefore, the definition of a

time-dependent model for a motorway tollgate that allows to

fill the gap highlighted by literature review. Actually, as clar-

ified below, the reviewed researches usually overcome the

limits of probabilistic theory using simulations with a few

exceptions (Levinson and Chang, 2003). The results of the

time-dependent model proposed in this paper are compared

with what the authors get from a large number of trials of a

stochastic discrete event simulation (SDES) model to verify

the reliability in practical uses.

The results showed in this paper can be of great interest for

technical applications such as: the design of a toll collection

system (e.g., number and type of tollgates); the assessment of

service levels, which can be related to the current situation or

for expected scenarios, due to changes in traffic demand and/

or service supply; the quantitative characterization of trans-

port networks for traffic demand assignment in transport

planning models.
ime-dependent model for the analysis of waiting phenomena
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The paper is structured as follows. Section 2 reviews and

discusses the main researches appeared in the international

literature since the 1960s of the last century, going through

the different approaches related to the performance analysis

of toll stations and barriers. Section 3 shows an example of a

motorway tollgate characterization, examining the nature of

the arrival and service processes, and presents the closed-

form equations for a multi-class M=G=1 stationary queue

model. Section 4 deals with the time-dependent modeling

for the non-stationary queue. Starting from an introduction

to the coordinate transformation method, the time-

dependent solutions for the multi-class M=G=1 queue model

are deducted for a tollgate. The closed-form equations for

the average waiting time and the average number of

vehicles in the system during a certain observation interval

are provided, which are also applicable sequentially allowing

to evaluate any time profile for demand and service. Section

5 presents the SDES model used to compare time-dependent

model results. A stochastic simulation model with Poisson

arrivals and multi-class Gamma-distributed service times,

corresponding to the already mentioned multi-class M= G= 1

queue model, is presented. Section 6 discusses some

numerical results, comparing time-dependent model

outputs with a sufficiently high number of iterations of the

SDES model by applying the Monte Carlo method. Section 7

offers an insight for a future scenario, which considers an

increase in automatic payment technologies and a growing

popularity for connected vehicles (CVs). Section 8 contains

the concluding remarks.
2. Literature background

Edie (1954) was the first to deal with the analysis of a toll booth

using the analytical theory of the queues, analyzing its

performance through the probabilistic M=M=s and M= D= s

queue models with multiple serving channels, assuming

Poisson arrivals (i.e., M=/=/) and exponentially (i.e., /= M=

/) or deterministically (i.e., /=D=/) distributed service

times. The model was used to estimate the time taken by a

vehicle to carry out the operations and to clear the gate, in

the hypothesis of homogeneity in vehicle types and gates

characteristics. Compared to the discussion of Edie (1954),

which appears not properly in accordance with the actual

operations of a station with a sufficiently sized toll plaza,

Haight (1958) proposed a model applicable to a double-entry

toll station. With respect to this model, the incoming vehicle

chooses time to time the shortest between the two parallel

queues. The model considers Poisson arrivals and

exponential service times with possibly different average

values for the two gates, in the double hypothesis that each

vehicle must necessarily keep the gate chosen on the arrival

or that it can change queue while waiting.

To address queue lengths and waiting times for a toll sta-

tion with a variable number of gates and different types of toll

collection systems (e.g., manual, automatic, electronic, even-

tually mixed and with distinction for vehicular class), Zarrillo

et al. (1997) used a deterministic model based on the

cumulative curves of arrivals and service processes. In

presence of multiple gates with different types of service,
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with the aim of studying the costs minimization, Boronico

and Siegel (1998) applied an approach derived from the

probabilistic theory of queues. The arrivals are determined

under the assumption of uniformly distributed demand on

gates of the same type, with different service times

depending on whether the collection system is automatic or

manual. These authors used exponentially distributed

service times, while noting that the variance in real-life data

is lower than that of the chosen distribution. In light of

these considerations, and focusing the analysis on a New

Jersey Parkway toll station, an M=M=1 queue model was

developed in order to obtain the higher limits of the

investigated MOEs.

Also Cherng et al. (2005) used the probabilistic theory for

steady-state queues to evaluate the waiting times at the

gates of a motorway toll station and at the convergence

points downstream. These authors formulated some basic

assumptions to define the model: a constant flow uniformly

distributed on the gates; exponential arrival and service

times; total waiting time obtained as the sum of time to

receive and complete the service plus the lost time at the

confluence to reach the exit segment. An M=M=1 model for

waiting at the gate and an M=G=1 model for the downstream

confluence were used, in order to determine the optimal

number of gates for minimizing the total time spent. Also

Wang (2017) presented an M=M=1 model for the estimation

of the waiting time spent at a motorway tollgate,

considering different types of payment services. The queue

model was used within an optimization method for the

identification of the number and the configuration of the

gates, according to a non-dominated sorting genetic

algorithm II (NSGA-II).

As an alternative to the M=M=1model, Kim (2009) proposed

an M=G=1 model with service times generically distributed

with known mean and variance, for estimating the average

waiting time required by an integer and non-linear

programming algorithm for a toll station optimization. The

model considers the hypothesis that the arrivals by payment

type are uniformly distributed on the gates. The assumption

regards a real-life evidence: an incoming vehicle tries to

reach the shorter queue among those that offer the

requested service and, once in the waiting lane, the vehicle

does not abandon it for another.

Mehri and Djemel (2011) provided further specifications for

probabilistic models regarding service times and gates

number. The authors identify a Gamma (G) distribution for

service times starting from the analysis of experimental data

collected for a Tunisian motorway and using a stationary

M=G=s for performance analysis. The analysis considers an

approximation of the Pollaczek-Kintchine (PK) formula for

the M=G=s model. Using a multi-agent simulation model,

they confirm the lower adequacy of an M=M=s model.

Karsaman et al. (2014) used an M=M=s model for the

stationary analysis of the differences in capacity between

cash and electronic payment systems on Indonesian

motorways. Also Liu et al. (2017) proposed an M=M=s model

for cost analysis and optimization of a toll station, including

a cellular automata model to evaluate some traffic indicators.

Regarding the aforementioned single or multiple channel

models, Chakroborty et al. (2016) proposed a model called
ime-dependent model for the analysis of waiting phenomena
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coupled multiple-queue queuing system (CMQ2S). The model

is valid under stationary conditions of under-saturation and

incorporates some of the considerations in Haight (1958). As

for the parallel queue model, but with multiple gates, the

CMQ2S model allows to manage the arrivals at the single

gate queue as dependent by the queue lengths for all the gates.

An important part of the literature recurs to the simulation

techniques, which allow to simulate the state of the tollgate

and of the vehicles, and to evaluate themain indicators for the

analysis of the waiting phenomenon. Customized simulation

models can be implemented as discrete-state models (based

on hypotheses in the distribution of arrivals and services) or

asmicro-simulationmodels (based on the formalization of the

interactions between vehicles using the traffic flow theory),

and in turn considering ad-hoc implementations or com-

mercial software.

Woo and Hoel (1991) developed a custom implementation,

using an event simulation model to correlate average density

and flow-to-capacity ratio for a tollgate starting from real-life

data. The model considers an exponential distribution of

arrivals and a Gamma distribution for service times, with

parameters differentiated by vehicle type. Also Sadoun

(2005) used an event simulation model, considering

homogeneous and non-homogeneous gates regarding the

payment type, to test the facility performance and the

optimal gates number under specific time-dependent traffic

profiles.

Lin and Su (1994) developed an ad-hoc event simulation

model, structured in eight modules that consider arrivals

according to a shifted negative exponential distribution, a

probabilistic model for gate selection and different service

times depending on the gate type. The outputs concern each

gate (with the analysis of the average time in the system,

the average and maximum length of the queue) or refer to

the entire toll station (with the analysis of the total number

of queued users and the average vehicle speed). They test

the model also against analytical formulations, based on the

queue theory in terms of average queue lengths and average

times in the system. The authors do not find significant

differences for saturations lower than 0.95, revealing, on the

contrary, a substantial over-estimation in the analytical

models results for higher saturation values.

Shanmugasundaram and Punitha (2014) developed a

discrete-state model for the analysis of the entrances at an

Indian toll station, considering Poisson arrivals and

differentiated exponential service times (cars, light

commercial, heavy commercial, multi-axle vehicles).

Ito (2005) used the software ARENA (systems modeling

corporation, Rockwell Automation, Inc.) to analyze

motorway gates in Japan and to identify solutions that

reduce congestion and increase the efficiency of

electronically controlled gates. Also Van Dijk et al. (1999)

used ARENA, proposing a combined approach of queue

theory and micro-simulation to determine the number of

gates with different payment types. The hybrid analytical-

simulative approach combines the conceptual framework of

the queue theory with the computational potential of the

simulations, allowing to limit the number of options and

scenarios and to compare them in testing the complexity of

real-life situations, as also in Van Dijk (2000). Kim (2011) also
Please cite this article as: Pompigna, A., Mauro, R., A multi-class t
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used a discrete state simulation model implemented with

the ARENA software to analyze queue lengths and waiting

times with variable traffic demand. The author highlights

some gaps in the queues theory models, related to the fact

that in real conditions many situations distant from the

their base assumptions can occur, because of variations in

arriving flows or non-homogeneous characteristics of the

gates. Duhan et al. (2014) proposed an application of WinQSB

software (Chang, 1998) for the analysis of a toll station in

Northern India using a multiple channel model with Poisson

arrivals and exponential service times. This software allows

analyzing the performances with both the closed-form

expressions from the queue theory and the results of

discrete-state simulations. Magsino and Ho (2016) developed

an intelligent highway tollgate queue selector using a

stochastic event traffic model in MATLAB/Simulink for

minimizing the queuing time of vehicles at the tollgates.

They use a fuzzy logic-controlled queue (FLCQ) system,

which takes into consideration the current lane density of

the server and its service time to make the queue selection.

About micro-simulations with specifically implemented

models, Astarita et al. (2001) proposed a micro-simulation

model that represents the interactions between supply and

demand. It uses car-following, lane-changing and response-

to-traffic-control models, to show the performances of

tollgates with mixed types of payment systems. The model

allows to keep track of the behaviors variability among

vehicles and drivers with different characteristics and of the

effects related to the size and layout of the toll station. The

latter possibility allows to represent spill-back situations and

mutual interference of queues because of the limited

capacity of manual gates, which can nullify the benefits

deriving from introducing gate with high automation

capacity levels.

Finally, the literature highlights some applications of

commercial traffic micro-simulation software for the analysis

of a motorway toll station. Ceballos et al. (2004) compared the

results of the analytical queuemodelsM=M=1 andM=M=s with

what obtained using the VISSIM software (PTV). The authors

highlight how the use of simulation models for toll

collection facilities allows to resolve some shortcomings of

the analytical approaches. These problems concern the

significant deviations of the estimated queue parameters

from the real-life situations. The authors advise to avoid

single-channel or multiple serving channels analytical

models with high levels of traffic demand, due to their

asymptotic behavior. Also Obelheiro et al. (2011) used a

micro-simulation model implemented in VISSIM to evaluate

the performance of a toll station with variable gate number.

They propose and test a method for level of service analysis,

based on the user's quality perception. Aksoy et al. (2014)

used VISSIM for the analysis of the toll facilities on the

Turkish Fatih Sultan Mehmet Bridge in order to evaluate

some management strategies and to calculate the optimal

number of gates, with the aim of minimizing delays and

maximizing the capacity of the system.

At the end of this literature review, it should be noted how

the referenced researches generally consider, sometimes in

comparison with simulations, the applications of the sta-

tionary queue theory for under-saturated gates, highlighting
ime-dependent model for the analysis of waiting phenomena
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the non-reliability of these models for situations close to

saturation. These limits are addressed and removed only by

using simulative applications. An exception exists in Levinson

and Chang (2003), in which the authors propose to calculate

the waiting time at the gate using the Akçelik and Troutbeck

(1991) formula. This formula is reported in the HCM (TRB,

2000) for the non-signalized intersections and, even if it

makes possible to estimate queue parameters in non-

stationary and over-saturated situations, is not rigorous and

totally suitable for the case under discussion.
3. The stationary queue model

3.1. Gate characterization for a motorway toll station

As discussed in the previous sections, a motorway toll station

can be modeled using mathematical tools derived from the

probabilistic queue theory. All the gates of a motorway toll

station can bemodeled as a set of single serving channels, one

for each gate (e.g., in the studies of Boronico and Siegel, 1998;

Ceballos and Curtis, 2004; Cherng et al., 2005; Kim, 2009; Mehri

and Djemel, 2011; Shanmugasundaram and Punitha, 2014;

Wang, 2017; Woo and Hoel, 1991). In the space just upstream

of the gate, the accumulation of vehicles occurs; vehicles

will have to wait for ticket collection, toll payment through

traditional methods (manual or automatic) or vehicle

recognition and tracking (electronic collection).

A generic user arriving at the toll station chooses the lane

whichmeets the requirements for the transaction type he/her

wants to carry out. From this point of view, it is necessary to

clarify some issues about the transaction types and the toll

collection technologies available at a toll station. Kim (2009)

classifies toll gates in provided with: manual operator (MO),

automatic device (AD), electronic exaction (EE), a mix of

technologies (MT), for example with a mix of MO/EE, AD/MO,

AD/EE. Besides this, AD gates are further differentiable,

because of automatic cash payment machines (CM) or

differences in payment transactions by point of sale (POS) or

credit card terminal (CC) (with or without PIN, with or

without receipt). Without loss of generality, a typical layout

on the Italian motorway network in Fig. 1 can represent a

concrete example with dedicated EE gates, EE and AD mixed

gates, mixed gates with AD for payment with CM/CC or MO.

At this point it is necessary to consider the relationship

between the total traffic arriving at the toll station and the

relative share arriving at each gate. As pointed out by Kim

(2009), if the aim is to evaluate operations based on the

collected data, then the actual transit data for each gate are

available for the analysis. If the aim concerns, for example, a

predictive analysis for the design of a new facility or a
Fig. 1 e Gates with different types and mix of p
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scenario analysis to test optimizing solutions, several

studies have proposed different criteria and solutions for

vehicles distribution, as discussed in the literature

background.

This paper, however, does not propose specific models for

the arrivals distribution between the individual gatesea

further analysis that will concern the research continuation,

but starting from the considerations of Chakroborty et al.

(2016), Kim (2009), Boronico and Siegel (1998) and Zarrillo

et al. (1997) the authors assume that an user who arrives at

the toll plaza chooses the minimum-queue gate, compared

to those with the required technologies. The authors also

assume that the user, after choosing the gate, maintains the

selection as conditioned by vehicles already queued in the

adjoining gates and those that arrive in the following

instants. Also according to Kim (2009), Boronico and Siegel

(1998) and Zarrillo et al. (1997), under these conditions the

percentage of arrivals by type of transaction is assumed as

uniformly distributed over the gates that propose the same.

If the analyst does not have the actual arrival figures for the

gate, the arrival rate can be estimated by virtue of the

presence of various technologies and the users'
segmentation, assuming that equal gates see arriving

uniformly distributed users' portions (Boronico and Siegel,

1998; Kim, 2009).

Fig. 2 shows the basic model for this type of problem. For

the generic gate j of the station, the first space a vehicle can

occupy immediately near the stop line is the service point

(i.e., the service counter) where the tolling operations take

place. In the further waiting positions behind the service

counter, the actual queue line forms.

In a non-empty queue system, the number of vehicles in

the system, Ls
ðjÞ, is equal to the number of vehicles in the

queue, Lc
ðjÞ, plus the vehicle in the service counter. The wait-

ing time for a vehicle at the gate j, wðjÞ, is equal to the time in

the queue, dðjÞ, plus the service time, sðjÞ (i.e., the time that the

vehicle spends in the first position to complete the payment

operation).

If lðjÞ is the average rate of vehicles arrivals and mðjÞ is the

average rate of services (i.e., the reciprocal of the average

service time sðjÞ), the quotient lðjÞ=mðjÞ is the saturation degree,

rðjÞ. The value of rðjÞ indicates the degree of saturation of the

gate: under-saturation, if rðjÞ < 1; saturation, if rðjÞ ¼ 1; over-

saturation, if rðjÞ > 1.

If T is a certain time period sufficiently large and if lðjÞ and
mðjÞ are constant during the same period with rðjÞ < 1, for the

applications we can use the results of the probabilistic queue

theory models for statistical equilibrium. These results are

even more realistic the more the gate is far from saturation

(rðjÞ ≪ 1). The probabilistic queue theory provides queues

length and waiting times determinations rapidly tending to
ayment options (Italian motorway system).

ime-dependent model for the analysis of waiting phenomena
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infinity with rðjÞ / 1 starting from values of rðjÞ generally

higher than 0.6e0.8, and therefore they appear unrealistic. So

overall, the probabilistic theory does not apply if the gate is

close to saturation, saturated or over-saturated, or with vari-

able lðjÞ and mðjÞ (Mauro, 2010; Mauro and Pompigna, 2020;

Pompigna, 2020).

For a whole toll station with many gates, the available

entry data may concern the total number of arrivals at the toll

plaza and any segmentation of users based on the charac-

teristics of themotorway traffic demand (e.g., percentage of EE

users, percentage of propensity to use an AD rather than an

MO toll system, percentage of Cash/Credit Card transactions,

etc.). If F is the total flow rate arriving at the station, the

generic gate j will be characterized by a flow rate lðjÞ such that

F ¼ P
jl

ðjÞ. It appears that lðjÞ ¼ Fpj, with pj the probability of

using gate j. It is clear that pj can be estimated on the basis of

the users segmentation with respect to the operations that

can be performed at the gate.

In light of this, the authors focus on the generic gate j

assuming that the flow rate lðjÞ and the relative segmentation,

with respect to the vehicle classes that use the toll collection

types available on the same, are known or estimated. For

simplicity of notation, the parameters and status variables

indexes related to the generic gate j are dropped and consid-

ered as implied.
3.2. Arrivals and services processes

As highlighted in Section 2, the models used to study the

waiting phenomena at a gate of a motorway station are

substantially M=M=1 or M=G=1 with first-in-queue-first-out-
Please cite this article as: Pompigna, A., Mauro, R., A multi-class t
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of-queue (FIFO) service discipline. In both cases, according to

Kendal's notation, the arrivals process is Poisson with inter-

arrival times distributed exponentially. Regarding service

times, the literature presents various types of probability

distributions, since the service rate depends on the

operation carried out and on the vehicles type involved in

each operation (Sangavi et al., 2017). As evidenced by

empirical experience, EE systems have faster service times

than non-EE systems, while MO modes express higher

service times than any AD. From this point of view, the

design of a motorway toll station or barrier involves

optimization choices in the gates number and in mixing toll

collection options (Kim, 2009).

For service time modeling related to different transaction

types (with differences in payment methods and/or vehicle

types) and in relation to mixed situations at each gate,

different assumptions regarding the probability distribution

of service time have been used in literature, such as: average

(deterministic) service times for each type of service (Astarita

et al., 2001; Sadoun, 2005); an average time for each type of

service and vehicle class (Van Dijk et al., 1999); log-normal

distribution for queuing and non-queuing vehicles for

ticketing/toll-collection operations with MO/AD (Pratelli

et al., 2001); triangular distributions for EE and non-EE

systems (Ito, 2005); exponential distributions for cash and EE

payments (Karsaman et al., 2014) and for parallel servers

(Magsino and Ho, 2016); general probability distribution for

the single gate with different and eventually mixed

technologies (Kim, 2009); Gamma distribution with

parameters dependent on the vehicle type (Woo and Hoel,

1991).

In the applications that consider the probabilistic theory of

the queues, in general the probability distributions for the

service times are exponential (e.g., in the studies of Boronico

and Siegel, 1998; Chakroborty et al., 2016; Cherng et al., 2005;

Karsaman et al., 2014; Liu et al., 2017; Wang, 2017) or general

(e.g., in the studies of Kim, 2009; Mehri and Djemel, 2011). As

reported by Kim (2009), the exponential distribution allows

more compact expressions in the probabilistic treatment of

the queue, but it has the drawback of having a high variance

(equal to the square of service time, which could generate

an overestimation of expectations as noted by Boronico and

Siegel (1998)) and the absence of memory (which could not

describe realistically some real-life situations, such as the

cumulated working hours for a manual toll operator). The

generic distribution G allows to operate in more general

conditions, with a bit more complex expressions (PK

equation).
3.3. A multi-class queue model

In relation to the inter-arrival and service times distributions,

this paper proposes a multi-class model. According to the

probabilistic methods for the queues, this model allows to

treat the case of a tollgate serving users belonging to a defined

number of classes. Each class follows its own inter-arrival and

service time probability distribution (Gautam, 2012;

Ravindran, 2007). This situation actually represents the most

general case of a gate at a motorway toll station.
ime-dependent model for the analysis of waiting phenomena
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The users' disaggregation is by the type of transaction

performed at the tollgate, considering the technology installed

and the vehicles segmentation. As already specified, a tollgate

can allow different types of operations, present also as a mix,

which orient users’ choice to wait for the service at the cor-

responding waiting lane. In these terms, service times depend

on the operations that occur at the service counter, related

with users' and technology heterogeneity and regarding the

toll operation (ticket issuance, vehicle recognition, fixed toll

payment, kilometric toll payment, etc.), the vehicle type (e.g.,

light or heavy vehicle), the presence or absence of the manual

operator (MO, AD) and the allowed payment systems (e.g., EE,

cash, cards, etc.). Depending on this characterization, the

multi-class model is adequately flexible as it allows to

consider several classes of users, each characterized by its

specific parameters in the probability distributions that

regulate the processes of arrivals and services.

In this paper the authors consider users belonging to R

classes, variously composed taking into account the seg-

mentation, with i being the generic class belonging to the set

f1; 2; /; Rg. In the multi-class model the users belonging to

the generic class i ði2f1; 2; /; RgÞ arrive at the tollgate with

independent and identically distributed arrival times accord-

ing to a class-specific probability distribution. In addition,

users belonging to the generic class i ði2f1; 2; /; RgÞ are

served respecting the FIFO discipline, which require inde-

pendent and identically distributed service times according to

a class-specific probability distribution to perform the opera-

tions at the service counter and to leave the system upon

completion of the service.

3.4. The multi-class M=G=1 model for the single gate

The multi-class model (Gautam, 2012; Ravindran, 2007)

proposed in this research is an M/G/1 model, i.e., with a

Poisson distribution for arrivals (e.g., in the studies of Boronico

and Siegel, 1998; Chakroborty et al., 2016; Cherng et al., 2005;

Karsaman et al., 2014; Liu et al., 2017; Wang, 2017) and a

Gamma distribution for service times (Mehri and Djemel, 2011).

For the R classes, the authors assume a Poisson process

with parameter li for the class i ði2f1; 2; /; RgÞ. For the ser-

vice times si of each class i, to be considered as independent

and identically distributed variables, it is convenient to hy-

pothesize a Gamma distribution with a shape parameter ai, a

scale parameter bi and a shift parameter di. It turns out that

Si � Giðai; bi; diÞ, i.e., a shifted Gamma distribution, having a

probability density function expressed by

fðsiÞ¼ 1
GðaiÞbai

i

ðsi � diÞai�1e
�si�di

bi (1)

where GðaiÞ is the Euler's Gamma function.

The convenience of using a G distributionwith knownmean

and variance consists in the possibility to express its probability

function and to calculate, at least numerically, the relative

quantile distribution, making possible simulation scenarios as

will be clarified in the following sections of the paper.

The shifted Gamma distribution is obtained by translating

a Gamma distribution of shape parameter ai and scale

parameter bi. This shift allows to consider a minimum time of

service di for each class i. The expected value for Giðai; bi; diÞ is
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E½Si� ¼ 1 =mi ¼ di þ aibi (2)

which is shifted of di if compared with the expected value for

Giðai; biÞ. The variance for Giðai; bi; diÞ is

VAR½Si� ¼aib
2
i ¼

ð1� midiÞ2
m2
i ai

(3)

which is coincident with the variance for Giðai; biÞ.
It is necessary to remember that for an M=G=1 model

(with Poisson arrivals at rate l and service times with a

general probability distribution with mean 1=m and variance

s2), the probabilistic theory of waiting phenomena allows to

determine the average waiting time in the system for the

queue in statistical equilibrium (considering a sufficiently

long period of time T and a condition of under-saturation of

the gate with r ¼ l=m<1) through the well known PK

relationship.

w¼ 1
m
þ C

l=m2

1� l=m
(4)

C¼1
2

�
1þm2s2

�
(5)

In addition, according to Little's law, for the average

number of users in the system it results that

Ls ¼ lw ¼ l

m
þ C

l2=m2

1� l=m
(6)

The Eqs. (4)e(6) are valid for a general service time distri-

bution G. If the distribution is a shifted Gamma Gða; b; dÞ, the
averagewaiting time in the system and the average number of

vehicles in the queue system in statistical equilibrium must

consider the specific value of C.

C¼1
2

�
1þð1� mdÞ2

a

�
(7)

If we consider a multi-class M=G=1 model with a FIFO

discipline (i.e., no class receives preferential treatment), Lit-

tle's law is valid in relation to each class iði2f1; 2; /; RgÞ.
Being Ls;i the average number of users in the system andwi the

averagewaiting time in the system for the single class i2½1; R�,
it results that Ls;i ¼ liwi. Similar results can also be obtained

for the average number of queued users, Lc;i, and for the

average waiting time in the queue, di. In this way, each class

can be treated as a separate system with a rate of arrivals li, a

rate of departures mi and a degree of saturation ri.

The R classes can be aggregated into a unique Poisson

process of arrivals with rate l ¼ l1 þ l2 þ $$$þ lR. If Ls and w

are respectively the average number of users in the system

and the averagewaiting time in the system considering all the

classes i2½1; R�, it results that Ls ¼ Ls;1 þ Ls;2 þ $$$þ Ls;R and

w ¼ Ls=l (Gautam, 2012; Ravindran, 2007).

Whereas for each class of users i the random variable

service time Si is distributed according to Giðai; bi; diÞ, the

actual service time of an arbitrary user without class specifi-

cation is a random variable S with a mixture Gamma proba-

bility distribution. This distribution is obtained as the

weighted average of the individual distributions per class,

considering the probability that the arbitrary user can belong

to each class:
ime-dependent model for the analysis of waiting phenomena
ion Engineering (English Edition), https://doi.org/10.1016/
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Fig. 3 e An example of the probability density for a Gamma mixture distribution deriving from three Gi distributions.
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GðTÞ¼ProbðS�TÞ¼ 1
l

XR

i¼1
liGiðTÞ (8)

With purely illustrative purposes, Fig. 3 shows an example

of mixture Gamma probability density distribution,

considering Giðai; bi; diÞ for i ¼ 1; 2; 3; with relative weights

and parameters in the embedded table.

The PK relationship for a multi-class M=G=1 can be ob-

tained by identifying the value for C, based on the expectation

of S

E½S� ¼1
l

XR

i¼1
liE½Si� ¼ 1

l

XR

i¼1
li
1
mi

¼1
l

XR

i¼1
liðdi þaibiÞ (9)

and the second moment for S

E
�
S2
�¼ðE½S�Þ2 þVAR½S� ¼1

l

XR

i¼1
liE
�
S2
i

�
(10)

and replacing in Eq. (5).

Being E½S2i � ¼ ðE½Si�Þ2 þ VAR½Si� ¼ ðdi þ aibiÞ2 þ aib
2
i , and

knowing the vector ðai; bi; diÞ for each class i ði2f1; 2; /; RgÞ,
the second moment for Si is known and then, by Eq. (10), also

the second moment for S. Being VAR½S� ¼ E½S2� � ðE½s�Þ2, the
value for C results as

C¼1
2

�
1þVAR½S��

E½S�Þ2
	
¼ 1
2

E
�
S2
�

ðE½S�Þ2 (11)

According to Eq. (11), for the queue in statistical

equilibrium, for r ¼ lE½S�<1, it results as

w¼E½S� þ 1
2

lE
�
S2
�

1� lE½S� (12)

Ls ¼ lE½S� þ 1
2

l2E
�
S2
�

1� lE½S� (13)

4. The time-dependent model for the non-
stationary queue

4.1. The coordinate transformation method

The solutions provided by Eqs. (12) and (13) according to the

probabilistic approach are valid under statistical equilibrium

conditions, which however are only partially achievable for a
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system operating under real-life conditions (Mauro, 2010). The

two equations produce acceptable approximations only if T is

sufficiently large and if the gate is under-saturated (i.e., r ¼
lE½S�< 1). Moreover, the results are realistic if the gate is far

from saturation (r≪ 1). As already highlighted, the

probabilistic queue theory provides queue lengths and

waiting times determinations tending rapidly to infinity for

r/1, starting from r> ½0:6; 0:8� (Pompigna, 2020).

With a saturated or over-saturated gate, respectively with

r ¼ lE½S� ¼ 1 or r ¼ lE½S�> 1, the results of the probabilistic

queue theory in conditions of statistical equilibrium are not

used. On the other hand, in these two cases, the use of prob-

abilistic queue theory for conditions other than statistical

equilibrium leads to excessively complex results for practical

applications. In relation to the case of over-saturated gate,

traffic engineers can resort, however, to the deterministic

theory of waiting phenomena, which treats traffic as a

continuous fluid (May and Keller, 1967), with results that are

more reliable the more the gate is over-saturated (r[1).

Ultimately, it can be summarized that for a gate that is sub-

saturated but close to saturation, saturated or over-saturated

with saturation degree r not significantly greater than 1, the

probabilistic theory of the queues is not used in the first case,

nor the deterministic one in the other two cases.

Furthermore, if l and E½S� vary in time, whatever the state

of the gate (i.e., values for r), the results of the equilibrium of

the queues in the non-equilibrium conditions are not useful in

the technical practice (Mauro, 2010). In conditions of over-

saturation and for any type of variation of l and E½S� in T, the

deterministic theory of the queues can be applied providing

more reliable results as the gate becomes over-saturated

(r [ 1).

To have a unified approach in dealing with all the satura-

tion cases, the so-called “time-dependent” queuemodels have

long been developed in traffic engineering. These models

allow us to combine the solutions provided by the stationary

probabilistic theory with those of the deterministic theory.

With a “time-dependent” model, the probabilistic model for

r ≪ 1 is best approximated, tending asymptotically to the

deterministic model for r[1. As highlighted in Section 2,

among the reviewed studies there are no time-dependent

applications of the waiting phenomena for motorway toll

gates, except in Levinson and Chang (2003). These authors,

in fact, use the Akçelik and Troutbeck (1991) formula, as
ime-dependent model for the analysis of waiting phenomena
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Fig. 4 e Transitional curve for waiting time inferred with

coordinate transformation with respect to r between

deterministic and probabilistic solid cases.
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reported in the HCM (TRB, 2000) for un-signalized

intersections.

The method behind time-dependent models considered in

this paper is based on the coordinate transformation criterion,

developed at the Transportation Research Laboratory for the

TRANSYT program (Robertson, 1979). This is subsequently

extended by Kimber and Hollis (1979). A similar approach is

due to Doherty (1977), extended and generalized by Catling

(1977). Over the years, the analysis of waiting phenomena by

means of the coordinate transformation method has found

numerous applications, especially in the queue assessment

at intersections (e.g., Akçelik and Troutbeck, 1991; Brilon,

1995, 2007, 2008, 2015, Brilon et al., 1997; Cvitani�c et al., 2007;

Heidemann, 2002; Heydecker and Verlander, 1998; Mauro,

2010; Mauro and Pompigna, 2020; Troutbeck and Brilon,

2000; Wong et al., 2003; Wu, 1998). Among the studies

reviewed, however, there are not applications of the method

in analyzing the waiting phenomena at the gates of a

motorway toll station.

It should be noted that the coordinate transformation

method is able to provide closed-form equations for the state

variables of a time-dependent queue system. Other methods

for the analysis of time-dependent queuing problems, such as

the PSSFA method (Hu et al., 2018; Wang et al., 1996), come to

the solution of the problem in a less direct way. The same

PSSFA, in fact, involves the integration of differential

equations for the queue length and the waiting time, which

must necessarily be performed by applying numerical

methods.

In general, the coordinate transformationmethodmakes it

possible to determine, for the length of the queue or the

waiting time (dependent variables), the asymptotic transition

curve ct from the probabilistic model ce and the deterministic

one cd by operating a coordinate transformation with respect

to the saturation degree r (independent variable). The Kimber

and Hollis (1979) model is the first in temporal order among

the time-dependent models obtained with the criterion of

the coordinates transformation.

With reference to Fig. 4, the transition curve ct can be

obtained by imposing the conditions a ¼ b in relation to the

curve ce that provides the solutions for the statistical
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equilibrium queue system (steady-state queue) and to the

asymptote cd that describes the system states in a

deterministic way.

With reference to Fig. 4, the transition curve ct can be

obtained by imposing the conditions a ¼ b in relation to the

curve ce that provides the solutions for the statistical

equilibrium queue system (steady-state queue) and to the

asymptote cd that describes the system states in a

deterministic way. Fixing a generic value of the state

variable (in Fig. 4 the waiting time d in the queue), a is the

distance between the fixed value on ce and the vertical

asymptote for r ¼ 1, and b is the distance between the curve

ct (that is to be determined) and the half-line representing

the oblique asymptote of the curve cd. If re, rd and rt are the

values of the independent variable r uniquely identifiable by

the fixed value of the state parameter on ce, cd and ct, it

results that a ¼ 1� re and b ¼ rd � rt. The equation for the

coordinate transformation regarding r is

re ¼ rt � ðrd �1Þ (14)

The coordinate transformation allows to manage all the

saturation conditions for the gate, providing the status of the

system in terms of number of vehicles and waiting times in

the system experienced during a specified observation period

with constant average demand and capacity. The method, if

appropriately applied in succession over several consecutive

time slices Tk, with the constraint that the final queue LcT;k of

each slice Tk represents the initial queue Lc0;kþ1 of the following

Tkþ1, allows to approximate and process any demand and

capacity profile, evaluating the evolving characteristics of

queues and waiting times accordingly (Mauro and Pompigna,

2020).
4.2. Time-dependent solutions of the multi-class M=G=1
queue with coordinate transformation

The model can be inferred by imposing the conditions a ¼ b

for a system in statistical equilibriumwith a multi-class M=G=

1 queue and for a deterministic curve, to which the trans-

formed curve tends, of a multi-class D=D=1 model.

As regards the M=G=1 multi-class model, the arrivals dis-

tribution probability can be assumed according to a single

Poisson process with a rate l ¼ l1 þ l2 þ $$$þ lR and the dis-

tribution of service times for the arbitrary user of the mixture

G type, obtained as the average of the single class-specific

distributions, weighed considering the probability that the

same arbitrary user may belong to each class, with E½S� and
E½S2� first and second moments, respectively. For this model,

the PK formulas are valid for the expected value of the number

of vehicles in the system Ls and for the expected value of the

waiting time in the system w (Eqs. (12) and (13)).

For the deterministic model multi-class D=D=1 model, it

results that

LsT ¼max



0; Ls0 þ

�
l� 1

E½S�
	
T

�
(15)

wT ¼max



0;

1
m

�
Ls0 þ1þ

�
l� 1

E½S�
	�

T
2

�
(16)
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Considering that li and ðai; bi; diÞ are constant during T,

and that at the beginning of the same period an initial queue

Ls0 is observed, the application of the coordinate trans-

formation method to Eq. (13) and to Eq. (15) using the

condition in Eq. (14) gives the following approximate

formula for the number of users in the system at the end of

the period T.

LsT ¼ 1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B

p
�A

�
(17)

A¼

�
1

E½S� � l

	
1

E½S�T
2 þ ð1� Ls0Þ 1

E½S�T� 2ð1� CÞðLs0 þ lTÞ
1

E½S�Tþ 1� C
(18)

B¼
4ðLs0 þ lTÞ

�
1

E½S�T� ð1� CÞðLs0 þ lTÞ
�

1
E½S�Tþ 1� C

(19)

C¼1
2

E
�
S2
��

E½S�Þ2 (20)

Similarly, the application of the coordinate transformation

method to Eqs. (12) and (16) obtained by imposing the Eq. (14)

gives the following approximate formula for the average

waiting time in the system during the period T.

wT ¼1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K

p
� J

	
(21)

J¼ T
2
ð1� lE½S�Þ � E½S�ðLs0 �Cþ 2Þ (22)

K¼4E½S�
�
T
2
ð1� lE½S�Þþ 1

2
E½S�lTC�E½S�ðLs0 þ1Þð1þCÞ

�
(23)

where C can be obtained using the Eq. (20).

It can be observed that, if Gi is replaced by a single dis-

tribution G with expected value 1=m and variance s2, the

time-dependent Eqs. (16)e(21) coincide with what is re-

ported in (Heidemann, 2002). It is worth pointing out that

the Gi functions can be calibrated in the relevant

parameters ðai; bi; diÞ based on real-life data, directly

monitored at a motorway tollgate. A calibration of these

parameters with real data samples can be obtained by

resorting to maximum likelihood estimates (MLE) (Minka,

2002; Shanker et al., 2016). The appendix of this paper

contains methodological indications for the calibration of

the parameters and a concrete example of analysis on real

data at a tollgate.
5. Stochastic discrete event simulation

Stochastic discrete event simulations (SDES) offer useful tools

for testing the results of waiting phenomena at a motorway

tollgate, as shown in Section 2. SDES approach allows to

simulate the evolution of the state variables in a waiting

system by randomly generating the arrivals at the tollgate

and the departures from the service counter by means of

appropriate probability distribution functions.
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In this specific case SDES represents a control model, that

is a verification and validation tool for the time-dependent

equations obtained with the coordinates transformation.

In the simulation model prepared for this research, the

discrete states coincide with the arrivals at the gate. For the

instant at which an arrival occurs, the model estimates the

instant in which each arrived vehicle leaves the system, tak-

ing into account the other waiting vehicles already queued

and the service time distribution for all vehicles in system. In

this case the queue model is a multi-class M=G=1 with users

divided into R classes and served according to the FIFO disci-

pline. The users belonging to the generic class

i ði2f1; 2; /; RgÞ arrive at the gate according to a Poisson

process with inter-arrival intervals withmean 1=li, resulting R

independent and identically distributed arrival processes. The

service times si are also independent and identically distrib-

uted according to R shifted Gamma distributions Si with pa-

rameters ðai; bi; diÞ, mean E½Si� ¼ 1=mi ¼ di þ aibi and variance

VAR½Si� ¼ aib
2
i .

The state-to-state evolution of the system is represented

by the arrival of a new vehicle v at the gate. For each new

vehicle v, the inter-arrival interval time with respect to the

previously arrived vehicle at the gate is generated randomly.

Within a given period of observation T, the model simulates

the random extraction of an exponentially distributed vari-

able with a parameter l ¼Pili with constant li. In this way,

the model assigns the class i ði2f1; 2; /; RgÞ at the arriving

vehicle, according with the probability li=l. Referring to the

assigned class i, the corresponding service time is identified by

simulating the extraction of a random variable with a Giðai; bi;

diÞ probability distribution.

By evaluating the service end-time in the previous state of

the system (i.e., the instant in which the previous vehicle

disengages the service counter) and taking into account both

the arrival instant and the service time (as a function of the

class i) for the current vehicle, the instant of the service end

for the same vehicle (i.e., the instant in which it leaves the

system) can be obtained. Operating in this way, given the

values of li and ðai; bi; diÞ constant during T, the arrival and

departure times for each vehicle can be simulated. These

allow to obtain the trend of the average number of vehicles in

the queue and in the system and of the average waiting time

in the system. Extending the analysis at several intervals in

consideration of time-dependent profiles, the evolution of the

waiting phenomenon in terms of vehicles and times can be

simulated.

It should be emphasized that, in order to obtain statisti-

cally significant results, the simulation process must be reit-

erated a sufficiently large number of times, so that in every

system state (and therefore for each vehicle arrived) all the

probability distributions are respected asymptotically (i.e., the

class membership, the inter-arrival intervals and service

times). Each alternative evolution of the waiting system, rep-

resented by a different set of arrival and departure times,

constitutes a single Monte Carlo iteration or a trial of the

simulation. The values of li and ðai; bi; diÞ, constant during T

but possibly variables on sequential intervals, are considered

common to all the trials of the simulation.

For anM=G=1multi-class system, the inter-arrival time and

the service time are simulated considering the quantile
ime-dependent model for the analysis of waiting phenomena
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Table 1 e Exponential and shifted Gamma distribution parameters depending on users' classes for the three test cases.

Class i Vehicle type Payment type li=l (%) E½Si� di ai bi VAR½Si� E½S2i �
1 Light Coin 7 23 5 3 6.00 108.00 637.00

2 Light Card 10 20 5 3 5.00 75.00 475.00

3 Light Electronic 53 4 2 3 0.67 1.33 17.33

4 Heavy Coin 3 30 5 3 8.33 208.33 1108.33

5 Heavy Card 7 28 5 3 7.67 176.33 960.33

6 Heavy Electronic 20 4 2 3 0.67 1.33 17.33
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functions (inverse of the cumulative probability functions)

respectively of the exponential distribution and of the shifted

Gi distribution for the class i. For the generic vehicle v, given

the properties of the exponential distribution, the inter-arrival

time with respect to the previous vehicle can be calculated in

closed form with

xv ¼ � 1 = l lnð1�uÞ (24)

where u is a uniformly distributed variable with values be-

tween 0 and 1 (u2Uð0; 1Þ).
The vehicle v can therefore be assigned to a specific class

based on li=l probabilities with i2f1; 2; /; Rg, representing
the proportion of vehicles belonging to each class. The same

class can be assigned using the sampled values for u2 Uð0; 1Þ.
Regarding the simulation of the service time related to

each class i, which are distributed according to Gi ðai; bi; diÞ, it
should be noted that for the Gamma probability distribution it

is not possible to express the quantile function by closed-form

expressions and therefore it is necessary to operate using

numerical approximation methods (Devroye, 1986; H€ormann

et al., 2004). The most common calculation software with

statistical applications contain specific functions that allow

for the function inversion, using support variables

distributed uniformly between 0 and 1. Alternatively, if it is

necessary to proceed without a specific function for the

Gamma probability distribution inversion, the algorithm of

Marsaglia and Tsang (2000) works well for the purpose.

Regarding themodelvalidation, theaveragevaluesof ahigh

number of Monte Carlo iterations (averages on 1800 simula-

tions) of the SDESmodelwere comparedwith the results of the

probabilistic theory for stationary queue in under-saturated

situations. For this validation task, an M=M=1 model was used

as a reference, assuming parameters for Gi as to replicate a

single exponential distribution of service time Swith E½S� ¼ 1= m

(i.e., ai ¼ 1; bi ¼ 1
m
; di ¼ 0). A further validation task involved the

comparison with the results of an M=G=1 model obtained by

applying the PK formulas (once the average and variance of a

single generic distribution of service times has been set).

It is worth pointing out that SDES model calibration can be

obtained by calibrating the values of li and of the parameters

ðai; bi; diÞ for each Gi on the basis of the real data. For these

distributions, as already mentioned, we can use MLE (Minka,

2002; Shanker et al., 2016). However, in the numerical

applications of the following Section 6, these parameters are

supposed to be known and differentiated for each users'
classes. As said previously, the appendix of this paper

contains methodological indications for the calibration of

the parameters and a concrete example of analysis on real

service time data at a tollgate.
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6. Test case: results and discussion

Three test cases have been identified to verify the results of

the time-dependent model, making possible to compare the

output of the Eqs. (16)e(21) and what is obtained with the

SDES model. As already mentioned, the SDES model must be

reiterated for a sufficiently high number of times (i.e., trials)

using a Monte Carlo procedure to obtain statistically signifi-

cant results. Actually, only when we have the queue results

for a large number of SDES iterations, their average values can

be compared with the results of time-dependent equations.

For the analysis of the test cases, a tollgate that includes

electronic and automatic toll collection system (in turn with

card or coin) for light (namely, cars) and heavy vehicles

(namely, trucks or buses) is considered. A specific class i is

associated to each of the 6 combinations of collection and

vehicle types in Table 1.

Table 1 also shows the li=l probability of classes

occurrence with respect to the flow rate l arriving at the

gate, and the parameters of the Gi probability distribution

with the relative expected value, second moment and

variance. Considering values in Table 1 as constants, Figs. 5

and 6 show the trends of LsT and w varying l and r, which

are obtained by considering the time-dependent Eqs.

(17)e(23) with a zero initial queue. These trends are

compared with PK results (exclusively in their validity range

given by r< 100%), showing a substantial coincidence for

values of r< 70%. For higher values of r, the PK

determinations are rapidly and unrealistically tending to

infinity for r/1, with substantial differences with respect to

the time-dependent model results.

Furthermore, in Figs. 5 and 6, the results of time-dependent

model are compared with the output of the SDES model ob-

tained for 1800 Monte Carlo iterations. From the analysis, al-

ways considering a zero initial queue, an overlap of the results

of the time-dependent model emerges with respect to what

can be obtained using the SDES model iterations, synthesized

by the empirical average values on 0.01 e width binning in-

tervals for r. Further numerical evaluations are carried out

considering an evolutionary traffic demand. Table 2 describes

traffic demand composition related to the 6 toll collection

classes (i.e., 2 vehicle types and 3 types of payment) during

eight intervals, each lasting 15 min. Table 1 shows again the

parameters of the probability distributions functions Gi.

Taking into account the demand distribution during each

time slice in Table 2, as percentages of traffic for each of the 6

vehicle and payment combinations with respect to the

characterization of the entire vehicle fleet, three test cases
ime-dependent model for the analysis of waiting phenomena
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Fig. 5 e LsT at the end of each interval according to the PK formulas, the time-dependent model and the SDES trials (Ls0 ¼ 0,

varying r).
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A, B and C were considered. These three test cases differ each

other for the trend of arrivals during the 8 time intervals. Case

A and case B have a peak demand in the initial portion of the

period (i.e., third period). In particular, case A has a more

pronounced traffic peak than case B. In case C, the peak

demand is comparable with case A, but this is located in a

more central position with respect to the analyzed time

intervals (fourth and fifth periods).

Table 3 shows the total arrivals at the gate during each time

slice for the three test cases. The demand composition

percentage in Table 2 are applied to these total arrivals. Table 3

also shows the trend of the parameters of the multi-class

queue for each of the three test cases A, B and C. The

evolutionary profiles of r, LsT and w are obtained using the

multi-class queue formulas, the respective traffic demand

shown in the same table and the percentage distribution of the

arrivals over the 6 toll collection classes in Table 2, given the

relative distributions Giðai; bi; diÞ for service times in Table 1.

The values obtained for r in each time slice of each test

case are shown graphically in Fig. 7. The r trends show periods

of over-saturation in all the three cases, corresponding to

traffic peaks. For the test case A there is an over-saturation

of 122% in the third interval; in the same interval also case B
Fig. 6 e Averagew ineach interval according to thePK formulas, the
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reaches saturation, with r equals to 100%. For case C,

instead, a maximum over-saturation (with r equals to 109%,

intermediate between cases A and B) is placed in the fourth

and fifth interval.

Each of the three test case was simulated using the SDES

model in Section 4 considering 600 trials. Starting from the

results obtained for each trial, the mean and the 95%

confidence interval were evaluated for LsT and w for each 15-

min interval, allowing to evaluate the time profiles of the

averages queue length and waiting time and their

confidence intervals reported in Table 4.

The evolutionary profiles for LsT andw obtained separately

with the time-dependent model and the SDESs for each sce-

nario can be compared, in order to evaluate the capacity of the

time-dependent multi-class queue model to fit the SDES re-

sults. The results are shown graphically in Figs. 8e10.

The comparisons for all the three numerical test cases

highlight the ability of the multi-class time-dependent queue

model to fit the trend of the average queue and waiting time

values obtained by SDES. Table 5 shows the determination

coefficient R2 and the mean absolute percentage error

(MAPE) as indicators of the goodness of fit. The values of the

determination coefficient R2 obtained for each scenario are
time-dependentmodel and theSDES trials (Ls0 ¼ 0, varying r).
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Table 2 e Demand distribution with respect to the users'
classes for each time slices (15-min intervals).

T-slice k Class i Vehicle type Payment type li=l(%)

1 1 Light Coin 7

2 Light Card 10

3 Light Electronic 53

4 Heavy Coin 3

5 Heavy Card 7

6 Heavy Electronic 20

2 1 Light Coin 8

2 Light Card 9

3 Light Electronic 50

4 Heavy Coin 6

5 Heavy Card 7

6 Heavy Electronic 20

3 1 Light Coin 7

2 Light Card 12

3 Light Electronic 48

4 Heavy Coin 3

5 Heavy Card 8

6 Heavy Electronic 22

4 1 Light Coin 4

2 Light Card 15

3 Light Electronic 58

4 Heavy Coin 2

5 Heavy Card 5

6 Heavy Electronic 16

5 1 Light Coin 5

2 Light Card 14

3 Light Electronic 58

4 Heavy Coin 1

5 Heavy Card 6

6 Heavy Electronic 16

6 1 Light Coin 1

2 Light Card 6

3 Light Electronic 60

4 Heavy Coin 3

5 Heavy Card 10

6 Heavy Electronic 20

7 1 Light Coin 5

2 Light Card 7

3 Light Electronic 58

4 Heavy Coin 2

5 Heavy Card 11

6 Heavy Electronic 17

8 1 Light Coin 7

2 Light Card 10

3 Light Electronic 53

4 Heavy Coin 3

5 Heavy Card 7

6 Heavy Electronic 20
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extremely close to 100%, confirming the capacity of the time-

dependent model to reproduce optimally the variability of the

values of LsT and w obtained with simulations. Also MAPE

shows good level of approximation, ranging levels between

7% and 12%.
7. An insight for a future scenario

In recent years the rise of new technologies has made great

progress in intelligent transportation systems (ITS) directing

more and more attention towards connected vehicles (CVs).
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CVs are equipped with advanced communication tech-

nologies that allow an exchange of information between the

various elements of the transport system, configuring what is

generically identified with vehicle to everything, or V2X. V2X

network connection is actually specified with respect to the

nature of the relationship between the vehicle and the outside

world, including vehicle-to-vehicle (V2V), vehicle-to-infra-

structure (V2I), vehicle-to-people (V2P), vehicle-to-network

(V2N). The new V2X technologies, even mixed with non-CVs,

will awaken a growing interest as usher in new operation

models, change in traffic flow fundamentals and manage-

ment, and redesign safety and mobility management

(Mahmassani, 2016; Mostafizi et al., 2017). To this

technological revolution, that will be increasingly dominant

in future years, we must surely add a progressive increase in

card/electronic payments. This section of the paper offers a

glance to these aspects, to be specifically treated in a more

thorough way in the continuation of the research. It is

useful to anticipate here some considerations regarding the

use of the formulas presented in this paper for the

treatment of these aspects, which will characterize future

scenarios.

Regarding the second topic, the proposed time-dependent

model presents an adequate flexibility to consider the aspects

related to the increase of automatic technologies users (card

or electronic toll) or to the introduction of new payment

technologies (e.g., license plate recognition (LPR)). The pro-

posed time-dependent multi-class queue model makes it

possible to represent every type of payment and any variation

in its use, once the parameters of the relative probability

distributions of arrivals and service times have been

calibrated.

Going back to the first topic, it is appropriate to distinguish

between two policies for a mixed fleet of CVs and non-CVs

that can be implemented by the motorway concessionaire: I)

the “designated policy” under which the gate is designated to

CVs; II) the “integrated policy” under which CVs and non-CVs

can use the same gate (Mirzaeian et al., 2018).

In the first case, with only CVs at a tollgate in fully V2X

environment, the queue model appears as totally determin-

istic. In this case, in fact, the arrivals at the gate are deter-

ministic, as they are temporally predetermined according to a

scheduling program within a certain time interval. For these

non-human controlled vehicles, even the service times are

totally deterministic as the toll operations are conducted with

fully automated procedures. In this case, the queue model is

D=D=1, with arrivals and departures managed by the CVs

Control System. In this case, i.e., under a “designated policy”,

the queue parameters may be calculated according with the

Eqs. (13) and (14).

In the second case, i.e., under a “integrated policy”, traffic

demand is amix of non-CVs and CVs. Human and non-human

controlled vehicles alternate with each other in arriving at the

toll plaza by composing into batches or platoons. Using multi-

class queue model, we can consider each platoon of CVs as a

single vehicle belonging to the CVs class. For reason of

simplicity, the hypothesis of a fixed length of the CVs platoon

can be assumed that is a single class of CVs is introduced in

the model. Without this assumption the concept can be

generalized to platoons with variable length, according to a
ime-dependent model for the analysis of waiting phenomena
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Table 3 e Parameters and results (LsT and w) of the time-dependent multi-class queue model.

Test case T-slice k Arrival (veh/min) E½S� E½S2� VAR½S� C l 1=E½S� r LsT w

A 1 4.00 9.39 205.22 117.04 1.16 0.067 0.106 0.63 1.85 27.54

2 6.00 10.20 239.57 135.53 1.15 0.100 0.098 1.02 11.53 93.58

3 7.33 9.95 223.80 124.80 1.13 0.122 0.101 1.22 33.98 242.69

4 5.33 8.88 179.74 100.89 1.14 0.089 0.113 0.79 18.48 235.11

5 4.67 8.89 179.88 100.85 1.14 0.078 0.112 0.69 5.17 86.32

6 4.00 8.33 178.02 108.63 1.28 0.067 0.120 0.56 1.66 25.29

7 3.33 9.23 205.90 120.71 1.21 0.056 0.108 0.51 1.19 21.32

8 3.33 9.39 205.22 117.04 1.16 0.056 0.106 0.52 1.18 21.24

B 1 2.67 9.39 205.22 117.04 1.16 0.044 0.106 0.42 0.77 17.17

2 5.33 10.20 239.57 135.53 1.15 0.089 0.098 0.91 6.17 60.79

3 6.00 9.95 223.80 124.80 1.13 0.100 0.101 1.00 12.93 113.26

4 4.00 8.88 179.74 100.89 1.14 0.067 0.113 0.59 2.50 43.01

5 3.33 8.89 179.88 100.85 1.14 0.056 0.112 0.49 1.10 19.81

6 2.67 8.33 178.02 108.63 1.28 0.044 0.120 0.37 0.66 14.78

7 2.67 9.23 205.90 120.71 1.21 0.044 0.108 0.41 0.75 16.88

8 2.67 9.39 205.22 117.04 1.16 0.044 0.106 0.42 0.76 17.17

C 1 2.67 9.39 205.22 117.04 1.16 0.044 0.106 0.42 0.77 17.17

2 3.33 10.20 239.57 135.53 1.15 0.056 0.098 0.57 1.38 24.66

3 4.67 9.95 223.80 124.80 1.13 0.078 0.101 0.77 3.33 41.15

4 7.33 8.88 179.74 100.89 1.14 0.122 0.113 1.09 17.98 115.80

5 7.33 8.89 179.88 100.85 1.14 0.122 0.112 1.09 30.38 227.60

6 4.00 8.33 178.02 108.63 1.28 0.078 0.120 0.65 7.57 137.39

7 6.00 9.23 205.90 120.71 1.21 0.056 0.108 0.51 1.51 27.94

8 7.33 9.39 205.22 117.04 1.16 0.044 0.106 0.42 0.79 17.65
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certain probability distribution (i.e., one class for each fixed

length of the platoons, between 1 and the maximum possible

length).

Having to mix with non-CV vehicles due to the “integrated

policy”, we expect the CVs platoons can no longer be described

with deterministic arrivals. In relation to the conditioning of

non-CV vehicles, with stochastic arrivals, also the CVs will

have stochastic arrivals. In these terms, we can still consider

CVs platoons arrivals according to Poisson with parameter

lCV. At this point, the CVs class will have its own deterministic

service time SCVs ~ constant ¼ sCV, which is equal to the ser-

vice time of each CV multiplied by the number of vehicles in

the CVs platoon.

From this point of view, the service time distribution of the

CVs class can be considered as a degenerate probability dis-

tribution with E½SCVs� ¼ sCV and VAR½SCVs� ¼ 0, and then with
Fig. 7 e Evolution during time sl
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E½S2CVs� ¼ s2CV. This degenerate probability distribution can be

approximated with a shifted Gamma function, assuming that

aCVs ¼ 1; dCVs ¼ sCV and considering a small enough value for

bCVs.The value for C to be used in time-dependent model (Eqs.

17e23) can be obtained by considering Eq. (11) and using the

first and second moments of the Gamma mixture variable as

in Eqs. (9) and (10). The values identified above for the CVs

class are used in these last equations for class i ¼ CVs (i.e.,

E½SCVs� ¼ sCV and E½S2CVs� ¼ s2CV).

The considerations above highlight the flexibility of the

proposed model and its compatibility with some future

issue for motorway traffic planning and assessment.

Further in-depth analysis and validation of the model will

be necessary to test and confirm the use of the dependent

time model also in this case, extremely important for future

application.
ices for the three test cases.
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Table 4 e SDES simulation results for LsT and w (average values and 95% confidence interval with 600 trials).

Test case T-slice k LsT w

Mean Standard
deviation

95% confidence
interval

Mean Standard
deviation

95% confidence
interval

A 1 1.92 1.58 1.79 2.05 26.97 8.89 26.26 27.68

2 12.47 4.97 12.07 12.87 94.59 30.78 92.12 97.05

3 33.05 8.13 32.40 33.70 238.21 66.11 232.92 243.50

4 20.60 10.02 19.80 21.40 258.02 88.73 250.93 265.12

5 7.56 7.40 6.97 8.15 123.74 78.68 117.45 130.04

6 1.94 2.90 1.71 2.17 39.35 40.73 36.09 42.60

7 1.16 1.14 1.07 1.26 21.60 10.34 20.78 22.43

8 1.26 1.24 1.17 1.36 21.69 6.96 21.13 22.25

B 1 0.79 0.84 0.72 0.85 16.99 4.33 16.64 17.34

2 7.43 3.69 7.13 7.72 62.88 22.54 61.08 64.69

3 13.10 5.88 13.62 14.57 117.10 44.07 115.57 122.62

4 2.72 3.06 2.48 2.96 71.55 43.81 68.04 75.05

5 1.16 1.18 1.06 1.25 21.94 10.96 21.06 22.82

6 0.64 0.82 0.57 0.70 14.55 4.05 14.23 14.87

7 0.74 0.85 0.67 0.81 16.81 4.47 16.45 17.17

8 0.86 0.96 0.78 0.93 17.67 5.12 17.26 18.08

C 1 0.82 0.87 0.75 0.89 17.36 4.46 17.00 17.72

2 1.42 1.30 1.32 1.53 24.99 8.10 24.34 25.64

3 3.80 2.78 3.58 4.02 42.73 16.30 41.42 44.03

4 18.50 6.53 17.98 19.03 115.41 37.41 112.41 118.40

5 29.47 8.99 28.75 30.18 223.39 70.60 217.74 229.04

6 8.99 8.51 8.31 9.68 162.56 79.38 156.21 168.91

7 1.57 2.31 1.38 1.75 41.98 41.06 38.69 45.26

8 0.79 0.87 0.72 0.86 18.52 7.82 17.89 19.14

Fig. 9 e Test case B time-dependent model and 95% confidence interval of the 600 SDES trials. (a) LsT. (b) w.

Fig. 8 e Test case A time-dependent model and 95% confidence interval of the 600 SDES trials. (a) LsT . (b)w.
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Fig. 10 e Test case C time-dependent model and 95% confidence interval of the 600 SDES trials. (a) LsT. (b) w.

Table 5 e Goodness of fit (GOF) indicators for LsT and w
evolution (time-dependent model versus 600 SDES trials
averages).

Queue
parameter

GOF indicator Test case
A (%)

Test case
B (%)

Test case
C (%)

LsT R2 99.10 99.20 99.70

MAPE 12 7 7

w R2 97.70 93.50 98.40

MAPE 10 8 8
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8. Conclusions

The paper directs reader's attention to the application of time-

dependentqueuemodels thatallowstoface thewholespectrum

of situations that may characterize the relationship between

demand and supply service at a motorway tollgate. These situ-

ations include also over-saturation or any case distant from

stationary that render unrealistic the application of the proba-

bilistic queues theory. Moreover, these models solve the prob-

lems related to the simulation approach due to thepossibility of

compact formulas for an easy use in real applications.

The current article examines the time-dependent modeling

for the non-stationary queue using the coordinate trans-

formationcriterion. Inparticular, amulti-classM=G=1modelhas

been proposed and developed, which allows a segmentation of

the probability distributions of arrivals and service times in

consideration of a clustering of users (i.e., vehicle and payment

types) at a tollgate.

Starting from the deduction of the closed-form equations

for the queue in statistical equilibrium, the time-dependent

solutions of the multi-class M=G=1 queue are obtained for a

motorway tollgate by the coordinates transformation for a

certain time period with constant arrivals and calibrated ser-

vice time distributions, and with a non-null initial queue.

Probability distributions parameters can be calibrated using

real-life data, in order to reproduce the actual behaviors at a

tollgate. The equations for the average waiting time and the

average number of vehicles in the system in a certain obser-

vation interval are therefore detailed. These equations, iden-

tified for a “basic case”, are also applicable for a time slices

sequence and therefore they enable the assessment of any

demand and services evolutionary profiles.
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The paper presents also SDES model that can be used to

simulate the operating of a motorway tollgate. The simulative

model,adequatelyverifiedandvalidated,considers thepresence

of multiple class of users stratified by vehicle type and toll

transaction type. In this specific case SDES represents a control

model, that is a verification and validation tool for the results

obtained using the coordinates transformation formulas.

Three different numerical cases are proposed to test the

application of the time-dependent equations against the re-

sults of a sufficiently high number of simulationwith the SDES

model, in term of the average waiting time and the length of

the queue at intervals of 15 min. A Monte Carlo stochastic

simulation model has been used to reiterate SDES model for

600 times, in order to obtain statistically significant results.

The comparison shows a good capacity of the time-

dependentmulti-class queuemodel to approximate themean

values of the SDES model reiterations. In this way, the coor-

dinate transformationmethod is confirmed as fully capable of

resolving cases that fall outside the boundaries of the proba-

bilistic theory of waiting phenomena. One of the objectives of

the continuation of the research, from the point of view of

comparison with alternative methods, may be to evaluate the

convenience of the proposed formulas (i.e., effectiveness in

producing acceptable approximations and efficiency in use in

technical applications) with respect to the application of the

PSSFA method (Hu et al., 2018; Wang et al., 1996), adequately

specified for the multiclass case.

The proposed formulas, therefore, are easy to use in

practical cases for the evaluation of the main MOEs for LOS

assessment of a motorway toll station, allowing to operate

quickly, compactly and with a good level of input segmenta-

tions and results approximation. Furthermore, they are easier

to apply from a computational point of view, if comparedwith

the level of complexity of the preparation and reiteration of

the SDESmodel to infer on the average values of queue length

and waiting times. Moreover, the same formulas will serve in

the specification of the cost functions for the characterization

of the supply system within the traffic demand assignment

models. This aspect, in particular, can be deepened in the

continuation of the research, together with the implications

concerning the distribution of the demand on several gates

depending on the operations types, the toll plaza geometry

and the vehicles trajectories.
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It is worth pointing out that in the examples proposed in

this paper the time-dependent equations are used to analyze

situations with conventional vehicles, i.e., with total human

control. As studies and applications that take into account the

presence of vehicles without human control are increasingly

in demand in transport engineering, in this paper a glance on

CVs is presented. The proposed discussion highlights a sig-

nificant flexibility of the model proposed in addressing these

emerging topics, which needs however further investigations

in the continuation of the research.
Conflict of competing interest

The authors do not have any conflict of interest with other

entities or researchers.

Appendix

The Gamma shifted probability distribution, having a proba-

bility density function expressed by

fðxÞ¼ 1
GðaÞbaðx� dÞa�1e� x�d

b (A1)

can be calibrated in its parameters a (shape), b (scale) and d

(shift) resorting to maximum likelihood estimates (MLE)

(Minka, 2002; Shanker et al., 2016).

Calibration can be obtained from an observed set of n inde-

pendent data pointsX ¼ fx1;x2;/;xng. First of all, starting from

the available data, we can estimate the shift parameters as

bd¼minfx1; x2;/; xng (A2)

At this pointwe can translate thewhole data set taking into

account bd, obtaining Y ¼ fy1;y2;/;yng, where yi ¼ xi � bd. The
Gamma probability density function expressed by

fðxÞ¼ 1
GðaÞbaðyÞa�1e� y

b (A3)

can be calibrated in its parameters a (shape) and b (scale) using

Y ¼ fy1;y2;/;yng.
The likelihood function for n independent and identically

distributed observations Y ¼ fy1; y2;/; yng is
Fig. A1 e Service time values at the cash tollgate of Ci
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Lða;bÞ¼
Yn

i¼1
f
�
y1;a; b

�
(A4)

and the log-likelihood is

lða;bÞ¼ ða� 1Þ
Xn

i¼1
ln
�
yi

��Xn

i¼1

yi

b
�na lnðbÞ � n lnðGðaÞÞ (A5)

The maximum likelihood estimator bb for b is obtained by

deriving lða; bÞ with respect to b and setting the derivative

equal to zero. The maximum for b is easily found to be

bb¼ 1
an

Xn

i¼1
yi (A6)

Substituting this into Eq. (A5) gives

lðaÞ¼ ða� 1Þ
Xn

i¼1
ln
�
yi

��na�naln

Pn
i¼1yi

na
� nlnðGðaÞÞ (A7)

The maximum likelihood estimator ba for a is obtained by

deriving lðaÞ with respect to a and setting the derivative equal

to zero, that yields

lðaÞ�jðaÞ¼ ln

 
1
n

Xn

i¼1
yi

!
� 1
n

Xn

i¼1
ln
�
yi

�
(A8)

where jðaÞ is the Digamma function.

As the Eq. (A8) has not a closed-form solution for a, a

numerical method can be used, for example the

NewtoneRaphson method in Choi and Wette (1969). In this

way the value of ba can be obtained by successive

approximations.

We can now consider a concrete example, taking the data

set of the cash tollgate of Cikupa (Jakarta, Indonesia) reported

in (Karsaman et al., 2014). The service time values for 80

monitored vehicles are shown in Fig. A1.

Accordingtothedata, theshiftparametersbd canbesetequal to

3 s. Gamma distribution parameters ba and bb can be estimated

using the service time data translated by a value equal to bd. The
MLE can be obtained using the statistical functions available in

commonly used software. The analysis carried out with Matlab

probability distribution fitting tools shows the following esti-

mates: ba ¼ 1:298, bb ¼ 2:181. Fig. A2 shows the trend of the esti-

mated Gamma probability density function, together with the

histogram representing the relative frequencies of the data at the

tollgate, realigned with respect to bd.
kupa (Jakarta, Indonesia) (Karsaman et al., 2014).
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Fig. A2 e Data distribution and fitted Gamma distribution for service times at the cash tollgate of Cikupa (Jakarta, Indonesia)

(Karsaman et al., 2014).
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The KolmogoroveSmirnov (Kolmogorov, 1933; Smirnov,

1948) and the Anderson-Darling (Anderson and Darling,

1954) tests can be used to determine the goodness of fit

(Karada�g and Aktas‚ , 2015), i.e., how well the data fit to the

underlying Gamma distribution. The tests consider the

null hypothesis that the data follow the gamma

distribution with parameters: ba ¼ 1:298; bb ¼ 2:181. The

calculated value of the KolmogoroveSmirnov test statistic

is Dn ¼ 0:062, which is less than the critical value of Dcrit ¼
0:152 (significance level 0.05). Since Dn <Dcrit, we cannot

reject the null hypothesis concluding that there is no

significant difference between the real-life data and data

coming from a Gamma distribution with parameters: ba ¼
1:298, bb ¼ 2:181.

The calculated value of the Anderson-Darling test statistic

is AD ¼ 0:262, which is less than the value critical ADcrit ¼
0:780 for Gamma distributions (significance level 0.05). Since

AD<ADcrit, we cannot reject the null hypothesis concluding

that there is no significant difference between the real-life

data and data coming from a Gamma distribution with pa-

rameters: ba ¼ 1:298, bb ¼ 2:181.

Both tests show a high p-value that is certainly much

greater than 0.25, as the D and AD values are still lower

than the tabulated values with significance equal to 0.25.
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