
Journal of Food Engineering 158 (2015) 48–57
Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier .com/locate / j foodeng
Foam mat drying of yacon juice: Experimental analysis and computer
simulation
http://dx.doi.org/10.1016/j.jfoodeng.2015.02.030
0260-8774/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +39 0521570027.
E-mail address: camila_ea@yahoo.com.br (C.A. Perussello).
Talita Szlapak Franco a, Camila Augusto Perussello b,⇑, Luciana de Souza Neves Ellendersen a,
Maria Lucia Masson a

a Department of Chemical Engineering, Graduate Program in Food Engineering, Universidade Federal do Paraná, Av. Francisco Hoffmann dos Santos s.n., CEP 81530-900 Curitiba,
PR, Brazil
b Department of Industrial Engineering, Università degli Studi di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, PR, Italy

a r t i c l e i n f o
Article history:
Received 19 December 2014
Received in revised form 19 February 2015
Accepted 21 February 2015
Available online 10 March 2015

Keywords:
Yacon
Foam mat drying
Mass transfer
Heat transfer
Modeling
Simulation
a b s t r a c t

The foam mat drying of yacon juice (YJ) and concentrate yacon juice (CYJ) was conducted under various
conditions of thickness of product (0.5, 1.0 and 1.5 cm) and air temperature (50, 60 and 70 �C). After dry-
ing the resulted dry powder was removed from the metallic tray and pulverized. Layer thickness and air
temperature influenced statistically (p > 0.5) drying time, moisture content and water activity (Aw) of the
product. The shortest drying time to reach the desired Aw (0.1–0.3) corresponds to the condition of
0.5 cm and 70 �C for both juices – 59 and 65 min for the YJ and CYJ, respectively. The process was mod-
eled in terms of heat and mass transfer and then simulated by a finite element method software. The
model was able to predict the process satisfactorily and the foam drying technique allowed to obtain
yacon powder of good quality, which can be inserted in various food formulations.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The tuberous roots of yacon (Smallanthus sonchifolius) are native
to the Andean mountains, where they are commonly cultivated
and consumed since the pre-Inca culture period (Seminario et al.,
2003; Graefe et al., 2004). The global expansion of their production
and marketing initiated after studies related their consumption to
the promotion of human health benefits, such as the antioxidant
activity associated to the phenolic compounds (Yan et al., 1999;
Takaneka et al., 2003) and the reduction of blood glucose levels
ascribed to the carbohydrate profile (Mentreddy, 2007; Valentová
et al., 2008).

For its sensory resemblance to a sweet and refreshing fruit, the
root is traditionally consumed in its raw form (Maldonado et al.,
2008). The sweet taste is related to its composition rich in car-
bohydrates. Unlike other tubers, however, yacon stores fruc-
tooligosaccharides (FOS) and inulin instead of starch. These
sugars provide prebiotic properties to the yacon roots, forasmuch
these components are poorly broken by the digestive enzymes:
reaching the intestinal flora intact, they stimulate the development
and activity of microorganisms that are beneficial to human health
(Lachman et al., 2003; Ojansivu et al., 2011; Campos et al., 2012).
The yacon roots are passive of accelerated rates of enzymatic
browning due to the high content of water (up to 70% of the fresh
weight) and the soft and delicate internal tissues. Such combina-
tion leads to high losses during post-harvesting and transportation,
restricting the sustainable development of the culture and generat-
ing economic losses (Manrique and Parraga, 2005; Shi et al., 2013).
Inasmuch as yacon is a seasonal crop, it is extremely important to
establish processing alternatives that increase the stability and
availability of this food (Scher et al., 2009).

The moisture removal with consequent reduction of water
activity is one of the most viable alternatives to extend the shelf
life of this culture. The application of different drying techniques,
such as encapsulation (Lago et al., 2012), convective drying
(Vasconcelos et al., 2010), dehydration in vacuum oven (Reis
et al., 2012), solar drying (Castro et al., 2012), osmo-convective
drying (Kotovicz et al., 2014; Perussello et al., 2014) and freeze
drying (Bernstein and Noreña, 2014) are reported in literature.
Among the various researches about dehydration of yacon pub-
lished so far, none of them regard to the foam mat drying.

In the foam mat drying, a liquid is converted into a stable foam
by incorporation of air (usually by whipping) after addition of a
foaming agent. The foam is dried by application of heat and the
resulting dried powder is further processed (Raharitsifa et al.,
2006; Rajkumar et al., 2007). Because of the porous structure of
the foam and the large surface area exposed to the drying air, the
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Table 1
Experimental tests resulted from the factorial design.

Test Yacon juicea x1 (cm) x2 (�C)

1 YJ 0.5 50
2 YJ 1.5 50
3 YJ 1.0 60
4 YJ 0.5 70
5 YJ 1.5 70
6 CYJ 0.5 50
7 CYJ 1.5 50
8 CYJ 1.0 60
9 CYJ 0.5 70

10 CYJ 1.5 70

a YJ = non-concentrate yacon juice (8�Brix), CYJ = concentrate yacon juice
(24�Brix).

Fig. 1. Computational domain (note: thickness may assume three different values
depending on the experimental test).
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mass transfer rates are increased when compared to the solid food,
leading to a shorter period of dehydration and therefore a final pro-
duct with higher quality. The nutrients are preserved and the
browning rates are lower for the application of high temperatures
is not mandatory (Ratti and Kudra, 2006; Muthukumaran et al.,
2008). This method can be used on heat sensitive, viscous and high
sugar content foods, giving rise to a powder that is easily rehy-
drated and presents characteristics such as color, flavor, texture
and nutritional composition (i.e., antioxidants) similar to the raw
material (Fernandes et al., 2013). For these skills, the foam mat dry-
ing was applied in various types of foods such as fruit juices (Kadam
and Balasubramanian, 2011; Kadam et al., 2012; Chaves et al.,
2013), yogurt (Krasaekoopt and Bhatia, 2012), spirulina
(Prasetyaningrum and Djaeni, 2012) and beans (Falade et al., 2003).

For an efficient mat drying process, the foams should remain
mechanically and thermodynamically stable in order to maintain
the efficiency of the water removal and the quality of the product.
The use of agents that promote stability is thus required (Bag et al.,
2011). Ovalbumin is generally applied as foaming agent in view of
the ability of its proteins to form a dense film around the air bub-
bles, reducing the surface tension instability and retaining the
entrapped air (Karim and Wai, 1999; Lomakina and Mikova, 2006).

The use of appropriate drying conditions is of fundamental
importance to the quality of the final product and the energy
demand required. In the context of the foam mat drying, parame-
ters such as air temperature, velocity and relative humidity, and
thickness and composition of the foam determine the quality of
the powder obtained toward color, moisture content and preserva-
tion of nutrients.

With the purpose of evaluate the application of this technology
to yacon roots, drying tests were conducted at different process
conditions. The addition of ovalbumin to the yacon juice in order
to form a foam that was convective dried resulted in a powder with
a high nutritional value in terms of quality and high content of pro-
teins and FOS. As such, this product can be incorporated in the for-
mulation of various foods as a way to facilitate the consumption of
yacon and the use of its features. The powder offers a multitude of
uses: it can be consumed as a juice after rehydration in water and
may also be added to dairy and bakery products to increase their
biological value and/or impart texture properties. The statistical
analysis of the data showed that the parameters air temperature
and thickness of the foam were decisive in the drying rate and,
therefore, in the energy demand of the process. As an additional
tool to estimate optimal drying conditions, the heat and mass
transfer phenomena were modeled to predict the process without
the need of driving multiple experimental tests. The computational
simulations provided satisfactory results.

2. Material and methods

2.1. Yacon juice

The yacon juice was obtained from roots purchased in the
municipal market of Curitiba (Paraná, Brazil). After washed and
peeled, they were processed in a food centrifuge. Immediately after
processing, sodium metabisulfite was added to the juice (300 mg/L
juice) (Maia et al., 2001) to limit the enzymatic activity. The total
soluble solids (TSS) were measured using a refractometer (RL3,
PZO, Brochowska, Poland). The samples were packed and stored
in a freezer (�18 �C) until preparation of the foams.

To evaluate the effect of TSS in the foam characteristics, part of
the juice was concentrated by freeze concentration, using the
methodology proposed by Wiecheteck et al. (2005). Afterwards,
it was stored under the same conditions presented to the non-con-
centrate juice. The TSS was set as 8�Brix and 24�Brix to the yacon
juice (YJ) and concentrate yacon juice (CYJ), respectively.
2.2. Preparation of the foam and drying process

The foams of YJ and CYJ were formed by the addition of ovalbu-
min powder (20%) (Cami, Mizumoto Alimentos Ltda, Guapirama,
Paraná, Brazil) to the liquid phase. After complete mixing, the solu-
tion was whipped in a domestic mixer (360 W power) at maximum
speed for 20 min to allow the mechanical incorporation of air. The
conditions for producing the foams were determined through pre-
liminary tests conducted by the authors.

After whipping, the foams were placed in galvanized steel beds
(length 20 cm, width 15 cm and thickness varying from 0.5 to
1.5 cm) and then dried in a convective oven (Fabbe-Primar, São
Paulo, Brazil) under controlled air temperature (50, 60 and 70 �C)
and speed (4 m/s), which were determined with an anemometer
(Testo 405, Testo AG, Lenzkirch, Germany). The moisture loss
was assessed by weighing the samples every 15 min on an elec-
tronic scale. The criterion for the completion of the process was
the stability of the sample’s masses in three successive measure-
ments. The moisture content equivalent to the stabilization of
the sample’s mass was considered as the equilibrium moisture
content, which approached 1% w.b. for all drying tests. The ideal
moisture for the yacon powder, previously tested by the authors,
is the one that provides a light-colored product with low water
activity (0.1–0.3).

2.3. Moisture ratio

The moisture ratio (MR) of the samples during drying was cal-
culated by

MR ¼ ðM �MeÞ
ðM0 �MeÞ

ð1Þ



Fig. 2. Drying curves for the foams of (a) yacon juice and (b) yacon concentrate
juice at different air temperatures and layer thicknesses.
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where M is the moisture content at time t, Me is the equilibrium
moisture content and M0 is the initial moisture content of the foam,
all of them in dry basis (kg/kg).

After drying, the yacon juice foams were scraped off the trays,
sprayed, vacuum packed and stored for further studies (Kadam
et al., 2010). The water-soluble powder obtained, rich in animal
and vegetable proteins and FOS, can be inserted in the formulation
of many food products, whether to increase its nutritional value or
to assign different textures.
Table 2
Transport coefficients and dimensionless numbers of heat and mass transfer.

Test Process conditionsa Sh1 Nu2

1 YJ – 0.5 cm, 50 �C 18.5 19.4
2 YJ – 1.5 cm, 50 �C 32.0 33.6
3 YJ – 1.0 cm, 60 �C 25.5 26.9
4 YJ – 0.5 cm, 70 �C 17.8 18.6
5 YJ – 1.5 cm, 70 �C 30.8 32.2
6 CYJ – 0.5 cm, 50 �C 18.5 19.4
7 CYJ – 1.5 cm, 50 �C 32.0 33.6
8 CYJ – 1.0 cm, 60 �C 25.5 26.9
9 CYJ – 0.5 cm, 70 �C 17.8 18.6

10 CYJ – 1.5 cm, 70 �C 30.8 32.2

1 Sherwood number.
2 Nusselt number.
3 Convective heat transfer coefficient (evaluated at the foam’s surface, where the moi
4 Convective mass transfer coefficient.
5 Mass diffusion coefficient.
a YJ = non-concentrate yacon juice (8�Brix), CYJ = concentrate yacon juice (24�Brix).
2.4. Statistical analysis

The experiments were planned according to a 22 full factorial
design with repetition at the central point for both foams (YJ and
CYJ), as outlined in Table 1. The effects of two levels of two
independent variables, thickness of the foam layer and drying tem-
perature (x1 and x2, respectively), were assessed, assuming values
of 0.5, 1.0 and 1.5 cm and 50, 60 and 70 �C. The dependent vari-
ables analyzed were the drying time (y1), the moisture content of
the yacon powder (y2) and its water activity (y3). The factorial
design generated 10 experiments, performed in triplicate.

The effect of the independent variables (x1 and x2) on the pro-
cess responses (y1, y2 and y3) were evaluated by the Student’s t test
at a 95% confidence interval (p 6 0.05) using the software Statistica
7.0 (Statsoft Inc. South America, Toulsa, Oklahoma, United States)
(Rodrigues and Iemma, 2005).

2.5. Modeling and simulation of the drying process

The mathematical model proposed to represent the transient
phenomena of heat and mass transfer during drying of the yacon
and ovalbumin foams bases on the diffusional laws of Fourier
and Fick, respectively, according to Eqs. (2) and (3). The 3-D
computational domain (Fig. 1) is represented by the metallic bed
filled with the foam.

qCp
@T
@t
þ qCpurT ¼ rðkrTÞ þ Q ð2Þ

@C
@t
þrð�DrCÞ ¼ R ð3Þ

where q, Cp and k are the product’s density (kg/m3), specific heat (J/
kg K) and thermal conductivity (W/m K), respectively, T is tempera-
ture (K), u is the velocity field (m/s), C is the concentration of water
(mol/m3), Q is the heat generation (W m), D is the mass diffusion
coefficient (m2/s) and R is the mass generation or consumption
(kg/m3).

The following assumptions were considered on the formulation
of the model: (a) speed field, thermal and mass generation and
consumption are null; (b) thermophysical properties are homoge-
neous along the foam but variable according to drying time; (c) ini-
tial moisture content and temperature of the foam and
temperature of the steel bed are homogeneous.

The following mathematical model, written in generalized coor-
dinates, was obtained applying the conditions above to Eqs. (2) and
(3). The coupling between heat and mass transfer was performed
by the use of thermophysical properties of the food material as a
function of its moisture content.
h (W/m K)3 hm (m/s)4 Def (m2/s)5

108.6 0.113 7.78e�9
62.7 0.065 2.43e�8
77.2 0.082 1.70e�8

109.5 0.117 1.04e�8
63.2 0.067 3.07e�8

108.6 0.113 2.48e�8
62.7 0.065 2.0e�8
77.2 0.082 1.44e�8

109.5 0.117 1.42e�8
63.2 0.067 2.54e�8

sture evaporation takes place).



Fig. 3. Comparison of drying curves of the foam produced with yacon juice and
concentrate juice (CONC) at: (a) 50 �C, (b) 60 �C and (c) 70 �C.
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qCp
@T
@t
¼ rðkrTÞ ð4Þ

@C
@t
þrð�DrCÞ ¼ R ð5Þ
The initial and boundary conditions for the heat transfer are:
initial temperature known (Eq. (6)), null heat flux in the symmetry
region (Eq. (7)), convective heating and evaporative cooling at the
surface of the foam (Eqs. (8) and (9), respectively) and convection
at the sides of the metallic bed (Eq. (10)). For mass transfer, the ini-
tial and boundary conditions are: initial moisture content known
(Eq. (11)), null mass flux in the symmetry region (Eq. (12)) and
convective mass flow on the foam’s surface (Eq. (13)).

T ¼ T0 for t ¼ 0 ð6Þ

@T
@t
¼ 0 for l ¼ L=2 ð7Þ

@T
@t
¼ hðT1 � TÞ for s ¼ T ð8Þ

@T
@t
¼ hm �u� ðqwap�1 � qwap�wetÞ for s ¼ T ð9Þ

@T
@t
¼ hðT1 � TÞ for l ¼ 0; l ¼ L;w ¼ 0 and w ¼W ð10Þ

C ¼ C0 for t ¼ 0 ð11Þ

@U
@t
¼ 0 for l ¼ L=2 ð12Þ

@U
@t
¼ hmðC1 � CÞ for s ¼ T ð13Þ

where T0 is the product’s initial temperature (K), L, W and T are the
length, width and thickness of the metallic bed, respectively (m), h
and hm are the coefficients of convective heat transfer (W/m K) and
mass transfer (m/s), respectively, t is the drying time (s) and C0 and
C1 are the concentrations of water in the product at time 0 and in
the air, respectively (mol/m3).

The model was implemented in the software COMSOL
Multiphysics�, version 4.3, which solves differential equations by
the finite element method. For the numerical simulation, a default
mesh composed of 19,069 tetrahedral, triangular and edge ele-
ments and a step time of 30 s were used. The coupling between
the phenomena of heat and mass transfer was conducted using
thermophysical properties that are variable over time based on
the moisture content of the foam, as mentioned previously. The
properties of the product (specific heat, thermal conductivity and
density) were estimated according to Singh and Heldman (1993)
using equations based on the chemical composition and porosity
(Eqs. (14)–(16)), which were determined experimentally.
Considering that water is continuously removed from the yacon
foam during drying, the product’s chemical composition was
updated along process time and the properties could be computed
as a function of moisture content.

q ¼ 1� eP
J

xj

qj

ð14Þ

Cp ¼
X

j

ðxjCpjÞ ð15Þ

k ¼ 1
2

X
j

xvjkj þ
1

P
j

xvj

kj

� �
2
4

3
5 ð16Þ

where xj and xvj are the mass and volumetric fractions, respectively,
of each pure component of the yacon and egg albumin foam and e is
the porosity (mass fraction of air) of the foam (0.819).



Table 3
Average results of the experimental tests to obtain yacon powder with Aw between 0.1 and 0.3.

Test Process conditionsa Time (min) Moisture content w.b. (%) Aw

1 YJ – 0.5 cm, 50 �C 89 ± 0 6.2 ± 0.3 0.19 ± 0.01
2 YJ – 1.5 cm, 50 �C 211 ± 0 6.6 ± 0.1 0.19 ± 0.00
3 YJ – 1.0 cm, 60 �C 156 ± 0 5.5 ± 0.1 0.15 ± 0.00
4 YJ – 0.5 cm, 70 �C 65 ± 0 3.5 ± 0.0 0.11 ± 0.00
5 YJ – 1.5 cm, 70 �C 211 ± 1 4.1 ± 0.1 0.12 ± 0.00
6 CYJ – 0.5 cm, 50 �C 96 ± 1 4.9 ± 0.2 0.20 ± 0.00
7 CYJ – 1.5 cm, 50 �C 242 ± 0 6.2 ± 0.1 0.22 ± 0.00
8 CYJ – 1.0 cm, 60 �C 174 ± 0 5.7 ± 0.1 0.21 ± 0.00
9 CYJ – 0.5 cm, 70 �C 59 ± 0 4.1 ± 0.1 0.13 ± 0.00

10 CYJ – 1.5 cm, 70 �C 224 ± 1 4.3 ± 0.2 0.17 ± 0.00

a YJ = non-concentrate yacon juice (8�Brix), CYJ = concentrate yacon juice (24�Brix).
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The product’s thermal diffusivity was computed by the follow-
ing correlation:

a ¼ k
qCp

ð17Þ

The coefficients of convective heat and mass transfer, h and hm,
respectively, were obtained according to Holman (1996) (Eqs. (18)
and (19)) using the dimensionless numbers given by Eqs. (20)–(23)
(Incropera and Dewitt, 1990):

h ¼ Nu� k1
d

ð18Þ

hm ¼
Sh� DAB

d
ð19Þ

Re ¼ q1�v1
l1

ð20Þ

Nu ¼ 0:664Re1=2Pr1=3 ð21Þ

Sc ¼ l1
q1 � DAB

ð22Þ

Sh ¼ 0:664Re1=2Sc1=3 ð23Þ

where Re, Nu, Sh and Sc are the dimensionless numbers of
Reynolds, Nusselt, Sherwood and Schmidt, respectively, q1, v1,
l1 and k1 are the density (kg/m3), velocity (m/s), viscosity (Pa s)
and thermal conductivity of air (W/m K), respectively, DAB is the
binary diffusion coefficient (water–air) (m2/s) and d is the bed’s
characteristic length (m), which depends on the surface at which
the convective fluxes take place.

The mass diffusion coefficient was calculated using the analyti-
cal solution of Fick’s second law for a flat plate (Crank, 1975):

MR ¼ Mt �Meq

M0 �Meq
¼ 8

p2 e
� Dif p

2 t

4s2

� �
ð24Þ

where Dif is the mass diffusion coefficient (m2/s), t is the drying
time (s), MR is the dimensionless moisture content as a function
of time, Mt is the moisture content at time t (kg/kg), Meq is the equi-
librium moisture content (kg/kg), M0 is the initial moisture content
(kg/kg) and s is the product thickness (m).

One among all 10 experimental tests was randomly selected in
order to perform the computer simulations: 1.0 cm, 60 �C, YJ. The
physical validation of the model was conducted by comparing
experimental and numerical outcomes of average moisture con-
tent for the case selected. Afterwards, the numerical validation
was assessed by confronting numerical data obtained by different
meshes. The default mesh was refined twice, yielding three mesh-
ings. The results were considered satisfactory when a
determination coefficient (R2) higher than 0.98 was achieved for
both validations, physical and numerical.
3. Results and discussion

3.1. Drying kinetics

The drying curves for the foams of YJ and CYJ are shown in
Fig. 2. The data are presented in the form of moisture ratio versus
time. The process occurred at a falling rate period, which indicates
diffusion as the most likely physical mechanism to govern the
movement of moisture through the structure of the product
(McMinn and Magee, 1999). The drying rate, nonetheless, is lim-
ited by the moisture evaporation from the surface of the foam to
the hot air, as indicated by the dimensionless numbers of heat
and mass transfer (Table 2). As indicated by the Sherwood number
(Sh), the mass convective flow is predominant with respect to
moisture diffusion and obviously depends on the air temperature
and not on the thickness or concentration of the foam. Inasmuch
as the foam has a high porosity (e = 81.9%), it was expected that
the internal migration of moisture was slower than its evaporation
into the airflow. The Nusselt number (Nu) confirms that the con-
vective heat transfer is greater than thermal diffusion since the
air velocity is high (4 m/s) as well as the high porosity of the food
hinders heat conduction.

The lack of a drying period at a constant rate may be ascribed to
the nature of the moisture in the foam: the free surface water may
be present in the form of suspension and solution (sugars and
other molecules), with a vapor pressure below that of the pure
water. The same behavior was observed for the foam mat drying
of bananas (Thuwapanichayanan et al., 2008).

As expected, drying time was shorter when higher tempera-
tures were applied, behavior caused by the increased drying rate
in view of the greater temperature gradient between air and foam
(Akpinar et al., 2003). Such effect of temperature on the foam mat
drying was observed by Azizpour et al. (2014) as regard to shrimps
and by other authors (Erenturk et al., 2004; Doymaz, 2006; Goyal
et al., 2007) who studied the thin layer drying of foods.

Another factor that substantially influenced drying time was
the thickness of the foam layer. Process time was reduced from
315 min (YJ, 1.5 cm and 50 �C) to 150 min when thickness was
changed to 0.5 cm. In turn, for the CYJ, drying time was reduced
in 180 min and 225 min when thickness ranged from 1.5 to
0.5 cm at 50 �C and 70 �C, respectively. Similar results were
reported for the foam mat drying of mangoes (Rajkumar et al.,
2007), tamarindo (Vernon-Carter et al., 2001) and papaya
(Kandasamy et al., 2012). The increased thickness reduces the
moisture diffusion rate due to the longer path that moisture has
to overcome to reach the product’s surface. In addition, heat trans-
fer is more efficient at lower thicknesses as the faster heat



Fig. 4. Pareto charts of the effects of process variables on yacon foams prepared
from YJ at a 95% confidence interval: (a) drying time (min); (b) moisture content
w.b. (%); (c) Aw (note: Var1 = thickness; Var2 = temperature).

Fig. 5. Pareto charts of the effects of process variables on yacon foams prepared
from CYJ at a 95% confidence interval: (a) drying time (min); (b) moisture content
w.b. (%); (c) Aw (note: Var1 = thickness; Var2 = temperature).

T.S. Franco et al. / Journal of Food Engineering 158 (2015) 48–57 53
penetration induces moisture diffusion to begin in a shorter time
(Djaeni et al., 2013).

The concentration of soluble solids of the yacon juice influenced
the process kinetics only by a small difference in drying time
(Fig. 3). The process time at 50 �C was the same (120 min) for both
foams (YJ and CYJ) for a thickness of 0.5 cm; for a thickness of
1.5 cm, in turn, the CYJ foam took 30 min less (300 min versus
270 min) to achieve the desired Aw compared with that formu-
lated with YJ. For the central point of the experiment (1.0 cm,
60 �C), the time to reach the ideal Aw was the same for both foams
(120 min), as shown in Fig. 3b. For the higher drying temperature
applied in this work (Fig. 3c), the foams produced from CYJ and
YJ required 60 min and 285 min, respectively, to achieve the



Fig. 6. Average moisture content of the yacon foam during drying at the condition
of 1.0 cm, 60 �C, YJ: numerical versus experimental results.
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desired Aw. This difference can be attributed to the composition of
the foams and its influence on the mechanical stability during dry-
ing (Ratti and Kudra, 2006). In addition, the solids dissolved in the
foam hinder the movement of moisture, mainly by diffusion and
capillarity, reducing the drying rate.
Fig. 7. Moisture profiles of the yacon foam during drying at the condition of 1.0 cm,
60 �C, YJ in: (a) 0 min, (b) 60 min, and (c) 156 min.
3.2. Influence of process variables on the characteristics of the juice
powder

The drying time required to achieve an Aw between 0.1 and 0.3
was selected as the final process point. According to Singh and
Heldman (1993), the degradative reactions in foods, such as oxida-
tion of fats, browning and microbiological growth, are minimized
in this range of Aw. Table 3 presents the mean scores and their
respective standard deviations for the moisture content and Aw
of the yacon dried powder stored under vacuum, as well as the
correspondent drying time.

From Table 3, it is clear that the drying temperature and thick-
ness of the foam layer influenced process time and moisture con-
tent and Aw of the dry powder obtained. These outcomes also
suggest that this influence occurs at the same way for both juice
concentrations, 8�Brix (YJ) and 24�Brix (CYJ). To endorse these
observations, Pareto charts were plotted for the powders produced
from the foams of YJ (Fig. 4) and CYJ (Fig. 5). These graphs illustrate
the statistical effect (p < 0.5) of the independent variables on the
responses y1, y2 and y3.

Fig. 4 indicates that all process responses are influenced both by
the thickness of the foam layer and the drying temperature when
the powder is formulated with non-concentrate juice of yacon
(YJ). As expected, process time increases for larger thicknesses, as
well as the final moisture and Aw. Instead, temperature had a
negative effect on all responses, i.e., the higher the drying tempera-
ture, the lower the moisture and Aw. Furthermore, the statistical
analysis shows that thickness exerts more influence than tempera-
ture on drying time (Fig. 4a) as a result of the mechanism of heat
and mass transfer prevailing inside the foam, diffusion. The air
temperature, in turn, exerts more influence than thickness on final
moisture content and Aw. The same conclusions were found for the
foam prepared with CYJ (Fig. 5).

In summary, drying temperature and layer thickness influenced
statistically the process responses – time, moisture content and Aw
– for both foam formulations (YJ and CYJ). Thus, in order to mini-
mize time and energy demand, it would be obvious to choose
combinations of factors (x1 and x2) which provide a powder of
lower Aw in a shorter time. However, an important factor to be also
analyzed is the color of the product, which influences the sensory
acceptance. Yacon is rich in enzymes such as polyphenol oxidase
(PPO) and peroxidase (POD), which use the amino acid L-trypto-
phan, tannins and phenolic compounds, particularly chlorogenic
acid, as substrates. During drying, temperature stimulates the
activity of PPO and POD, promoting the enzymatic oxidation of
phenolic compounds to quinones, resulting in brown or black pig-
ments after polymerization (Valentová and Ulrichová, 2003).
Although sodium metabisulphite has been added to the yacon
juice, it minimizes but not completely prevents the enzymatic
activity. Thus, it is not enough to find a combination of factors that
includes the higher temperature and the smaller foam’s thickness:
it is mandatory to correlate the outcomes of time, moisture content
and Aw with important qualitative parameters, such as color.
Furthermore, the enzyme activity consumes substrates, leading



Fig. 8. Temperature profiles of the yacon foam during drying at the condition of
1.0 cm, 60 �C, YJ in: (a) 0 min, (b) 10 min, and (c) 156 min.

Fig. 9. Internal profiles of (a) temperature and (b) moisture content after
completion of drying (156 min) at the condition of 1.0 cm, 60 �C, YJ.
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to a reduction of nutritional value of the processed yacon depend-
ing on drying temperature.

From a visual investigation, it was found that the drying condi-
tions which generated darker powders were those that combined
higher temperatures and thicker layers of foam. During drying of
carambola juice, Karim and Wai (1999) observed that the dry
foams treated at 90 �C yielded darker products than the ones dried
at 70 �C. Kandasamy and collaborators (2012) also addressed the
effect of high foam mat drying temperatures in the degradation
of the color of papaya juices.
3.3. Drying modeling

The heat and mass transfer phenomena during drying of the
foams were mathematically modeled and then simulated in
COMSOL Multiphysics�. The comparison between numerical
results for the moisture content of a test selected randomly
(60 �C, 1 cm, YJ) and the experimental data shows that the model
predicts drying successfully. Fig. 6 shows the confrontation
between experimental and numerical outcomes of average mois-
ture content of the foam, for which a high coefficient of deter-
mination was obtained (R2 = 0.998).

Figs. 7 and 8, in turn, present the three-dimensional profiles of
the foam’s moisture content and temperature of the system formed
by tray and foam, according to the simulation outcomes. Fig. 7
shows that the moisture flow in the foam occurs toward the sur-
face of the tray, as expected, since this is the only contact face
between product and air. Within 156 min, the moisture was con-
siderably reduced, nonetheless there was still a water concentra-
tion gradient, i.e., the product did not reach the equilibrium
moisture content. The model also described coherently the tem-
perature profiles (Fig. 8). Whereas the thermal conductivity of
the galvanized steel is very high, the tray nearly reaches the air
temperature in the first 10 min. The foam is heated by conduction
– in view of the heat flow from the hot tray – and convection – due
to the direct contact between product’s surface and air. As a result
of the evaporative cooling, the foam’s temperature, which had
reached 54 �C at its free surface after 60 min, suffers a small
decrease until the end of drying, reaching a maximum temperature
of 52 �C.

Fig. 9 illustrates the internal profiles of moisture and tempera-
ture of the product, whose numerical results are physically consis-
tent. The bottom side of the metal mold is in direct contact with
the dryer tray, so it is heated only by thermal diffusion. The four
sides of the tray, in turn, are heated by convection for there is con-
tact with the hot moving air. The heat flow received by the foam
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from the walls of the metallic bed raised the temperature of the
food material. Meanwhile, the foam’s surface received heat by con-
vection from the hot air, but also lost thermal energy due to water
evaporation, resulting in the thermal profile shown in Fig. 9a. The
maximum temperature reached by the foam in the end of drying is
52 �C, on its surface. The metallic mold, in turn, reaches a tempera-
ture near that of the drying air. Moisture is conducted by diffusion
toward the surface of the foam thanks to the temperature and
water concentration gradients at the interface air-product. The
water is removed from the foam across its surface, reason why
there is a moisture gradient between base and the top of the bed
(Fig. 9b). At the end of 156 min, when the Aw was decreased to
the desired value, the product has not yet reached its limit mois-
ture, since air was still drier (in terms of molar concentration of
water) than the foam’s surface.

These results confirm the possibility of using the proposed
model for the prediction of the foam mat drying of yacon.
Forasmuch as the model is based on a theoretical study as regard
to the heat and mass transport mechanisms, it can be used to simu-
late other process conditions, namely the thickness and com-
position of the foam, temperature, velocity and relative humidity
of the air, among others. A significant economy of experimental
time and costs is ascribed to the predictive ability of such mathe-
matical model.

4. Conclusions

As indicated by the drying curves of the yacon foams (YJ and
CYJ), the process took place in a falling rate period, suggesting that
diffusion is the governing mechanism of internal moisture move-
ment. While the internal moisture movement occurs mainly by dif-
fusion, the analysis of the transport coefficients indicated that the
resistance to convection limits the drying rate.

The drying temperature and the thickness of the foam layers
significantly influenced process time and the characteristics of
the dry powder (Aw and moisture content). The combination of
higher temperatures and lower thicknesses resulted in smaller
drying times and powdered juices with lower moisture and Aw,
which are characteristics desirable to the product.

The mathematical model proposed was capable of adequately
predict the moisture and temperature profiles of the food material,
serving as an useful tool for the process optimization.
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