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0. Introduction

The aim of this paper is to provide a historical account as well as several geometric characterizations of C1-manifolds
by tangent cones in R

n . We complete so the study beginning in [1]. Let us remember that, if F is an arbitrary subset of
Euclidean space R

n and x ∈ R
n , the lower and the upper tangent cones to F at x, indicated respectively by Tan−(F , x) and

Tan+(F , x) are defined in terms of sequences by

v ∈ Tan−(F , x) ⇐⇒
{∀{λm}m ⊂ R++ with λm → 0+,

∃{xm}m ⊂ F such that limm
xm−x
λm

= v,
(0.1)

v ∈ Tan+(F , x) ⇐⇒
{∃{λm}m ⊂ R++ with λm → 0+,

∃{xm}m ⊂ F such that limm
xm−x
λm

= v.
(0.2)

The lower and the upper paratangent cones to F at x, indicated respectively by pTan−(F , x) and pTan+(F , x) are defined in
terms of sequences by

v ∈ pTan−(F , x) ⇐⇒

⎧⎪⎨
⎪⎩

∀{λm}m ⊂ R++ with λm → 0+,

∀{ym}m ⊂ F with ym → x,

∃{xm}m ⊂ F such that limm
xm−ym

λm
= v,

(0.3)

v ∈ pTan+(F , x) ⇐⇒

⎧⎪⎨
⎪⎩

∃{λm}m ⊂ R++ with λm → 0+,

∃{ym}m ⊂ F with ym → x,

∃{xm}m ⊂ F such that limm
xm−ym

λm
= v.

(0.4)

In general

pTan−(F , x) ⊂ Tan−(F , x) ⊂ Tan+(F , x) ⊂ pTan+(F , x).(0.5)

We refer to [1] for several properties and preliminary results about tangent cones. In particular, we recall the most important
result proved in [1], i.e. the characterization of C1-manifolds by the Four-cones coincidence theorem:

Theorem 0.1 (Four-cones coincidence theorem: global version). A non-empty subset F of Rn is a C1-manifold if and only if F is locally
compact and the lower and upper paratangent cones to F coincide at every point, i.e.,

pTan−(F , x) = pTan+(F , x) for every x ∈ F .(0.6)

Notice that condition (0.6) amounts to the set inclusion

pTan+(F , x) ⊂ Li
F
y→x

Tan+(F , y) for every x ∈ F .(0.7)

In this paper we examine the historic study of C1-manifolds, recovering old geometrical characterizations of smooth mani-
folds by tangent cones due to Valiron (1926, 1927) and Severi (1929, 1934). More modern characterizations due to Gluck

(1966, 1968) and Tierno (1997) are restated too. The paper is organized as follows:
Section 1: From Fréchet problem to modern characterizations of smooth manifolds. In 1925 Fréchet inquires into

existence of non-singular continuously differentiable parametric representations of continuous curves. This problem had
been a starting, motivating and reference point for subsequent research by various mathematicians. Two basic conditions
for the existence of a non-singular parametrization of a set (either curve or surface) were given by Valiron:

(∗) continuously turning tangent space, and
(∗∗) locally injective orthogonal projections on tangent spaces.

Other conditions ensuring (∗) and (∗∗) were given by Severi by means of paratangency instead of tangency. Valiron (1926,
1927) and Severi (1929, 1934) present, in the setting of the topological manifolds, the first geometrical characterizations of
C1-manifold by tangent cones. From a historical point of view, an essential condition to a complete geometrical character-
ization of C1-manifold by tangent cones, has been a solid and univocal (but not necessary unique) definition of tangency
and a C1 version of differentiability, the so-called strict differentiability. Finally, Guarreschi extended the results of Severi
introducing the projection character.

Section 2: Old characterizations of C 1-manifolds. This section presents the characterizations obtained through the Val-
iron condition and the Severi simplicity condition, exposed in two subsections. In a first subsection we study Euclidean
graphs as smooth manifolds.
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Section 3: Modern characterizations of C 1-manifolds. This section is devoted to the exposition of the modern results
due to Gluck and Tierno. The characterizations are presented in several subsections and proved in the light of the Four-cones
coincidence theorem.

The paper is concluded by two appendices. In the first one (Appendix A) we give a geometric and analytic characteriza-
tion of Strict diffeomorphisms. In the second one (Appendix B) we restate the Four-cones coincidence theorem, proving a
different version than given in [1].

Remark. In the following sections, the symbols R and N will denote the real and natural numbers, respectively; and Nk :=
{m ∈ N: m � k} for k ∈N, R+ := {x ∈ R: x � 0}, R++ := {x ∈R: x > 0}. If not otherwise specified, any set will be a subset of
some finite dimensional Euclidean space R

n . An open (resp. closed) ball of center x̂ and radius ε will be denoted by Bε(x)
(resp. Bε(x)). P(Rn) denotes the set of all subsets of Rn . The set of accumulation points of a given set A and its interior are
denoted by der(A) and int(A), respectively.

1. From Fréchet problem to modern characterizations of smooth manifolds

In [10, (1887), vol. III, p. 587] Jordan defines a curve as a continuous image of an interval. By means of a notion of
rectifiability, Jordan gives mathematical concreteness and coherence to the usage of the term “length” and, moreover, by
parametrization of sets he provides fresh impetus to the study of local and global properties of sets.

Surprisingly for Jordan’s epoch, continuous curves did not fit to common intuition on 1-dimensionality and null area
of their loci. In fact, Peano in [17, (1890)] constructed a continuous curve filling a square. Clearly, Peano’s curve is not
simple. An example of a simple continuous curve of non-null area was given by Lebesgue [11, (1903)] and by Osgood [15,
(1903)]. Nalli [13,14, (1911)] characterized the locus of simple continuous plane curves by means of local connectedness (a
new notion, introduced by Nalli). Three years later, Mazurkiewicz [12, (1914)] and Hahn [9, (1914)] proved the celebrated
theorem: “A set of Euclidean space is a continuous image of a compact interval if and only if it is a locally connected
continuum”.

In absence of differentiable properties, the continuity alone does not capture intuitive curve aspects. Aware of this lack,
to recover geometric properties of the locus of a continuous curve, Fréchet (see [4, (1925), pp. 292–293] and [5, (1928),
pp. 152–154]) proposed the following problem: Find a non-singular parametric representation1 of the locus of a continuous curve
having tangent straight-line at every point. Let’s quote Fréchet from the first reference:

On sait qu’une courbe continue sans point multiple et ayant une tangente déterminée en chaque point peut avoir une
représentation paramétrique constituée de fonctions dérivables x(t), y(t), z(t), mais dont les dérivées peuvent exception-
nellement s’annuler à la fois [. . .]

Ce qui précède nous encourage à proposer la question suivante, dont la solution à première vue ne paraît pas dou-
teuse:

Si une courbe continue est douée partout (ou en un point) d’une tangente, peut-on la représenter paramétriquement par
des fonctions dérivables partout (ou au point correspondant)? Bien entendu, dans cet énoncé, la tangente est définie
géométriquement, c’est-à-dire comme limite d’une corde.

Fréchet’s confidence about a solution to his problem was dampened in 1926 by Valiron [26, (1927)]. After making
precise and explicit the meaning of both tangent half-straight-line and tangent straight-line, Valiron gives the following propo-
sition.

Theorem 1.1. (See Valiron [26, (1927), p. 47].) If a continuous curve admits a continuously variable oriented tangent straight-line at
its points, then it has a non-singular continuously differentiable parametric representation.2 �

Valiron [25, (1926)] provides an analogous proposition for surfaces of ordinary 3-dimensional space. To attain this aim,
he introduces the concept of oriented tangent plane to a surface F , takes into account continuously turning oriented tangent
plane and, in addition, adopts the following condition at every point x ∈ F :

(1.1) (Valiron [25, (1926), p. 190]) The orthogonal projection on the oriented tangent plane to F at x is injective on an open
neighborhood of x in F .

1 Here and in the sequel, “non-singular parametric representation” stands for “differentiable parametric representation with everywhere non-null deriva-
tive”.

2 Using our terminology, a 2-dimensional (resp. 1-dimensional) vector space H is an oriented tangent plane (resp. an oriented tangent straight-line) to a set
F at a point x, if H is equal to the upper tangent cone to F at x. In other words, F admits an oriented tangent plane (resp. an oriented tangent straight-line)
at a point x if and only if the upper tangent cone at x is a 2-dimensional (resp. 1-dimensional) vector space.
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Theorem 1.2. (See Valiron [25, (1926)].) Let F ⊂ R
3 be homeomorphic to a 2-dimensional open connected set. If F admits a con-

tinuously variable oriented tangent plane and the condition (1.1) holds, then F locally coincides with the graph of a continuously
differentiable function. �

Following Pauc’s counterexample [16, (1940), p. 96] to the Fréchet problem, Choquet, in his thesis [2, (1948), p. 170],
provides necessary and sufficient conditions for the Fréchet supposition to hold. Like Valiron, Pauc and Choquet make
precise and explicit the meaning of tangent straight-line. Besides, Choquet considers a more general problem: If a variety
admits a linear tangent variety at every point (or has certain regularity), is there a regular parametrization (or a parametrization
having an analogous degree of regularity)? In this spirit, Zahorski and Choquet proves the following two propositions.

Proposition 1.3 (Zahorski). (See Choquet [2, (1947), pp. 173–174].) If a continuous arc admits a tangent straight-line at all but
(possibly) countably many points, then it has a differentiable parametric representation. �
Proposition 1.4. (See Choquet [2, (1947), p. 174].) A continuous image of a compact interval is a rectifiable curve if and only if it
admits a Lipschitzian differentiable parametric representation. �

Invoking seminal papers of Fréchet [4, (1925)], and Valiron [25,26, (1926, 1927)], Severi looks for non-singular con-
tinuously differentiable parametric representations of a curve (resp. surface). Main ingredients of the solutions of Severi

are strict differentiability and paratangency. Strict differentiability ensures that curves (resp. surfaces) have a continuously
turning tangent straight-line (resp. plane); it is geometrically characterized in terms of paratangency (see Proposition 2.8
of [1]). On the other hand, aware of the need of Valiron’s condition (1.1), Severi assumes the following simplicity con-
dition and, consequently, ensures Valiron’s condition by replacing Valiron’s oriented tangent plane by a paratangent
plane.

Definition 1.5. (See Severi [21, (1929), p. 194], [18, (1930), p. 216], [19, (1931), p. 341], [20, (1934), p. 194].) A d-dimensional
topological manifold F of Rn satisfies the Severi simplicity condition, if the dimension of the linear hull of the upper paratan-
gent cone to F at every point is at most d.

Theorem 1.6. (See Severi [20, (1934), pp. 194, 196].) If F is a topological manifold of dimension one (resp. two) satisfying Severi
simplicity condition, then the upper paratangent cone at every point is a one (resp. two) dimensional vector space which varies contin-
uously. �

To extend this theorem, Guareschi [8, (1940), p. 415] introduces the projection character.

Definition 1.7. Let F ⊂ R
n and x̂ ∈ F ∩ der(F ). The Guareschi’s projection character of F at x̂ is the smallest natural number

d such that there are an open neighborhood Ω at x̂ and a d-dimensional vector subspace V of Rn such that the orthogonal
projection of F ∩ Ω on V is injective.

Guareschi shows that the projection character of a d-dimensional topological manifold F verifying the Severi simplicity
condition Definition 1.5, is equal to d at its every point. And then he proves the following theorem.

Theorem 1.8. (See Guareschi [8, (1940), p. 418].) If F is a d-dimensional topological manifold and the Guareschi projection character
is equal to d at its every point, then the parantangent cone is a vector space at its every point and varies continuously.

2. Old characterizations of C 1-manifolds

2.1. When is a graph a C1-manifold?

We denote by G(Rd+n,d) the (Grasmannian) set of all the d-dimensional subspaces of R
d+n . A set-valued function

ϕ : A →P(Rn) is said to be continuous at x̂ ∈ A whenever

Ls
A
x→x̂

ϕ(x) ⊂ ϕ(x̂) ⊂ Li
A
x→x̂

ϕ(x).

It is well-known, ϕ is continuous at x̂ if and only if

Ls
m→∞ϕ(xm) ⊂ ϕ(x̂) ⊂ Li

m→∞ϕ(xm) for every {xm}m ⊂ A converging to x̂.

See Section 3 of [1] for more details.
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Proposition 2.1. Let f : A → R
n be a function on an open subset A of Rd. Then the following three properties are equivalent:

(2.1) f is a C1-function on A;
(2.2) (Valiron [25, (1926), p. 192]) f is differentiable on A and the map(

x, f (x)
) → Tan+(

graph( f ),
(
x, f (x)

))
from graph( f ) into G(Rd+n,d) is continuous as a set-valued function;

(2.3) (Severi [20, (1934), p. 196]) f is strictly differentiable.

The equivalence (2.1) ⇐⇒ (2.3) is proved by Theorem 7.1 of [3], while (2.1) ⇐⇒ (2.2) comes directly out of the following
Lemmata 2.2 and 2.3.

Lemma 2.2. Let Vm for m ∈ N and V be vector subspaces of Rn.

(2.4) If dim(Vm) = dim(V ) eventually in m, then

V ⊂ Li
m→∞ Vm ⇐⇒ Ls

m→∞ Vm ⊂ V .

(2.5) If

Ls
m→∞ Vm ⊂ V ⊂ Li

m→∞ Vm

then dim(Vm) = dim(V ) eventually in m.

Proof. We need to prove (2.5), while the first statement is already present in [1]. Obviously, the set inclusion V ⊂ Lim→∞ Vm

implies that there is m̄ ∈ N such that dim(V ) � dim(Vm) for every m � m̄. On the other hand, the set inclusion
Lsm→∞ Vm ⊂ V implies that dim(V ) � d, if dim(Vm) � d for infinitely many m. In conclusion, there is m̃ such that
dim(V ) = dim(Vm) for every m � m̃. �
Lemma 2.3. Let {Lk}k∈N be a sequence of linear maps Lk : Rd → R

n. The following statements are equivalent:

(2.6) limk→∞ ‖Lk − L‖∞ = 0;
(2.7) Lsk→∞ graph(Lk) ⊂ graph(L) ⊂ Lik→∞ graph(Lk).

Proof. (2.6) �⇒ (2.7): Since dim(graph(Lk)) is d for every k, by the point (2.4) of Lemma 2.2 we can just prove

Ls
k→∞

graph(Lk) ⊂ graph(L).

Let v ∈ R
d and w ∈R

n such that (v, w) ∈ Lsk graph(Lk). Then there exists a sequence {v j} j∈N ⊂ R
d such that

lim
j→∞

(
v j, Lk j (v j)

) = (v, w),

where {Lk j } j∈N is a subsequence of {Lk}k∈N . Then clearly lim j→∞ v j = v and lim j→∞ Lk j (v j) = w . Moreover∥∥Lk j (v j) − L(v)
∥∥�

∥∥Lk j (v j) − L(v j)
∥∥ + ∥∥L(v j) − L(v)

∥∥
� ‖Lk j − L‖∞ · ‖v j‖ + ‖L‖∞ · ‖v j − v‖

i.e. lim j→∞ Lk j (v j) = L(v) and therefore w = L(v).
(2.7) �⇒ (2.6): We firstly prove that {‖Lk‖∞: k ∈ N} is bounded. Suppose it is false by contradiction, then there exists

a subsequence {Lk j } j∈N such that limk→∞ ‖Lk j ‖∞ = ∞ and therefore there are {v j} j ⊂ R
d with ‖v j‖ = 1 for all j ∈ N such

that lim j→∞ ‖Lk j (v j)‖ = ∞. By the compactness of the closed unit ball in R
n , up to passing to a subsequence of {v j} j∈N ,

we can suppose that there exists w ∈R
n with ‖w‖ = 1 such that

lim
j→∞

(
v j

‖Lk j (v j)‖ ,
Lk j (v j)

‖Lk j (v j)‖
)

= (0, w).

Then (0, w) ∈ Lsk graph(Lk), which is in contradiction with (2.7).
In order to prove (2.6) we can simply prove the following statement: every subsequence {Lk j } j∈N has a subsequence

{Lk ji
}i∈N such that limi→∞ ‖Lk ji

− L‖∞ = 0. If {Lk j } j∈N is a subsequence, then it is bounded and therefore it has a subse-

quence {Lk }i∈N converging to some linear map L′ : Rd → R
n . By the previous implication (2.6) ⇒ (2.7), it holds
ji
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graph
(
L′) = Ls

i→∞
graph(Lk ji

) ⊂ Ls
k→∞

graph(Lk) ⊂ graph(L).

Hence graph(L′) = graph(L) and therefore L = L′ . �
Theorem 2.4. Let f : A → R

n be a function on an open subset A of Rd. Then the following two properties are equivalent:

(2.8) graph( f ) ⊂ R
d+n is a C1-submanifold and Tan+(graph( f ), (t, f (t))) does not contain vertical lines for all t ∈ A.

(2.9) f is a C1-function on A.

Proof. (2.8) ⇒ (2.9) comes by statement (4.5) of Proposition 4.2 of [1], Proposition 2.3 of [1] and Proposition 2.1.
(2.9) ⇒ (2.8) comes by Lemma 4.5 of [1] and Proposition 2.1. �

Proposition 2.5. Let f : A → R
n be a function on a subset A of Rd. Then A is an open subset of Rd and f is a C1-function on A if and

only if the following three properties hold:

(2.10) A is locally compact and f is continuous,
(2.11) Tan+(graph( f ), (x, f (x))) is a d-dimensional vector space of Rd ×R

n and does not include vertical lines for every x ∈ A,
(2.12) the map (x, f (x)) → Tan+(graph( f ), (x, f (x))) from graph( f ) into G(Rd+n,d) is continuous.

Proof. Necessity. By Proposition 2.1, it is immediate. Sufficiency. Since the upper tangent cone Tan+(graph( f ), (x, f (x))) is a
d-dimensional vector subspace of Rd ×R

n without vertical lines, it is the graph of a linear function from R
d to R

n; hence,
for every v ∈ R

d there is w ∈ R
n such that (v, w) ∈ Tan+(graph( f ), (x, f (x))). Therefore

Tan+(A, x) = R
d for every x ∈ A.(∗1)

Moreover, Proposition 2.3 of [1] and the continuity of f imply the differentiability of f on A. Now, in virtue of properties
(1.20) and (1.21) of [1], from (∗1) and the local compactness of A it follows that A is open. Thus, by Proposition 2.1,
condition (2.12) entails the C1 smoothness of f on A, as required. �
2.2. Valiron

According to (1.1) we consider the

(2.13) Valiron condition for a set F ⊂ R
n: For every point x ∈ F , the orthogonal projection on the linear upper tangent space

LTan+(F , x) is injective on an open neighborhood of x in F .

The following theorem extends Valiron’s Theorem 1.2.

Theorem 2.6 (Valiron theorem). A non-empty subset F of Rn is a d-dimensional C1-manifold if and only if F is a d-dimensional
topological manifold, Valiron condition (2.13) is satisfied and

(2.14) x → Tan+(F , x) is a continuous set-valued map from F to G(Rn,d), i.e.,

pTan−(F , x) = LTan+(F , x) and dim
(
LTan+(F , x)

) = d for every x ∈ F .3

Proof. Necessity. By Proposition 4.2 of [1] it is obvious. Sufficiency. Assume F locally compact and verifying both Valiron
condition and the property (2.14). Clearly

Tan+(F , x) is d-dimensional vector space, for every x ∈ F .(∗1)

1st case: d = 0. By property (1.22) of [1] and (∗1), every point of F is isolated. Hence F is a C1-manifold of dimension
zero.

2nd case: d = n. F being an n-topological manifold of Rn , the set F is open.
3rd case: 0 < d < n. Fix x̂ ∈ F . Since Tan+(F , x̂) is a d-dimensional vector space, without loss of generality we assume that

Tan+(F , x̂) is generated by the first d vectors of the canonical basis of R
n . Then, by Valiron condition, property (2.14) and

Theorem 3.3 of [1] there exist an open neighborhood Ω of x̂ in R
n , a set A ⊂ R

d and a function ϕ : A →R
n−d such that

graph(ϕ) = F ∩ Ω,(∗2)

3 The d-dimensionality condition cannot be dropped in (2.14), as it is shown by the following example. Consider the set F := {(x, y, z) ∈ R
3: (x2 +

y2 + z2)2 = 4(x2 + y2)}. F is a torus generated by turning the circle S := {(0, y, z): (y − 1)2 + z2 = 1} about the z-axis. Since the circle S is tangent
to z-axis at (0,0,0), the set F is a 2-dimensional C1-manifold at every point different from (0,0,0); while pTan−(F , (0,0,0)) = Tan+(F , (0,0,0)) =
LTan+(F , (0,0,0)) =Re3 and, consequently, dim(LTan+(F , (0,0,0))) = 1.
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and

ang
(
Tan+(F , x),Tan+(F , x̂)

)
<

π

2
for every x ∈ F ∩ Ω.(∗3)

The projection map (x,ϕ(x)) → x from F ∩ Ω into R
d is both continuous and injective; hence, F ∩ Ω and R

d both being
d-dimensional topological manifolds, by Brouwer domain invariance theorem we have that

A is open and ϕ is continuous.(∗4)

On the other hand, since Ω is open, by (∗2) and (4.6) of [1] we have that

Tan+(
graph(ϕ),

(
t,ϕ(t)

)) = Tan+(
F ,

(
t,ϕ(t)

))
for every t ∈ A.(∗5)

Hence, by (∗1) and (∗3), the cones Tan+(graph(ϕ), (t,ϕ(t))) are d-dimensional vector spaces of R
d × R

n−d which, for ev-
ery t ∈ A, do not include vertical lines. Moreover, by (2.14) the map (t,ϕ(t)) → Tan+(graph(ϕ), (t,ϕ(t))) is continuous on
graph(ϕ). Therefore, from Proposition 2.5 it follows that ϕ is C1-function on the open set A. Thus F is a d-dimensional
C1-manifold at x̂. Finally, x̂ being an arbitrary point of F , we have that F is d-dimensional C1-manifold of R

n , as re-
quired. �
Corollary 2.7. A non-empty subset F of Rn is a d-dimensional C1-manifold if and only if F is a d-dimensional topological manifold,
Valiron condition (2.13) is satisfied and, moreover, for every x ∈ F , dim(LTan+(F , x)) � d and

(2.15) the set-valued map x → Tan+(F , x) from F to G(Rn,d) is either lower or upper semicontinuous.

Lemma 2.8. Let ϕ : A →R
k be a continuous function from an open subset A of Rd such that, LTan+(graph(ϕ), (t̂,ϕ(t̂))) ⊂ R

d ×{0k}
for a point t̂ ∈ A. Then

Tan+(
graph(ϕ),

(
t̂,ϕ(t̂)

)) = LTan+(
graph(ϕ),

(
t̂,ϕ(t̂)

)) = R
d × {0k}.4(2.16)

The simple proof of this lemma is left to the reader.

Proof of Corollary 2.7. Sufficiency. By Valiron condition (2.13), at every point x̂ ∈ F we have an open neighborhood Ω ⊂ R
n

of x̂ such that the orthogonal projection π onto LTan+(F , x̂) is continuous and injective on F ∩ Ω . Observe that F ∩ Ω is a
d-dimensional topological manifold and, on the other hand, LTan+(F , x̂) is a topological manifold of dimension less than or
equal to d; then by Brouwer domain invariance theorem we have that

dim
(
LTan+(F , x̂)

) = d,(∗1)

and the restriction π|F∩Ω is a homeomorphism from F ∩ Ω onto the open subset π(F ∩ Ω) of LTan+(F , x̂). Therefore, from
Lemma 2.8 it follows that

Tan+(F ∩ Ω, x̂) = LTan+(F ∩ Ω, x̂).(∗2)

Hence, Ω being an open neighborhood of x̂, by (4.6) of [1] we have that

Tan+(F , x̂) = LTan+(F , x̂)(∗3)

for every x̂ ∈ F . Thus, Tan+(F , x̂) is a d-dimensional vector space; therefore, (2.15) and Theorem 3.3 of [1] imply (2.14).
Hence, by Valiron Theorem 2.6 F is a d-dimensional C1-manifold. �
2.3. Severi

The following theorem extends Severi’s theorem 1.6, by involving a simplicity condition for d-dimensional topological
manifolds. Severi simplicity condition 1.5 can be restated as

dim
(
pLTan+(F , x)

)
� d for every x ∈ F .(2.17)

Lemma 2.9. Let ϕ : A → R
k be a continuous function from an open subset A of Rd such that, pLTan+(graph(ϕ), (t̂,ϕ(t̂))) ⊂ R

d ×{0k}
for a point t̂ ∈ A. Then

Tan+(
graph(ϕ),

(
t̂,ϕ(t̂)

)) = pLTan+(
graph(ϕ),

(
t̂,ϕ(t̂)

)) =R
d × {0k}.5(2.18)

4 The zero element of Rk is denoted by 0k .
5 The zero element of Rk is denoted by 0k .
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The simple proof of this lemma is left for the reader.

Lemma 2.10. Let F ⊂R
n be a d-dimensional topological manifold verifying Severi simplicity condition (2.17). Then

(2.19) Valiron condition (2.13) holds, and
(2.20) Tan+(F , x) = pLTan+(F , x) and dim(pLTan+(F , x)) = d, for every x ∈ F .

Proof. Fix a point x ∈ F . 1st case: d = 0. Since {0} ⊂ Tan+(F , x) ⊂ pLTan+(F , x), condition (2.17) implies (2.20). On the other
hand, F being 0-dimensional topological manifold, the point x is isolated in F ; therefore Valiron condition holds. 2nd case:
d > 0. By Severi simplicity condition, dim(pLTan+(F , x)) � d; hence, without loss of generality we assume that pLTan+(F , x)
is a subspace of the vector space generated by the first d vectors of the canonical basis of Rn , i.e.

pLTan+(F , x) ⊂ R
d × {0n−d}.(∗1)

Then, by property (1.23) of [1] there exist an open neighborhood Ω of x, a set A ⊂ R
d and a function ϕ : A → R

n−d such
that

graph(ϕ) = F ∩ Ω.(∗2)

The projection map (t,ϕ(t)) → t from F ∩ Ω into R
d is both continuous and injective; hence, F ∩ Ω and R

d both being
d-dimensional topological manifolds, by Brouwer domain invariance theorem we have that

A is an open subset of Rd.(∗3)

Let t̂ denote the element of A such that x = (t̂,ϕ(t̂)); then by (∗1)

pLTan+(
graph(ϕ),

(
t̂,ϕ(t̂)

)) ⊂ R
d × {0k}.(∗4)

Therefore, equalities (2.18) of Lemma 2.9 imply:

Tan+(F ∩ Ω, x) = pLTan+(F ∩ Ω, x) and dim
(
pLTan+(F ∩ Ω, x)

) = d.(∗5)

Ω being an open neighborhood of x, by (4.6) of [1] we have (2.20), as required. Finally, by (2.20) pLTan+(F , x) = LTan+(F , x);
hence by property (1.23) of [1] the orthogonal projection onto LTan+(F , x) is injective on a neighborhood of x in F ; therefore,
Valiron condition (2.13) holds. �
Theorem 2.11 (Severi theorem). A non-empty subset F of Rn is a d-dimensional C1-manifold if and only if F is a d-dimensional
topological manifold and Severi simplicity condition holds (2.17).

Proof. Necessity. By Proposition 4.2 of [1], it is obvious. From Valiron Theorem 2.6 sufficiency follows. In fact, F is a
d-dimensional topological manifold; by (2.18) F verifies Valiron condition; by (2.20), for every x ∈ F , Tan+(F , x) is a
d-dimensional vector space. Moreover, by (2.20) we have Tan+(F , x) = pTan+(F , x); therefore the property (1.18) of [1]
implies the upper semicontinuity of the map x → Tan+(F , x) from F to G(Rn,d), i.e., for every x ∈ F

Ls
F
y→x

Tan(F , y) ⊂ Tan(F , x).(∗1)

On the other hand, by Lemma 2.2 the upper semicontinuity (∗1) amounts to the lower semicontinuity

Tan(F , x) ⊂ Li
F
y→x

Tan(F , y)(∗2)

for every x ∈ F . Hence the map x → Tan+(F , x) is continuous, as required by Valiron theorem. �
By Proposition 2.6 of [1] Severi simplicity condition amounts to the following property:

(2.21) at every x ∈ F there exists a d-dimensional vector space which is paratangent in traditional sense to F ,

equivalently, for every x̂ ∈ der(F ) there exists a d-dimensional vector space V such that

lim
F
x,y→x̂

x�=y

dist(y, x + V )

‖x − y‖ = 0.(2.22)

Recalling the notations of Section 3 of [1] and in particular equation (3.5) of [1], we have that dist(x, V ) = ‖(∧d
i=1 vi)∧x‖

‖ ∧d
i=1 vi‖

,

where {vi}d is a base of V . Hence
i=1
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Corollary 2.12. A non-empty subset F of Rn is a d-dimensional C1-manifold if and only if F is a d-dimensional topological manifold
and, for every x̂ ∈ der(F ) there exists a non-null simple d-vector

∧d
i=1 vi (where {vi}d

i=1 ⊂R
n) such that

lim
F
x,y→x̂

x�=y

‖(∧d
i=1 vi) ∧ (x − y)‖

‖x − y‖ = 0.(2.23)

On the other hand, dist(x, V ) = ‖∑n−d
i=1 〈x, wi〉wi‖, where {wi}n−d

i=1 is an orthonormal base of V ⊥; hence

Corollary 2.13. A non-empty subset F of Rn is a d-dimensional C1-manifold if and only if F is a d-dimensional topological manifold
and, for every x̂ ∈ der(F ) there exists an orthonormal family {wi}n−d

i=1 of vectors of Rn such that

lim
F
x,y→x̂

x�=y

∑n−d
i=1 〈x − y, wi〉2

‖x − y‖2
= 0.(2.24)

In particular, for C1-manifolds of codimension 1, we have

Corollary 2.14. A non-empty subset F of Rn is an (n − 1)-dimensional C1-manifold if and only if F is an (n − 1)-dimensional
topological manifold and, for every x̂ ∈ der(F ) there exists a non-null vector w ∈ R

n such that

lim
F
x,y→x̂

x�=y

〈x − y, w〉
‖x − y‖ = 0.(2.25)

3. Modern characterizations of C 1-manifolds

3.1. Tierno

Both old and modern characterizations of C1-manifolds can be deduced from the Four-cones coincidence theorem 0.1;
as example, we state and prove the following theorem, due to Tierno (see [23, (1997)], [24, (2000)]).

Theorem 3.1 (Tierno’s two-cones coincidence theorem). A non-empty set F of Rn is a d-dimensional C1-manifold if and only if F is
locally compact and the upper tangent and upper paratangent cones to F coincide and are d-dimensional vector spaces6 at every point,
i.e.,

Tan+(F , x) = pLTan+(F , x) and dim
(
LTan+(F , x)

) = d for every x ∈ F .(3.1)

This theorem provides an efficacious test for visual geometrical recognition of C1-manifolds. In fact, it follows that F is
a d-dimensional C1-manifold if and only if

(3.2) at every point of F , the upper tangent vectors to F form a d-dimensional vector space which is paratangent in tradi-
tional sense to F .

In symbols, by Proposition 2.6 of [1] this condition becomes

Tan+(F , x) = LTan+(F , x), dim
(
LTan+(F , x)

) = d and pTan+(F , x) ⊂ LTan+(F , x) for every x ∈ F .(3.3)

Proof. Necessity. By Proposition 4.2 of [1], it is obvious. Sufficiency. By Theorem 0.1 it is enough to show that pTan−(F , x) =
pTan+(F , x) for every x ∈ F . The first equality in (3.1) means:

Tan+(F , x) = LTan+(F , x) = pTan+(F , x) = pLTan+(F , x)(∗1)

for every x ∈ F . Hence, by the properties (1.18) and (1.20) of [1] we have

pLTan+(F , x) ⊃ Ls
F
y→x

pLTan+(F , y)(∗2)

6 The d-dimensionality condition cannot be dropped in (3.1). In fact, define F := {x ∈ R
n: either ‖x‖ = 0 or 1

‖x‖ ∈ N}. Then Tan+(F ,0) = pLTan+(F ,0) =
R

n; moreover, for every x ∈ F with ‖x‖ �= 0, one has Tan+(F , x) = pLTan+(F , x) = {v ∈ R
n: 〈v, x〉 = 0} and dim(pLTan+(F , x)) = n − 1. Notice that F is a

C1-manifold only at every x �= 0.
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and

pTan−(F , x) = Li
F
y→x

pLTan+(F , y),(∗3)

for every x ∈ F . By (3.1) the vector spaces pLTan+(F , x) and pLTan+(F , y) have the same dimension; hence, from (∗2) and
Lemma 2.2 it follows that

pLTan+(F , x) = Li
F
y→x

pLTan+(F , y).(∗4)

Therefore, by (∗3) and (∗4) we obtain that pTan−(F , x) = pTan+(F , x) for every x ∈ F , as required. �
Let us remark, we can use Lemma 2.2 to prove the global version of the Four-cones coincidence theorem 0.1 beginning

by Tierno’s Theorem 3.1.

3.2. Gluck

In his article [7, (1968), p. 33] Gluck gives two characterizations of C1-manifolds.
The first one was actually instrumental of the main theorem and we won’t need it, but we however state and prove it

in Proposition 3.2 in order to show that it is a consequence of Theorem 2.6 (Valiron theorem). The second characterization
will follow in Theorem 3.6.

Proposition 3.2. (See Gluck [6, (1966), pp. 199, 202] and [7, (1968), p. 45].) A non-empty set F ⊂ R
n is a d-dimensional C1-manifold

if and only F is a d-dimensional topological manifold and there exists a continuous map LTan : F → G(Rn,d) such that, for every
x ∈ F ,

(3.4) LTan(x) is tangent in traditional sense to F at x,
(3.5) the orthogonal projection of F on LTan(x) is injective on an open neighborhood of x in F .

Proof. Necessity. By Proposition 4.2 of [1] it is obvious. Sufficiency. Let x̂ ∈ F . By (3.4) and Proposition 2.2 of [1],

Tan+(F , x̂) ⊂ LTan(x̂).(∗1)

On the other hand, F and LTan(F , x̂) both being d-dimensional topological manifolds, by Brouwer domain invariance the-
orem and (3.5), the orthogonal projection of F into x̂ + LTan(x̂) map Ω onto an open neighborhood of x̂ in x̂ + LTan(x̂);
hence,

Tan+(F , x̂) = LTan(x̂).(∗2)

Hence, x̂ being an arbitrary point of F , the maps x → Tan+(F , x) and x → LTan(F , x) are equal. Therefore, applying Theo-
rem 2.6, we have that F is a C1-manifold, as required. �

The second characterization of C1-manifold, which is the main theorem of Gluck’s paper, is very elaborated and stimu-
lating and is based on “secant map” and “shape function”. Because the case d = 1 is easier, we state it in a separated form,
as it appears in [6, (1966), p. 200].

Theorem 3.3 (Gluck’s secant map theorem, for d = 1). Let F be a one-dimensional topological manifold of Rn. Then F is a C1-manifold
if and only if the function Σ (called secant map) from (F × F ) \ {(x, x): x ∈ F } to G(Rn,1) which assigns to each pair x, y of distinct
points of F the unidimensional vector space generated by x − y, admits a continuous extension over all F × F .

Proof. Necessity. Assume F is a C1-manifold of Rn . In order to have the required extension, it is enough to assign Tan+(F , x)
to every pair (x, x). Sufficiency. Let pLTan(F , x) denote the value of the extension of Σ at (x, x). Clearly pLTan(F , x) is a one-
dimensional vector space which is paratangent in traditional sense at x. Therefore, by Theorem 2.11 F is a one-dimensional
C1-manifold. �

Before stating and proving Theorem 3.6 we need to introduce the shape and the secant maps.
Define the secant map

Σ : Rn × · · · ×R
n︸ ︷︷ ︸

d+1 times

−→
d⋃

k=1

G
(
R

n,k
)

as

Σ(x0, . . . , xd) := span(x1 − x0, . . . , xd − x0).
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The map Σ is not continuous, mostly because of two phenomena: the simplex7 �(x0, . . . , xd) can continuous fall in dimen-
sion and, even when (x0, . . . , xd) and (y0, . . . , yd) are near in (Rn)d+1, the vector spaces they generate can be orthogonal to
each other.

In order to avoid this obstacle, Gluck introduces the shape function

σ : Rn × · · · ×R
n︸ ︷︷ ︸

d+1 times

−→ [0,1]

which is related to the distribution of the edges of the simplex �(x0, . . . , xd) in the projective space P(V ), where V is
the linear hull of x1 − x0, . . . , xd − x0. For instance, σ(x0, . . . , xd) = 0 if and only if (x0, . . . , xd) generate a vector space of
dimension strictly less than d; on the other side, if they generate an “equilateral” simplex, then σ(x0, . . . , xd) = 1.

Let’s also define for any F ⊂ R
n and σ0 ∈R

(F )d+1
σ0

:= {
(x0, . . . , xd) ∈ F d+1: σ(x0, . . . , xd) > σ0

}
.

The following two lemmata are needed in Theorem 3.6 and we refer to the article of Gluck for their proofs.

Lemma 3.4. (See Gluck [7, (1968), Theorem 4.4, p. 38].) Let Q ⊂ R
n be a d-plane and let σ0 > 0. For every ε > 0 there exists δ > 0

such that if (x0, . . . , xd) ∈ (Rn)d+1
σ0

with ang(xi − x j, Q ) < δ then ang(Σ(x0, . . . , xd), Q ) < ε .

Lemma 3.5. (See Gluck [7, (1968), Theorem 8.2, p. 44].) Let F be a topological submanifold in R
n of dimension d. Let U be a connected

open subset of F and x0, x1 ∈ U be such that ‖x1 − x0‖ < diam U . Then there exist x2, . . . , xd ∈ U such that

σ(x0, x1, x2, . . . , xd) >
1√
d
.

The first consequence of this statement is that, for every 0 � σ0 < 1√
d

, the diagonal D := {(x, . . . , x): x ∈ F } lies in the

closure of (F )d+1
σ0

.

Theorem 3.6. (See Gluck [7, (1968), p. 34].) Let F be a d-dimensional topological manifold in R
n, and let 0 < σ0 < 1√

d
be a real

number. Then F is a C1-manifold in R
n if and only if the secant map

Σ : (F )d+1
σ0

−→ G
(
R

n,d
)

admits a continuous extension on (F )d+1
σ0

∪ D.

Proof. Necessity. Suppose F ⊂R
n is a C1-manifold and let’s define Σ(p, p, . . . , p) := pLTan+(F , p) for every p ∈ F . We have

to prove the continuity at the points on the diagonal D . Fix p ∈ F and let {(x(m)
0 , . . . , x(m)

d )}m∈N ⊂ (F )d+1
σ0

be a sequence
converging to (p, . . . , p).

Let ε > 0. Then let δ > 0 be as in Lemma 3.4. Because pLTan+(F , p) is paratangent in traditional sense to F , there exists
N ∈ N such that

ang
(
x(m)

i − x(m)
0 ,pLTan+(F , p)

)
< δ for i ∈ {1, . . . ,d} and m > N.

Thanks to Lemma 3.4 we obtain ang(Σ(x(m)
0 , . . . , x(m)

d ),pLTan+(F , p)) < ε for all m > N .
Sufficiency. In order to apply the Severi Theorem 2.11, we shall prove pTan+(F , p) ⊂ Σ(p, . . . , p) for all p ∈ F . Let v ∈

pTan+(F , p). Then there are {λm}m ⊂ (0,+∞) and {xm, ym}m ⊂ F such that xm, ym → p, λm → 0+ and xm−ym
λm

→ v .
Fix ε > 0. By the continuity of the secant map, there is a neighborhood U ⊂ M of p such that ang(Σ(z0, . . . , zd),Σ(p, . . . ,

p)) < ε for every (z0, . . . , zd) ∈ (U )d+1
σ0

. Let N ∈ N such that xm, ym ∈ U and ‖xm − ym‖ < diam(U ) for all m > N . Thanks to

Lemma 3.5, for every m > N there are zm
2 , . . . , zm

d ∈ U such that (xm, ym, zm
2 , . . . , zm

d ) ∈ (U )d+1
σ0

. Therefore for all m > N

ang
(
xm − ym,Σ(p, . . . , p)

)
� ang

(
Σ

(
xm, ym, zm

2 , . . . , zm
d

)
,Σ(p, . . . , p)

)
< ε.

It follows v ∈ Σ(p, . . . , p). �
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Appendix A. Strict diffeomorphisms: An analytic characterization

Let A be a non-empty subset of Rn . A function f : A →R
d is said to be strictly differentiable on A, if A ⊂ der(A) and f is

strictly differentiable at every point x ∈ A. Moreover, f is said to be a strict diffeomorphism on A, if f is injective and both
f and f −1 are strictly differentiable.8

Theorem A.1. Let A be a non-empty subset of Rn. A function f : A → R
d is a strict diffeomorphism on A if and only if the following

two properties hold:

(A.1) f is strictly differentiable homeomorphism on A,
(A.2) for every x ∈ A, a strict differential of f at x is injective on pTan+(A, x).

Proof. Necessity: Let L be a strict diffeomorphism of f at x ∈ A, we have only to prove that L is injective on pTan+(A, x)
for every x ∈ A. By Lemma 4.4 of [1] we have

pTan+(
graph( f ),

(
x, f (x)

)) = {(
v, L(v)

)
: v ∈ pTan+(A, x)

}
,

pTan+((
graph

(
f −1))−1

,
(
x, f (x)

)) = {(
L−1( f (x)

)
(w), w

)
: w ∈ pTan+(

f (A), x
)}

where it is clear that f (x) ∈ der( f (A)). Notice that graph( f ) = (graph( f −1))−1. It follows that

pTan+(
graph( f ),

(
x, f (x)

)) = pTan+((
graph

(
f −1))−1

,
(
x, f (x)

))
and therefore

L|pTan+(A,x) = (
L−1( f (x)

)
|pTan+( f (A), f (x))

)−1
.

It follows that L is injective on pTan+(A, x).
Sufficiency: By (A.2) L is injective on pTan+(A, x), there exists a linear map M :Rd →R

n such that

M|L(pTan+(A,x)) = (L|pTan+(A,x))
−1.

It follows

pTan+((
graph

(
f −1))−1

,
(
x, f (x)

)) = pTan+(
graph( f ),

(
x, f (x)

))
⊂ graph(L|pTan+(A,x)) ⊂ graph(L) ∩ (

graph(M)
)−1

.

In conclusion we can apply (2.14) of Proposition 2.8 of [1] and obtain the thesis. �
Appendix B. A restatement of the local version of Four-cones coincidence theorem

In [1] is stated and proved the following

Theorem B.1 (Four-cones coincidence theorem: local version). Let F ⊂ R
n and let x̂ ∈ F . Then F is a C1-manifold at x̂ if and only if the

following three properties hold:

(B.1) F is locally compact at x̂,
(B.2) pTan−(F , x̂) = pTan+(F , x̂),
(B.3) there exists an open ball Bδ(x̂) centered at x̂ such that pTan+(F , x) is a vector space i.e. pTan+(F , x) = pLTan+(F , x) for every

x ∈ F ∩ Bδ(x̂).

We give here an improved formulation:

Theorem B.2 (Four-cones coincidence theorem: a reformulation of the local version). Let F ⊂ R
n and let x̂ ∈ F . Then F is a C1-manifold

at x̂ if and only if the following three properties hold:

(B.4) F is locally compact at x̂,
(B.5) pTan+(F , x̂) ⊂ LiF
x→x̂ Tan+(F , x),
(B.6) LsF
x→x̂ pLTan+(F , x) ⊂ pLTan+(F , x̂).

8 The domain of f −1 is the image f (A).
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By comparison between Theorem B.1 and Theorem B.2, observe that (B.2) and (B.5) are equivalent by Eq. (1.20) of [1];
and, in virtue of (1.18) of [1], the condition (B.6) holds, whenever (B.3) is true.

The proof of Theorem B.2 is the same as that of Theorem B.1 proved in [1], where we replace condition (B.3) with (B.6)
and the inductive process is obtained by the following lemma:

Lemma B.3. Let A ⊂ R
d with A ⊂ der(A) and let ϕ : A → R be strictly differentiable on A and let t̂ ∈ A. If the properties (B.4), (B.5),

(B.6) of Theorem B.2 hold for F := graph(ϕ) and x̂ := (t̂,ϕ(t̂)), then they hold for A at t̂, that is:

(B.7) A is locally compact at t̂,
(B.8) pTan+(A, t̂) ⊂ LiA
t→t̂ Tan+(A, t),
(B.9) LsA
t→t̂ pLTan+(A, t) ⊂ pLTan+(A, t̂).

Proof. By Lemma 4.3 of [1] A is locally compact at t̂ , i.e. (B.7) holds. As we have already observed, (B.2) holds for F at x̂.
Thanks to the Lemma 4.4 of [1], (B.2) holds also for A at t̂ . Hence (B.8) follows by the property (1.20) of [1] for A at t̂ .

It remains only to prove (B.9). Firstly notice that

Ls
F
x→x̂

pLTan+(F , x)
(B.6)⊂ pLTan+(F , x̂) = pTan+(F , x̂)

(B.5)⊂ Li
F
x→x̂

Tan+(F , x) ⊂ Li
F
x→x̂

pLTan+(F , x)(∗2)

where the equality holds because pTan+(F , x̂) is a vector space for (B.5) and the last inclusion follows from Tan+(F , x) ⊂
pLTan+(F , x) for every x ∈ F . Hence, (∗2) and Lemma 2.2(2.5) imply that there exists δ > 0 such that it holds

dim
(
pLTan+(F , x)

) = dim
(
pLTan+(F , x̂)

)
for every x ∈ F ∩ Bδ(x̂).(∗3)

Since ϕ is strictly differentiable on A, pLTan+(F , x) is contained in the graph of any strict differential of ϕ at x and therefore

pLTan+(F , x) does not contain vertical lines(∗4)

for all x ∈ F . Let π : Rd+1 →R
d the projection along the last coordinate. By (∗4) it holds

dimπ
(
pLTan+(F , x)

) = dim
(
pLTan+(F , x)

)
(∗5)

for all x ∈ F . Thanks to (∗2) and the continuity of π , it holds:

π
(
pLTan+(F , x̂)

) ⊂ Li
F
x→x̂

π
(
pLTan+(F , x)

)
.(∗6)

From (∗3), (∗5) and the point (2.4) of Lemma 2.2 we obtain

Ls
F
x→x̂

π
(
pLTan+(F , x)

) ⊂ π
(
pLTan+(F , x̂)

)
.(∗7)

Noticing that for all t ∈ A

pLTan+(A, t) = π
(
pLTan+(

F ,
(
t,ϕ(t)

)))
we finally obtain:

Ls
A
t→t̂

pLTan+(A, t) ⊂ π
(
pLTan+(F , x̂)

) = pLTan+(A, t̂). �
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