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Abstract

In this paper we introduce a purely variational approach to time dependent problems, yielding the exis-
tence of global parabolic minimizers, that is

T∫
0

∫
Ω

[
u · ∂tϕ + f (x,Du)

]
dx dt �

T∫
0

∫
Ω

f (x,Du + Dϕ)dx dt,

whenever T > 0 and ϕ ∈ C∞
0 (Ω ×(0, T ),RN). For the integrand f :Ω ×R

Nn → [0,∞] we merely assume
convexity with respect to the gradient variable and coercivity. These evolutionary variational solutions are
obtained as limits of maps depending on space and time minimizing certain convex variational functionals.
In the simplest situation, with some growth conditions on f , the method provides the existence of global
weak solutions to Cauchy–Dirichlet problems of parabolic systems of the type

∂tu − divDξf (x,Du) = 0 in Ω × (0,∞).
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1. Introduction

In this paper we are concerned with the existence for evolutionary problems possessing a vari-
ational structure, in the sense that we are aiming to construct solutions which inherit a certain
minimizing property. The advantage of these parabolic minimizers or variational solutions stems
from the fact that they might exist even in situations where the associated parabolic system makes
no sense. Here we should recall the stationary case, where it is possible to establish the existence
of minimizers by the Direct Methods of the Calculus of Variations in fairly general situations,
whereas additional stronger assumptions are needed to guarantee that the minimizers fulfill the
Euler–Lagrange system. It is exactly this point we address in this paper: we construct varia-
tional solutions (parabolic minimizers) to evolutionary problems under general assumptions on
the integrand, where a priori it is not clear at all that these minimizers also solve the associated
evolutionary system.

1.1. The main result

To explain our ideas and results in more detail, we start for simplicity with a variational
integrand f :Ω × R

Nn → [0,∞], a given inhomogeneity h:Ω → R
N and an initial datum

uo:Ω → R
N . Here, Ω denotes a bounded domain in R

n with n � 2 and Ω∞ := Ω × (0,∞)

stands for the infinite space–time cylinder over Ω . We note that N � 1, so that the problem
could be vector-valued. For points in R

n+1 we usually write z = (x, t). Differentiation with re-
spect to the spatial variable x will be denoted by Du, while ∂tu stands for the differentiation with
respect to time. Associated to data (f,h,uo), the Cauchy–Dirichlet problem takes the form{

∂tu − divDξf (x,Du) = h(x) in Ω∞,

u = uo on ∂PΩ∞,
(1.1)

where u:Ω∞ ⊂ R
n+1 → R

N and ∂PΩ∞ := [∂Ω × (0,∞)] ∪ [Ω × {0}] denotes the parabolic
boundary of Ω∞. In the case N > 1 we are dealing with parabolic systems. More generally, we
consider a Carathéodory-function f :Ω ×R

N ×R
Nn → R := R∪ {+∞} fulfilling the following

convexity and coercivity assumptions:{
R

N ×R
Nn � (u, ξ) 	→ f (x,u, ξ) is convex for a.e. x ∈ Ω;

f (x,u, ξ) � ν|ξ |p − g(x)
(
1 + |u|), ∀(x,u, ξ) ∈ Ω ×R

N ×R
Nn,

(1.2)

for some ν > 0 and p > 1. Moreover, we assume g ∈ Lp′
(Ω) and g � 0 a.e. on Ω , where p′ =

p
p−1 denotes the Hölder conjugate of p. Note that the convexity assumption on the integrand f

with respect to u already implies a linear growth from below. For the initial and boundary datum
uo ∈ W 1,p(Ω,RN) we assume that

uo ∈ L2(Ω,RN
)

and
∫

f (x,uo,Duo)dx < ∞. (1.3)
Ω
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At this stage a comment on the assumption (1.3)2 is in order. For initial data uo ∈ W 1,p(Ω,RN)

the growth condition (1.2)2 ensures that the negative part [f (·, uo,Duo)]− of the energy density
has a finite integral. Therefore, the integral in (1.3) exists for maps in W 1,p(Ω,RN), maybe
with infinite integral. In order to have f (·, uo,Duo) ∈ L1(Ω) we only need to impose the
bound (1.3)2.

Corresponding to the integrand f and the initial datum uo we can state on a purely formal
level the following Cauchy–Dirichlet problem on Ω∞:{

∂tu − divDξf (x,u,Du) = −Duf (x,u,Du) in Ω∞,

u = uo on ∂PΩ∞.
(1.4)

In the following definition we describe the concept of variational solutions to Cauchy–Dirichlet
problems, as for instance those considered in (1.4). Here we follow an idea by Lichnewsky and
Temam [20], which was first used in the context of the evolutionary parametric minimal surface
equation. Variational solutions are sometimes also called parabolic minimizers. We will come
back to the slight differences in possible definitions later, see Section 3. At this point we only
give the following definition.

Definition 1.1 (Variational solutions). Suppose that f :Ω × R
N × R

Nn → R is a variational
integrand satisfying the convexity and coercivity assumptions (1.2). Moreover, assume that the
Cauchy–Dirichlet datum uo fulfills (1.3). We identify a measurable map u:Ω∞ → R

N in the
class

u ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

)) ∩ C0([0, T ];L2(Ω,RN
))

, for any T > 0

as a variational solution associated to the Cauchy–Dirichlet problem (1.4) if and only if the
variational inequality

T∫
0

∫
Ω

f (x,u,Du)dx dt �
T∫

0

∫
Ω

[
∂tv · (v − u) + f (x, v,Dv)

]
dx dt

+ 1

2

∥∥v(·,0) − uo

∥∥2
L2(Ω)

− 1

2

∥∥(v − u)(·, T )
∥∥2

L2(Ω)
(1.5)

holds true, whenever T > 0 and v ∈ Lp(0, T ;W 1,p
uo

(Ω,RN)) with ∂tv ∈ L2(ΩT ,RN).

Here and in the following we use the shorthand notation

W
1,p
uo

(
Ω,RN

) := uo + W
1,p

0

(
Ω,RN

)
.

At this stage we should mention that we could have started in the definition of variational
solutions by a map in L1(0, T ;W 1,1(Ω,RN)) ∩ C0([0, T ],L2(Ω,RN)) for any T > 0. This
can be inferred by testing the minimality condition (1.5) with the admissible comparison map
v(·, t) ≡ uo. This yields that the left-hand side of (1.5) is finite, and the growth condition from
below implies an Lp–W 1,p-bound. Moreover, from this bound one also obtains that the initial
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condition u(·,0) = uo holds true in the usual L2-sense; cf. Lemma 2.1 for the details and the
proof. Throughout the paper, we will abbreviate

Eo :=
∫
Ω

[
1 + |g|p′ + |uo|p + |Duo|p

]
dx (1.6)

The main result of the paper is the following existence result.

Theorem 1.2. Suppose that f :Ω × R
N × R

Nn → R is a variational integrand satisfying the
convexity and coercivity assumptions (1.2) and that the Cauchy–Dirichlet datum uo fulfills the
requirements of (1.3). Then, there exists a variational solution u in the sense of Definition 1.1.
Moreover, u satisfies

∂tu ∈ L2(Ω∞,RN
)

and u ∈ C0, 1
2
([0, T ];L2(Ω,RN

)) ∀T > 0

and the time derivative ∂tu fulfills the quantitative bound

∞∫
0

∫
Ω

|∂tu|2 dx dt �
∫
Ω

f (x,uo,Duo)dx + cEo. (1.7)

Further, for any 0 � t1 < t2 < ∞ we have the energy estimate

1

t2 − t1

t2∫
t1

∫
Ω

f (x,u,Du)dx dt � 2e

∫
Ω

f (x,uo,Duo)dx + cEo. (1.8)

In both inequalities the constant c depends only on ν, p and diam(Ω). Moreover, for non-
negative integrands f the inequalities hold true with c = 0. Finally, if the integrand f is strictly
convex, then the variational solution is unique.

1.2. Examples

The assumptions of our theorem cover a large variety of interesting variational functionals
already considered in the literature. Amongst them there are variational integrands fulfilling
a standard growth condition from below and above, functionals of non-standard p, q growth,
functionals with exponential growth and Orlicz-type functionals:

f1(x,Du) := α(x)|Du|p + β(x)|Du|q

f2(x,Du) := α1(x)|ux1 |p1 + · · · + αn(x)|uxn |pn

f3(Du) := |Du|p log
(
1 + |Du|)

f4(Du) := exp
(|Du|r).



3916 V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942
Here, 1 < p < q , 1 < p1 < · · · < pn and r � 1 are arbitrary integrability exponents, and the
functions α,β:Ω → [0,∞) are non-negative and bounded with α(x) + β(x) � ν > 0 a.e. on Ω ,
whereas αi(x) � ν > 0 for i = 1, . . . , n and a.e. x ∈ Ω . Also functionals of splitting type, such as

f (x,u,Du) := f (x,Du) + g(x,u)

are covered, where g:Rn → R is merely convex with respect to u. For example, a lower order
term of the type g(x,u) := |u|p with an arbitrary p � 1 or g(x,u) := −h(x) · u is included. In
the peculiar case of the variational functional f (x,u,Du) := 1

p
|Du|p + λ

q
|u|q with λ ∈R+, our

result guarantees the existence of a variational solution. In a second step it can be shown that the
variational solution is a global weak solution to the associated Cauchy–Dirichlet problem{

∂tu − 
pu = −λ|u|q−2u in Ω∞,

u = uo on ∂PΩ∞.

We note that this result holds true without imposing any constraint on the exponent q of the
non-linearity, and therefore covers classes of parabolic equations with super-critical nonlinearity.

1.3. Passing to the parabolic system

The passage from the minimality condition (1.5) to the associated parabolic system is possible
under certain additional assumptions on the integrand f . For simplicity we shall restrict ourselves
to a classical case, where the integrand f :Ω × R

N × R
Nn → R is a Carathéodory-function,

satisfying (1.2) and in addition the following growth condition from above

f (x,u, ξ) � L
(|ξ |p + |u|p + G(x)

)
, (1.9)

where L � ν and G ∈ Lp′
(Ω). By its convexity f is an almost everywhere differentiable,

locally Lipschitz function with respect to (u, ξ). Thus, the compositions Dξf (x,u,Du) and
Duf (x,u,Du) are well defined. Together with assumption (1.9) it is easy to show the following
growth conditions∣∣Dξf (x,u, ξ)

∣∣ + ∣∣Duf (x,u, ξ)
∣∣ � c(p,L)

[|ξ |p−1 + |u|p−1 + ∣∣g(x)
∣∣ + ∣∣G(x)

∣∣ + 1
]
, (1.10)

whenever (x,u, ξ) ∈ Ω × R
N × R

Nn, cf. [23, Lemma 2.1]. Moreover, if f satisfies the growth
condition (1.9), then one can show that the time derivative ∂tu of the variational solution belongs
to the distributional space Lp′

(0, T ;W−1,p′
(Ω,RN)) for any T > 0. Here, p′ = p

p−1 denotes
again the Hölder conjugate of p. The proof of this fact will be given in Appendix A.

For the particular solution constructed in Theorem 1.2 such an argumentation is unnecessary,
since we even have ∂tu ∈ L2(ΩT ,RN). In the minimality condition (1.5) we use the testing
function v ≡ u + sϕ, with s ∈ (0,1) and ϕ ∈ C∞

0 (Ω∞,RN). The resulting inequality is divided
by s. Afterwards, we let s ↓ 0, which amounts in taking the one-sided derivative of the mapping

[0,1) � s 	→
∞∫ ∫

f (x,u + sϕ,Du + sDϕ)dx dt.
0 Ω
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By the fact that ∂tu ∈ Lp′
(0, T ;W−1,p′

(Ω,RN)), respectively ∂tu ∈ L2(ΩT ,RN) the result is
that

∞∫
0

∫
Ω

[
∂tu · ϕ + Dξf (x,u,Du) · Dϕ + Duf (x,u,Du) · ϕ]

dx dt � 0

holds true for any ϕ ∈ C∞
0 (Ω∞,RN). Here, we can replace ϕ by −ϕ to obtain the reversed

inequality, so that the variational solution solves the associated parabolic system and therefore is
a global solution to the Cauchy–Dirichlet problem (1.4). Moreover, since also u = uo on ∂PΩ∞,
the variational solution is a global weak solution to the associated Cauchy–Dirichlet problem.

As an application for variational integrands f (x, ξ)−h(x) ·u with a principal part f satisfying
a standard growth condition of the type

ν|ξ |p � f (x, ξ) � L
(
1 + |ξ |p)

for some p > 1 and structural constants 0 < ν � L, we have that variational solutions are global
weak solutions to the Cauchy–Dirichlet problem (1.1).

More generally, the results of [5] allow the derivation of the parabolic system, if the inte-
grand f is of class C2 and furthermore satisfies a non-standard growth condition of the type

ν|ξ |p � f (ξ) � L
(
1 + |ξ |q)

whenever 2 � p � q < p + min{1, 4
n
}. At this stage we should mention that it is an interesting

problem to establish – maybe under further structure conditions on the integrand f – that a vari-
ational solution also solves the associated parabolic system. For example in the elliptic case it
is known that minimizers to the integrand f (ξ) = exp(|ξ |p) have a locally bounded gradient in
the interior of Ω , cf. [24,25]. Therefore, it could be of interest to establish the same result for
parabolic systems, maybe more general for integrands of the type f (ξ) = φ(|ξ |), where φ is not
necessarily a 
2-function. We will take this issue up in a forthcoming paper. At this stage we
should mention that in the scalar case for parabolic equations with non-standard p, q growth
without variational structure the existence problem has been treated in [4] by the use of a com-
pletely different approach; cf. [10] for a related existence result.

1.4. The method of the proof and some comments on the history of the problem

As mentioned already before, our method will be of purely variational nature, and goes back
to a conjecture of De Giorgi [11,12] concerning the existence of global weak solutions to the
Cauchy problem for non-linear hyperbolic wave equations on R

n. More precisely, De Giorgi
suggested to construct such solutions as limits of minimizers of convex variational integrals on
R

n × (0,∞). The proposed approach can be viewed as a link between the powerful methods of
the Classical Calculus of Variations and the theory of Non-linear Hyperbolic Wave Equations.
In [30] Serra and Tilli solved the De Giorgi conjecture (up to subsequences) for the Laplacian as
the principal part in an affirmative way; see also [32] for the construction of weak solutions on
finite time intervals.

In the present paper we use a similar approach, in order to treat general non-linear parabolic
evolutionary problems related to variational integrands f :Ω ×R

N ×R
Nn → R. Under the weak
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assumptions on f from (1.2) the Classical Calculus of Variations ensures the existence of min-
imizers to the Dirichlet problem associated to the variational functional, so that it is natural
to develop a related theory for evolutionary Cauchy–Dirichlet problems via a modification of
De Giorgi’s ingenious idea. A few words concerning the method are in order. For a given time
independent datum uo : Ω → R

N we consider mappings u:Ω∞ → R
N satisfying the Cauchy–

Dirichlet boundary condition u = uo on ∂PΩ∞. For such mappings (of course we have to impose
certain integrability conditions) we consider for given ε ∈ (0,1] the following convex variational
integrals:

Fε(v) :=
∞∫

0

∫
Ω

e− t
ε

[
1

2
|∂tv|2 + 1

ε
f (x,u,Du)

]
dx dt.

The growth assumption from below and the convexity of f allow the application of standard
methods from the Classical Calculus of Variations ensuring the existence of minimizers uε in
certain classes of mappings. Essentially, these classes are defined by requiring that v ∈ W 1,1(Ω ×
(0, T );RN) for any time T > 0, v = uo on ∂PΩ∞ in the sense of traces, and finally that Fε is
coercive.

To explain why the sequence uε is expected to converge to a solution of the Cauchy–Dirichlet
problem {

∂tu − divDξf (x,u,Du) = −Duf (x,u,Du) in Ω∞,

u = uo on ∂PΩ∞,

one computes the Euler–Lagrange system of the functional Fε in its classical form. From the
classical form one easily deduces that the minimizers uε formally solve

−ε∂ttuε + ∂tuε − divDξf (x,uε,Duε) = −Duf (x,uε,Duε),

and moreover fulfill the Cauchy–Dirichlet boundary condition uε = uo on ∂PΩ∞. Therefore,
it seems to be natural to consider the limit ε ↓ 0. Roughly speaking, in the wave-type systems
above, the term ε∂2

t uε should disappear in the limit ε ↓ 0. Formally, this would lead to a solu-
tion u of the Cauchy–Dirichlet problem, provided we could establish the convergence uε → u

in an appropriate sense. At this stage we should mention that the argument is purely heuristic.
The assumptions on the integrand f are so weak, that in general we cannot expect that minimiz-
ers satisfy the Euler–Lagrange system. Furthermore, even for the functional f (ξ) = 1

p
|ξ |p , with

p �= 2, we would not be allowed to pass to the limit ε ↓ 0 in the Euler–Lagrange system, since
this would require the a.e. convergence Duε → Du.

The main idea to overcome this difficulty, is to stay on the level of minimizers, i.e. not to pass
to the Euler–Lagrange system. This has to be understood in the following sense: The mappings uε

minimize a variational functional Fε . Therefore, a limit u as ε ↓ 0 should also inherit a certain
minimizing property. We note that this is a delicate point even if the mappings uε would minimize
the same functional. In our case, we are using a sequence of convex functionals Fε to obtain
solutions of an evolutionary problem. Though, the interplay between the Calculus of Variations
and the Parabolic Theory must stay on the level of minimization. The link between the convex
functionals Fε and the evolutionary problem, is the notion of evolutionary variational solutions
as in Definition 1.1, going back to the paper of Lichnewsky and Temam [20]. It is exactly the
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notion of solution which allows us to argue on the level of functionals and which avoids the use
of the Euler–Lagrange system associated to Fε .

In the present paper we follow this path, by first deriving a certain a priori bound for the
energy and the time derivative of the sequence. This comes out by comparing the mappings
with uo, and by using the inner variation with respect to time. The latter was one of the main
ingredients of the approach by Serra and Tilli [30]. In our case, the inner variation with respect
to time leads to a conservation law, which finally yields suitable energy bounds, and moreover
the bound for the time derivative, both uniformly with respect to ε. This allows the passage to
a weakly converging subsequence. The considered notion of weak convergence is strong enough,
to have the lower semi-continuity of the variational functional associated to the integrand f . At
this stage, a direct comparison argument in the functionals Fε together with the convexity allows
the passage to the limit, establishing that the weak limit is a variational solution in the sense of
Definition 1.1.

The main advantage of our strategy is, that only rather weak assumptions on the integrand f

must be imposed, to ensure the existence of a variational solution. It is worth to note that the
indicated method works for general convex variational functionals of higher order. However, in
this paper we only consider first order integrands as in (1.2) to keep the presentation as simple as
possible. We will take this up in subsequent work.

The abstract theory of gradient flows in Hilbert spaces has its origin in the work of Brézis [6];
see also the monograph [7]. In Ambrosio, Gigli and Savaré [3] the theory has been developed
for metric spaces by the use of a discrete time discretization method, which is nowadays called
minimal movements. Finally, we should mention that the above described approach has been used
before in [1,2,26,27,29,31] on finite space–time cylinders ΩT = Ω × (0, T ), to construct solu-
tions of certain parabolic problems. The functionals Fε are termed Weighted Energy Dissipation
Functional. In the above mentioned papers the corresponding Euler–Lagrange equation, leading
to an elliptic regularization of the original evolutionary problem, is utilized in order to pass to
the limit ε ↓ 0. Therefore, the applications are mostly limited to special variational functionals
of standard growth and the overall setup has a more abstract point of view (Hilbert spaces, met-
ric spaces, methods from Convex Analysis such as sub-differentials, abstract theory to nonlinear
evolutionary PDE’s).

2. Preliminaries and notations

2.1. Notations

The spaces Lp(Ω,RN), W 1,p(Ω,RN) and W
1,p

0 (Ω,RN) denote the usual Lebesgue and

Sobolev spaces, and we write W
1,p
uo

(Ω,RN) := uo + W
1,p

0 (Ω,RN). Moreover, by ΩT , with
T ∈ (0,∞) we denote the space–time cylinder Ω × (0, T ); when T = ∞ we write Ω∞ for
Ω × (0,∞).

2.2. Lower bound for the functional

By the coercivity assumption (1.2)2, the integrand f could be negative. This makes it neces-
sary to derive a lower bound for the integral of f on the time slices Ω × {t}. This bound will be
used several times throughout the paper. For given v ∈ W

1,p
uo

(Ω,RN) with f (·, v,Dv) ∈ L1(Ω)

we have
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∫
Ω

f (x, v,Dv)dx �
∫
Ω

[
ν|Dv|p − g

(
1 + |v|)]dx,

by (1.2)2. The application of Poincaré’s inequality to (v − uo)(·, t), note that (v − uo)(·, t) ∈
W

1,p

0 (Ω,RN), implies that∫
Ω

|v|p dx � c

∫
Ω

(|Dv|p + |uo|p + |Duo|p
)
dx

holds true for a constant c = c(p,diam(Ω)) � 1. Hence, for δ ∈ (0,1] we obtain by Young’s
inequality that∫

Ω

g
(
1 + |v|)dx �

∫
Ω

[
δ
(
1 + |v|p) + cδ|g|p′]

dx � cδ

∫
Ω

|Dv|p dx + cδEo,

for a constant c = c(p,diam(Ω)) � 1 and Eo from (1.6). Inserting this above and choosing δ > 0
small enough, we obtain for any v ∈ W

1,p
uo

(Ω,RN) with f (·, v,Dv) ∈ L1(Ω) that∫
Ω

f (x, v,Dv)dx � 1

c

∫
Ω

[|v|p + |Dv|p]
dx − cEo (2.1)

holds true with a constant c = c(ν,p,diam(Ω)) � 1.

2.3. The initial condition

As mentioned in the introduction, variational solutions in the sense of Definition 1.1 fulfill the
initial condition u(·,0) = uo in the usual L2-sense. This follows from the fact that the difference
‖u(·, T ) − uo‖2

L2 grows at most linearly with respect to T > 0, cf. estimate (2.2) below.

Lemma 2.1. Let f be a variational integrand satisfying the convexity and coercivity assump-
tions (1.2). Then any variational solution u in the sense of Definition 1.1 fulfills the initial
condition in the L2-sense, i.e. we have

lim
t↓0

∥∥u(·, t) − uo

∥∥2
L2(Ω)

= 0.

Proof. First of all, testing the minimality condition (1.5) with the admissible comparison map
v(·, t) ≡ uo, t > 0, we find that

T∫
0

∫
Ω

f (x,u,Du)dx dt + 1

2

∥∥u(·, T ) − uo

∥∥2
L2(Ω)

� T

∫
Ω

f (x,uo,Duo)dx < ∞

holds true for any T > 0. Next, we use inequality (2.1) to bound the left-hand side from below.
This leads us to
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T∫
0

∫
Ω

[|u|p + |Du|p]
dx dt + ∥∥u(·, T ) − uo

∥∥2
L2(Ω)

� cT

[∫
Ω

f (x,uo,Duo)dx + Eo

]
, (2.2)

for any T > 0, with a new constant c. Here, we discard the energy term in the left-hand side and
then let T ↓ 0 in the right-hand side. This proves that u satisfies the initial boundary condition
u(·,0) = uo in the L2-sense as claimed. �
2.4. Mollification in time

Due to their lack of regularity with respect to time, the variational solutions in the sense of
Definition 1.1 are in general not admissible as comparison maps in (1.5). However, if for example
the integrand f has p-growth from above, i.e.

f (x,u, ξ) � L
(|ξ |p + |u|p + 1

)
holds true, then one can show that the time derivative ∂tu of the variational solution belongs
to the distributional space Lp′

(0, T ;W−1,p′
(Ω,RN)) for any T > 0. Here, p′ = p

p−1 denotes
again the Hölder conjugate of p. However, in the general case, where we only assume p-growth
from below, this is not clear and therefore we shall use a certain mollification in time. The precise
construction of the regularization is as follows: For T > 0 and v ∈ L1(ΩT ,RN), vo ∈ L1(Ω,RN)

and h ∈ (0, T ] we define

[v]h(·, t) := e− t
h vo + 1

h

t∫
0

e
s−t
h v(·, s) ds, (2.3)

for t ∈ [0, T ]. One of the basic features of this mollification is, that [v]h (formally) solves the
ordinary differential equation

∂t [v]h = − 1

h

([v]h − v
)

with initial condition [v]h(·,0) = vo. The basic properties of the mollification [ · ]h are provided
in the following lemma, cf. [17, Lemma 2.2], or [5, Appendix B] for the proofs of the particular
statements.

Lemma 2.2. Suppose that v ∈ L1(ΩT ,RN) and moreover vo ∈ L1(Ω,RN). Then, the mollifica-
tion [v]h defined in (2.3) admits the following properties:

(i) Assume that v ∈ Lp(ΩT ,RN) and vo ∈ Lp(Ω,RN) for some p � 1. Then, we also have
[v]h ∈ Lp(ΩT ,RN) and the following quantitative estimate holds true:

∥∥[v]h
∥∥

Lp(ΩT )
� ‖v‖Lp(ΩT ) + h

1
p ‖vo‖Lp(Ω).

Moreover, [v]h → v in Lp(ΩT ,RN) as h ↓ 0.
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(ii) Suppose that v ∈ Lp(0, T ;W 1,p(Ω,RN)) and vo ∈ W 1,p(Ω,RN) with p � 1. Then also
[v]h ∈ Lp(0, T ;W 1,p(Ω,RN)) and the following quantitative estimate holds true:

∥∥[v]h
∥∥

Lp(0,T ;W 1,p(Ω))
� ‖v‖Lp(0,T ;W 1,p(Ω)) + h

1
p ‖vo‖W 1,p(Ω).

Moreover, [v]h → v in Lp(0, T ;W 1,p(Ω,RN)) as h ↓ 0.
(iii) Assume that v ∈ Lp(0, T ;W 1,p

0 (Ω,RN)) and vo ∈ W
1,p

0 (Ω,RN). Then, also [v]h ∈
Lp(0, T ;W 1,p

0 (Ω,RN)).
(iv) In the case that v ∈ C0([0, T ];L2(Ω,RN)) and moreover vo ∈ L2(Ω,RN), we have [v]h ∈

C0([0, T ];L2(Ω,RN)), [v]h(·,0) = vo and moreover [v]h → v in C0([0, T ];L2(Ω,RN))

as h ↓ 0.
(v) Suppose that v ∈ L∞(0, T ;L2(Ω,RN)) and vo ∈ L2(Ω,RN). Then also ∂t [v]h ∈ L∞(0, T ;

L2(Ω,RN)). Moreover we have

∂t [v]h = − 1

h

([v]h − v
)
.

(vi) If ∂tv ∈ L2(ΩT ,RN) and vo ∈ L2(Ω,RN), then we have ∂t [v]h → ∂tv in L2(ΩT ,RN) and
the inequality

∥∥∂t [v]h
∥∥

L2(ΩT )
� ‖∂tv‖L2(ΩT )

holds true for any h ∈ (0, T ].

The next lemma ensures the convergence f (x, [v]h,D[v]h) → f (x, v,Dv) in the limit h ↓ 0,
provided that f (x, v,Dv) ∈ L1.

Lemma 2.3. Let T > 0 and assume that

v ∈ L1(0, T ;W 1,1(Ω,RN
))

, with f (·, v,Dv) ∈ L1(ΩT )

and

vo ∈ W 1,1(Ω,RN
)
, with f (·, vo,Dvo) ∈ L1(Ω).

Then, we have f (·, [v]h,D[v]h) ∈ L1(ΩT ) and moreover

lim
h↓0

T∫
0

∫
Ω

f
(
x, [v]h,D[v]h

)
dx dt =

T∫
0

∫
Ω

f (x, v,Dv)dx dt.

Proof. For simplicity we omit in our notation the v-dependence of the integrand f . This is
justified by the convexity assumption on the integrand with respect to (v,Dv). The differences
in the computations are just at a formal level. We first observe that
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1

h(1 − e− t
h )

t∫
0

e
s−t
h ds = 1.

This allows us to interpret the mollification [v]h – modulo a multiplicative factor – as a mean with
respect to the measure e

s−t
h ds. Accordingly to this interpretation we first rewrite f (x,D[v]h) and

afterwards use the convexity of f and Jensen’s inequality. This procedure yields the following
pointwise bound:

f
(·,D[v]h

)
(x, t) = f

(
x, e− t

h Dvo(x) + 1 − e− t
h

h(1 − e− t
h )

t∫
0

Dv(x, s)e
s−t
h ds

)

� e− t
h f

(
x,Dvo(x)

) + (
1 − e− t

h
)
f

(
x,

1

h(1 − e− t
h )

t∫
0

Dv(x, s)e
s−t
h ds

)

� e− t
h f

(
x,Dvo(x)

) + 1

h

t∫
0

f
(
x,Dv(x, s)

)
e

s−t
h ds

= [
f (·,Dv)

]
h
(x, t).

Here [f (·,Dv)]h is defined according to definition (2.3) with vo replaced by f (·,Dvo). Since
f (·,Dv) ∈ L1(ΩT ) and f (·,Dvo) ∈ L1(Ω) by assumption, we obtain via Lemma 2.2 (i) the
uniform bound∥∥[

f (x,Dv)
]
h

∥∥
L1(ΩT )

�
∥∥f (x,Dv)

∥∥
L1(ΩT )

+ h
∥∥f (x,Dvo)

∥∥
L1(Ω)

< ∞.

Since h‖f (x,Dvo)‖L1(Ω) → 0 in the limit h ↓ 0, a variant of the dominated convergence theo-
rem implies that

lim
h↓0

T∫
0

∫
Ω

f
(
x,D[v]h

)
dx dt =

T∫
0

∫
Ω

f (x,Dv)dx dt

holds true. This proves the claim of the lemma. �
3. Variational solutions versus parabolic minimizers

In Definition 1.1 we introduced – following an idea of Lichnewsky and Temam [20] – the
notion of variational solutions. Nowadays the notion of parabolic minimizers introduced inde-
pendently by Wieser [33] (see also Brézis and Ekeland [8,9]) has been used by several authors.
They studied different regularity properties such as the self-improving property of higher integra-
bility in the vectorial case, local boundedness and Hölder continuity in the scalar case or partial
regularity in the vectorial case, cf. [14,15,28]. Moreover, there was some interest in extending
the notion to the metric space setting, cf. [16,18,19,21,22]. In this section we aim to establish
that variational solutions actually are parabolic minimizers. But before going into the details



3924 V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942
we first give the definition of a parabolic minimizer, introduced by Wieser [33]. In the sequel
we assume that f :Ω × R

n × R
Nn → R is a variational integrand satisfying (1.2) and that the

Cauchy–Dirichlet datum uo satisfies (1.3)2.

Definition 3.1. A measurable map u:Ω∞ → R
N is termed parabolic minimizer associated to the

variational integrand f and the Cauchy–Dirichlet datum uo if and only if

u ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

)) ∀T > 0

and moreover the following minimality condition

T∫
0

∫
Ω

u · ∂tϕ + f (x,u,Du)dx dt �
T∫

0

∫
Ω

f (x,u + ϕ,Du + Dϕ)dx dt (3.1)

holds true, whenever T > 0 and ϕ ∈ C∞
0 (ΩT ,RN).

Note that Definition 3.1 is local with respect to the initial boundary, i.e. u is not necessarily
equal to uo at the initial time t = 0. We should also mention here, that the definition of parabolic
minimizers was given up to now only in the context of variational integrands satisfying a stan-
dard p-growth condition form above and below. Actually, the notion was that of a parabolic
Q-minimizer, i.e. a mapping u as in Definition 3.1, but with a right-hand side

Q

T∫
0

∫
Ω

f (x,u + ϕ,Du + Dϕ)dx dt

for some fixed Q � 1. The case Q = 1 is of course the one of parabolic minimizers.
If ∂tu ∈ L2(ΩT ,RN), or ∂tu ∈ Lp(0, T ;W−1,p′

(Ω,RN)) for any T > 0, then one can easily
show that the minimality conditions (1.5) and (3.1) are equivalent (provided that the function u

in (3.1) satisfies u(·,0) = uo). This can be seen by substituting ϕ = v − u, respectively v =
u + sϕ, with s > 0, together with a Minty-type argument. Note that the variational solution
constructed in Theorem 1.2 satisfies ∂tu ∈ L2(Ω∞,RN) and therefore it is a parabolic minimizer
in the sense of Definition 3.1. Note also that ∂tu ∈ Lp(0, T ;W−1,p′

(Ω,RN)) if f has p-growth
from above, see also Section 2.4. Since, in general we do not want to impose a condition on the
time derivative ∂tu, we need to regularize u with respect to time, in order to prove that variational
solutions are also parabolic minimizers. For the sake of completeness, we provide this argument
in the following.

Proposition 3.2. If u is a variational solution in the sense of Definition 1.1, then it is also
a parabolic minimizer in the sense of Definition 3.1.

Proof. We consider a fixed T > 0 and a testing function ϕ ∈ C∞
0 (ΩT ,RN). Our aim now, is

to prove that inequality (3.1) holds true. To establish this, we would like to choose v = u +
sϕ with s > 0 as comparison function in (1.5). Then, the result would follow by a Minty-type
argument. However, since v = u+sϕ is not an admissible choice in (1.5), we have to use a certain



V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942 3925
mollification with respect to time. More precisely, in (1.5) we choose the comparison map v = vh,
where vh := [u]h + s[ϕ]h with s > 0. Here [u]h is defined according to (2.3) and with uo as the
choice for vo, while [ϕ]h is defined in the same way but with vo = 0. The fact that v is admissible
in (1.5) is an immediate consequence of Lemma 2.2 (iii) and (v). Then, for the first term on the
right-hand side of (1.5) we deduce that

T∫
0

∫
Ω

∂tvh · (vh − u)dx dt

=
T∫

0

∫
Ω

[
∂t [u]h · ([u]h − u

) + s∂t [u]h · [ϕ]h + s∂t [ϕ]h · (vh − u)
]
dx dt

=
T∫

0

∫
Ω

[
− 1

h

∣∣[u]h − u
∣∣2 − s[u]h · ∂t [ϕ]h + s(vh − u) · ∂t [ϕ]h

]
dx dt

+ s

∫
Ω

([u]h · [ϕ]h
)
(·, T ) dx

�
T∫

0

∫
Ω

s
(
s[ϕ]h − u

) · ∂t [ϕ]h dx dt + s

∫
Ω

([u]h · [ϕ]h
)
(·, T ) dx.

In the second last line we used Lemma 2.2 (v) and performed an integration by parts with respect
to time. Note that no boundary term occurs for t = 0, since [ϕ]h(·,0) = 0 by Lemma 2.2 (iv).
Inserting this into the minimality condition (1.5), we get

T∫
0

∫
Ω

f (x,u,Du)dx dt �
T∫

0

∫
Ω

[
s
(
s[ϕ]h − u

) · ∂t [ϕ]h + f (x, vh,Dvh)
]
dx dt

+ s

∫
Ω

([u]h · [ϕ]h
)
(·, T ) dx − 1

2

∥∥(vh − u)(·, T )
∥∥2

L2(Ω)
.

Now, in view of Lemma 2.2 (i), (iv), (vi) and Lemma 2.3 we can pass to the limit h ↓ 0 in the
preceding inequality. Note that the second boundary term is non-positive and can therefore be
discarded in advance. Moreover, observe that the first boundary term after the passage to the limit
vanishes, since ϕ(·, T ) ≡ 0 on Ω . Altogether, this leads us to

T∫
0

∫
Ω

f (x,u,Du)dx dt

�
T∫ ∫ [

s(sϕ − u) · ∂tϕ + f (x,u + sϕ,Du + sDϕ)
]
dx dt
0 Ω
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�
T∫

0

∫
Ω

[
s(sϕ − u) · ∂tϕ + (1 − s)f (x,u,Du) + sf (x,u + ϕ,Du + Dϕ)

]
dx dt.

In the last line we used the convexity of f . Subtracting (1 − s)
∫ T

0

∫
Ω

f (x,u,Du)dx dt on both
sides (note that the finiteness of the integral follows by choosing v(·, t) ≡ uo as comparison map
in (1.5)) and dividing by s > 0 we get

T∫
0

∫
Ω

f (x,u,Du)dx dt �
T∫

0

∫
Ω

[
(sϕ − u) · ∂tϕ + f (x,u + ϕ,Du + Dϕ)

]
dx dt.

Now, we pass to the limit s ↓ 0 and finally come up with the inequality

T∫
0

∫
Ω

[
u · ∂tϕ + f (x,u,Du)

]
dx dt �

T∫
0

∫
Ω

f (x,u + ϕ,Du + Dϕ)dx dt.

The previous inequality holds true for any ϕ ∈ C∞
0 (ΩT ,RN). But this means that u is a parabolic

minimizer in the sense of Definition 3.1 and completes the proof. �
In our existence theorem we construct variational solutions with a time derivative ∂tu ∈

L2(Ω∞,RN). In this case we are able to show that the minimality condition (3.1) is satisfied
on a.e. time slice Ω × {t}. The precise statement is as follows:

Proposition 3.3. Let u be as in Definition 3.1, that is u ∈ Lp(0, T ;W 1,p
uo

(Ω,RN)) for any T > 0.
If in addition ∂tu ∈ L2(ΩT ,RN) for any T > 0, then the minimality condition (3.1) is equivalent
to the following minimality condition on time slices:∫

Ω

f (·, u,Du)(·, t) dx �
∫
Ω

[
∂tu(·, t) · η + f (·, u + η,Du + Dη)(·, t)]dx (3.2)

holds true for any η ∈ C∞
0 (Ω,RN) and a.e. t ∈ (0,∞).

Proof. First, we suppose that u satisfies (3.1). We test (3.1) with a testing function of splitting
type, i.e. with ϕ(x, t) = η(x)ζ(t), where ζ ∈ C∞

0 ((0,∞)) with ζ � 0 and η ∈ C∞
0 (Ω,RN). This

implies that∫
spt ζ

∫
Ω

f (x,u,Du)dx dt

�
∫

spt ζ

∫
Ω

[−ζ ′u · η + f (x,u + ζη,Du + ζDη)η
]
dx dt

�
∫ ∫ [

ζ∂tu · η + (1 − ζ )f (x,u,Du) + ζf (x,u + η,Du + Dη)
]
dx dt.
spt ζ Ω
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In the last line we used the convexity of f and performed an integration by parts. The latter
is possible due to the assumption on the time derivative of u. Subtracting the integral of the
left-hand side on both sides of the inequality we infer that

0 �
∫

spt ζ

∫
Ω

ζ
[
∂tu · η + f (x,u + η,Du + Dη) − f (x,u,Du)

]
dx dt

holds true for any 0 � ζ ∈ C∞
0 ((0,∞)). But this implies for a.e. t > 0 that∫

Ω

f (·, u,Du)(·, t) dx �
∫
Ω

[
∂tu(·, t) · η + f (·, u + η,Du + Dη)(·, t)]dx

holds true for any η ∈ C∞
0 (Ω,RN). This proves the claim.

On the other hand, if u satisfies the minimality condition (3.2) for a.e. time slice, we simply
choose ϕ(·, t) as testing function η on the time slice Ω × {t}, where ϕ is a smooth comparison
function with compact support in Ω∞. Integrating the result with respect to time, proves that u

satisfies (3.1). �
4. Existence via elliptic convex minimization

In this section we give the proof of Theorem 1.2. Henceforth, we assume that the variational
integrand f :Ω × R

N × R
Nn → R satisfies (1.2) and that the Cauchy–Dirichlet datum is as

in (1.3).

4.1. A sequence of minimizers to a variational functional on Ω∞

In this section we consider for ε ∈ (0,1] the variational integrals of the form

Fε(v) :=
∞∫

0

∫
Ω

e− t
ε

[
1

2
|∂tv|2 + 1

ε
f (x, v,Dv)

]
dx dt.

In order to deal with the existence problem associated to these functionals we first introduce
a suitable function space, in which the minimization of Fε will be achieved. A measurable func-
tion v:Ω∞ → R

N is said to belong to Kε if and only if v ∈ W 1,1(ΩT ,RN) for any T > 0 and
moreover

‖v‖Kε
:=

[ ∞∫
0

∫
Ω

e− t
ε |∂tv|2 dx dt

] 1
2

+
[ ∞∫

0

∫
Ω

e− t
ε
[|v|p + |Dv|p]

dx dt

] 1
p

< ∞.

We note that the time independent extension uo(·, t) := uo for any t > 0 of uo ∈ W 1,p(Ω,RN)∩
L2(Ω,RN) to Ω∞ belongs to Kε . The subspace of functions with zero trace on the lateral bound-
ary, i.e. those functions v ∈ Kε satisfying v = 0 on ∂PΩ∞ (as usual this has to be understood in
the sense of traces), shall be abbreviated by Nε . We keep in mind that (Kε,‖ · ‖Kε), and therefore
also (Nε,‖ · ‖Kε), are Banach spaces. Furthermore, for a map v ∈Kε there holds
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T∫
0

∫
Ω

(|∂tv|2 + |v|p + |Dv|p)
dx dt < ∞, ∀T > 0.

In the sequel we consider the class of mappings v ∈ uo + Nε with finite energy Fε(v) < ∞.
Again, by considering the function uo with an initial datum uo as in (1.3) we see that this class
is non-empty, that is

(uo +Nε) ∩ {
Fε(v) < ∞} �= ∅.

We begin our considerations with some simple observations. First, we establish that the func-
tional Fε is well defined on uo +Nε . This can be seen as follows: Using (2.1) slice-wise for a.e.
t > 0 and Young’s inequality we obtain for v ∈ Kε that

∞∫
0

∫
Ω

e− t
ε

[
1

2
|∂tv|2 + 1

ε
f (x, v,Dv)

]
−

dx dt � cEo,

for a constant c = c(ν,p,diam(Ω)). Here [ · ]− denotes the negative part. The preceding inequal-
ity implies that Fε:Kε → (−∞,∞] is well defined, and therefore the condition Fε(v) < ∞
guarantees e− t

ε [ 1
2 |∂tv|2 + 1

ε
f (x, v,Dv)] ∈ L1(Ω∞).

Next, we need to establish that the functional Fε is coercive on the class uo + Nε . This
follows again from (1.2)2, respectively from (2.1). The precise argument is as follows: For given
v ∈ uo +Nε and a.e. t ∈ (0,∞) we obtain from (2.1) that∫

Ω×{t}
f (x, v,Dv)dx � 1

c

∫
Ω×{t}

[|v|p + |Dv|p]
dx − cEo

holds true with a constant c = c(ν,p,diam(Ω)) � 1. Multiplying both sides by e− t
ε and inte-

grating with respect to t ∈ (t1,∞) with t1 � 0 yields

∞∫
t1

∫
Ω

e− t
ε f (x, v,Dv)dx dt � 1

c

∞∫
t1

∫
Ω

e− t
ε
[|v|p + |Dv|p]

dx dt − cεe− t1
ε Eo (4.1)

Taking in the preceding inequality t1 = 0 we finally deduce the coercivity of the functional Fε

on the class uo +Nε with respect to ‖ · ‖Kε
, that is

Fε(v) � 1

cε
min

{‖v‖2
Kε

,‖v‖p

Kε

} − cEo ∀v ∈ uo +Nε.

Furthermore, the convexity of the integrand f implies the strict convexity of the functional Fε

on the class uo +Nε . Therefore, we can apply the lower semicontinuity result [13, Theorem 4.3]
to conclude the following existence result for Fε-minimizing maps:

Lemma 4.1. For any given ε ∈ (0,1], the variational functional Fε admits a unique minimizer
uε ∈ uo +Nε .
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4.2. Energy bounds

In this section we establish certain energy bounds for minimizers uε ∈ uo +Nε of Fε , which
later on allow us to extract a converging subsequence in the limit ε ↓ 0. We start with the follow-
ing simple uniform energy bound.

Lemma 4.2. For any minimizer uε ∈ uo +Nε of Fε we have

Fε(uε) �
∫
Ω

f (x,uo,Duo)dx.

Proof. From the minimality of uε , note that the time independent extension uo of uo to Ω∞ is
an admissible comparison function, we conclude

Fε(uε) �Fε(uo) = 1

ε

∞∫
0

∫
Ω

e− t
ε f (x,uo,Duo)dx dt =

∫
Ω

f (x,uo,Duo)dx.

This proves the claim. �
By the definition of Fε and (4.1), the preceding lemma immediately implies

Corollary 4.3. Any minimizer uε ∈ uo +Nε of Fε satisfies

∞∫
0

∫
Ω

e− t
ε |∂tuε|2 dx dt � 2

∫
Ω

f (x,uo,Duo)dx + cEo

with c = c(ν,p,diam(Ω)) and Eo from (1.6) and

∞∫
0

∫
Ω

e− t
ε f (x,uε,Duε) dx dt � ε

∫
Ω

f (x,uo,Duo)dx.

In the case of non-negative integrands f in the first inequality holds true with c = 0.

In the sequel we shall improve the preceding bounds for the time and the spatial derivative,
in the sense that the weight e− t

ε � 1 can be removed in the integrals on the left-hand side. Here,
we use the fact that minimizers of variational functionals often satisfy certain conservation laws
(Noether theorem). These conservation laws usually follow from inner variations. Here, we use
inner variations with respect to the time variable. The argument is inspired by the paper of Serra
and Tilli [30], where the authors use inner variations to get uniform estimates for a sequence of
approximating solutions to the non-homogeneous wave equation; see also Mielke and Ortiz [26]
for dissipative systems. Before stating the result, we need to define for t > 0 the following aux-
iliary functions:
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Lε(t) :=
∫
Ω

1

2

∣∣∂tuε(·, t)
∣∣2

dx,

Hε(t) :=
∫
Ω

[
1

2

∣∣∂tuε(·, t)
∣∣2 + 1

ε
f (·, uε,Duε)(·, t)

]
dx,

Iε(t) :=
∞∫
t

e− s
ε Hε(s) ds.

Note that Lε(t) is non-negative, that Lε(t),Hε(t) are locally integrable on (0,∞), and that Iε(t)

is continuous on [0,∞). Furthermore, we have Iε(0) = Fε(uε) and Iε(t) → 0 as t ↑ ∞. For
non-negative integrands f � 0 also the functions Hε(t) and Iε(t) are non-negative; moreover,
Iε(t) is decreasing in this case.

Remark 4.4. In the general case, i.e. in the case of integrands satisfying (1.2), we can easily
derive a bound from below for Iε(t). The argument is as follows: Using the definition of Iε(t)

and (4.1) with t1 = t we see that

Iε(t) =
∞∫
t

∫
Ω

e− s
ε

[
1

2

∣∣∂suε(·, s)
∣∣2 + 1

ε
f (·, uε,Duε)(·, s)

]
dx ds

� 1

cε

∞∫
t

∫
Ω

e− s
ε
[|v|p + |Dv|p]

dx ds − ce− t
ε Eo � −ce− t

ε Eo

holds true with a constant c = c(ν,p,diam(Ω)) � 1.

Lemma 4.5. Let uε ∈ uo +Nε be a minimizer of Fε . Then, for a.e. t ∈ (0,∞) there holds

d

dt

(
e

t
ε Iε(t)

) = −2Lε(t) � 0.

In particular, the function t 	→ e
t
ε Iε(t) is decreasing.

Proof. As already mentioned above, we use inner variations with respect to time. To avoid an
overburdened notation we delete the subscript ε from our notation and simply write u ≡ uε as
well as F , L, H, I instead of Fε , Lε , Hε , Iε . Let ζ ∈ C∞

0 (R+). For δ ∈ R, we define the function
ϕδ ∈ C∞(R+) by

ϕδ(s) := s + δζ(s).

For sufficiently small values of |δ| � 1, we have that ϕδ is a diffeomorphism of R+ onto it-
self. The inverse function of ϕδ we denote by ψδ , i.e. we write ψδ := ϕ−1

δ . Then, we have
t = ϕδ(ψδ(t)) = ψδ(t) + δζ(ψδ(t)), so that

ψδ(t) = t − δζ
(
ψδ(t)

)
. (4.2)
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Now, we define the inner variation uδ(x, s) := u(x,ϕδ(s)), and compute its energy:

F(uδ) =
∞∫

0

∫
Ω

e− s
ε

[
1

2
|∂suδ|2 + 1

ε
f (·, uδ,Duδ)

]
dx ds

=
∞∫

0

∫
Ω

e− s
ε

[
1

2

∣∣∂tu
(
x,ϕδ(s)

)∣∣2
ϕ′

δ(s)
2 + 1

ε
f

(
x,u

(
x,ϕδ(s)

)
,Du

(
x,ϕδ(s)

))]
dx ds

=
∞∫

0

∫
Ω

e− ψδ(t)

ε

[
1

2

∣∣∂tu(x, t)
∣∣2

ϕ′
δ

(
ψδ(t)

)2 + 1

ε
f

(
x,u(x, t),Du(x, t)

)]
ψ ′

δ(t) dx dt

=
∞∫

0

∫
Ω

e− ψδ(t)

ε

[
1

2ψ ′
δ(t)

|∂tu|2 + ψ ′
δ(t)

ε
f (·, u,Du)

]
dx dt.

Since ϕ′
δ,ψ

′
δ ∈ [ 1

2 , 3
2 ] for |δ| � 1 small enough and e− ψδ(t)

ε � e
δ‖ζ‖∞

ε e− t
ε , we find that

F(uδ) < ∞ for |δ| � 1. To proceed further, we observe from (4.2) that the function ψδ ful-
fills the identities ψδ(t)|δ=0 = t , ψ ′

δ(t)|δ=0 = 1, d
dδ

ψδ(t)|δ=0 = −ζ(t) and d
dδ

ψ ′
δ(t)|δ=0 = −ζ ′(t)

for any t ∈ R+. Taking these identities and the fact that u ≡ uε is a minimizer of F ≡ Fε into
account, we can use uδ as a comparison map for u. Hence, δ 	→ F(uδ) has a minimum at δ = 0,
and therefore we must have (note that the function δ 	→ F(uδ) is differentiable with respect to δ)

0 = d

dδ

∣∣∣∣
δ=0

F(uδ) =
∞∫

0

∫
Ω

e− t
ε ζ(t)

ε

[
1

2
|∂tu|2 + 1

ε
f (·, u,Du)

]
dx dt

+
∞∫

0

∫
Ω

e− t
ε

[
1

2
ζ ′(t)|∂tu|2 − 1

ε
ζ ′(t)f (·, u,Du)

]
dx dt.

The preceding identity is often called first variation with respect to inner variations or sometimes
also second Euler–Lagrange equation. Taking the definitions of L, H and I into account, and
observing that I ′(t) = −e− t

ε H(t) for a.e. t ∈ R+, we can rewrite the second Euler–Lagrange
equation from above in the form

0 =
∞∫

0

[
−ζ(t)

1

ε
I ′(t) + ζ ′(t)I ′(t) + ζ ′(t)2e− t

ε L(t)

]
dt

=
∞∫

0

ζ ′(t)
[

1

ε
I(t) + I ′(t) + 2e− t

ε L(t)

]
dt,

where we performed in the last line an integration by parts and also used the fact that ζ has
compact support in R+. Since ζ ∈ C∞

0 (R+) was arbitrary, we conclude by the classical Du Bois-
Reymond lemma, that the expression appearing in the parenthesis must be constant, i.e. that
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1

ε
I(t) + I ′(t) + 2e− t

ε L(t) ≡ C for a.e. t ∈ (0,∞)

holds true for some constant C � 0. Since I ′(t)+ e− t
ε 2L(t) ∈ L1(R+) and I(t) → 0 as t → ∞,

we can conclude that C = 0. Therefore, multiplying the preceding identity by e
t
ε we find that

d

dt

(
e

t
ε I(t)

) = −2L(t) for a.e. t ∈ (0,∞).

Since L is non-negative, this proves the assertion of the lemma. �
Lemma 4.5 yields several important bounds for Fε-minimizers uε ∈ uo + Nε . We start with

the following easy consequence:

Corollary 4.6. Let uε ∈ uo +Nε be a minimizer of Fε . Then, for any t ∈ (0,∞) there holds

e
t
ε Iε(t) �

∫
Ω

f (x,uo,Duo)dx.

Proof. From Lemma 4.5 we know that the function t 	→ e
t
ε I(t) is decreasing. This, together

with Lemma 4.2 yields that

e
t
ε Iε(t) � e0Iε(0) =Fε(uε) �

∫
Ω

f (x,uo,Duo)dx,

proving the assertion of the lemma. �
Lemma 4.7. Any minimizer uε ∈ uo +Nε of Fε satisfies

∞∫
0

∫
Ω

|∂tuε|2 dx dt �
∫
Ω

f (x,uo,Duo)dx + cEo.

If the integrand f is non-negative, the inequality holds true with c = 0.

Proof. First, from Lemma 4.5 we recall the identity 2Lε(t) = − d
dt

(e
t
ε Iε(t)) for a.e. t ∈ (0,∞).

Integrating over (t1, t2) � (0,∞), using Corollary 4.6 and Remark 4.4, we find that

2

t2∫
t1

L(t) dt = −e
t
ε I(t)|t2t1 = e

t1
ε I(t1) − e

t2
ε I(t2) �

∫
Ω

f (x,uo,Duo)dx + cEo.

Since the right-hand side is independent of t1 and t2 we are allowed to pass to the limits t1 ↓ 0
and t2 ↑ ∞. This proves the result. �
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Lemma 4.8. Let uε ∈ uo + Nε be a minimizer of Fε . Then, for any 0 � t1 < t2 with t2 − t1 � ε

there holds

1

t2 − t1

t2∫
t1

∫
Ω

f (x,uε,Duε) dx dt � 2e

∫
Ω

f (x,uo,Duo)dx + cEo.

If the integrand f is non-negative, the inequality holds true with c = 0.

Proof. From (2.1) and Corollary 4.6 we obtain for any t ∈ (0,∞) and 0 < δ � ε that

t+δ∫
t

∫
Ω

f (x,uε,Duε) dx ds =
t+δ∫
t

[∫
Ω

f (x,uε,Duε) dx + cEo

]
ds − cδEo

� e
t+ε
ε

t+δ∫
t

[
e− s

ε

∫
Ω

f (x,uε,Duε) dx + cEo

]
ds

� e
t+ε
ε

∞∫
t

[
e− s

ε

∫
Ω

f (x,uε,Duε) dx + cEo

]
ds

� εee
t
ε Iε(t) + cεEo

� εe

∫
Ω

f (x,uo,Duo)dx + cεEo.

For 0 � t1 < t2 with t2 − t1 � ε we now choose K ∈N in such a way that (K −1)ε < t2 − t1 � Kε

holds true. Then, we have Kε � t2 − t1 + ε � 2(t2 − t1). Therefore, we conclude from the last
inequality that

t2∫
t1

∫
Ω

f (x,uε,Duε) dx dt

�
K−2∑
i=0

t1+(i+1)ε∫
t1+iε

∫
Ω

f (x,uε,Duε) dx dt +
t2∫

t1+(K−1)ε

∫
Ω

f (x,uε,Duε) dx dt

� eεK

∫
Ω

f (x,uo,Duo)dx + cεKEo

� (t2 − t1)

[
2e

∫
Ω

f (x,uo,Duo)dx + cEo

]
.

This proves the assertion of the lemma. �



3934 V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942
Corollary 4.9. Under the assumptions (1.2) and (1.3), any minimizer uε ∈ uo +Nε of Fε satisfies

T∫
0

∫
Ω

[|uε|p + |Duε|p
]
dx dt � cT

∫
Ω

f (x,uo,Duo)dx + cT Eo

for any T � ε and with a constant c = c(ν,p,diam(Ω)). In the case of non-negative inte-
grands f the inequality holds true with c = 0.

Proof. From Lemma 4.8 we have that

T∫
0

∫
Ω

f (x,uε,Duε) dx dt � 2eT

∫
Ω

f (x,uo,Duo)dx + cT Eo.

Together with (2.1), this yields the asserted estimate. �
4.3. Passage to the limit

Here, we will pass to the limit ε ↓ 0 and thereby prove the part of Theorem 1.2 concerning
the existence of variational solutions.

By Lemma 4.7 and Corollary 4.9 we know that the family (uε)ε>0 of Fε-minimizing functions
is bounded in Lp(0, T ;W 1,p(Ω,RN)) for any fixed T > 0, and that the corresponding time
derivatives ∂tuε are bounded in L2(Ω∞,RN) (both assertions holding uniformly with respect to
ε ∈ (0,1]). Therefore, there exists a (not relabeled) subsequence εj ↓ 0, which we denote still
by ε, and a measurable function u:Ω∞ → R

N with the following properties: For any T > 0
we have u ∈ Lp(0, T ;W 1,p(Ω,RN)). Moreover, the time derivative of u exists and satisfies
∂tu ∈ L2(Ω∞,RN). Further, we have u = uo on the parabolic boundary ∂PΩ∞ in the sense of
traces. Finally, in the limit ε ↓ 0 we have

⎧⎪⎨⎪⎩
uε ⇀ u weakly in Lp

(
ΩT ,RN

)
Duε ⇀ Du weakly in Lp

(
ΩT ,RNn

)
∂tuε ⇀ ∂tu weakly in L2(Ω∞,RN

)
.

As mentioned above, the limit ε ↓ 0 has to be understood in the sense that there exists a sequence
εj ↓ 0 such that the above convergences hold true as j → ∞. Moreover, by lower semicontinu-
ity u satisfies the energy estimates (1.7) and (1.8). In particular, estimate (1.7) implies that for
any 0 � t1 < t2 we have

∥∥u(·, t2) − u(·, t1)
∥∥2

L2(Ω)
=

∫
Ω

∣∣∣∣∣
t2∫

t1

∂tu(·, t) dt

∣∣∣∣∣
2

dx � |t2 − t1|
t2∫

t1

∫
Ω

|∂tu|2 dx dt

� |t2 − t1|
[∫

f (x,uo,Duo)dx + cEo

]
.

Ω
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Choosing t1 = 0, the preceding inequality implies for any t > 0 that∫
Ω

∣∣u(·, t)∣∣2
dx � 2

∫
Ω

|uo|2 dx + 2
∫
Ω

∣∣u(·, t) − uo

∣∣2
dx

� 2
∫
Ω

|uo|2 dx + 2t

[∫
Ω

f (x,uo,Duo)dx + cEo

]
.

Therefore, we conclude that

u ∈ C0, 1
2
([0, T ];L2(Ω)

)
for any T > 0.

For further reference we note that the same computations can be performed for u replaced by uε .
In particular, choosing t1 = 0 in the second last inequality, we find that∫

Ω

∣∣uε(·, t) − uo

∣∣2
dx � t

[∫
Ω

f (x,uo,Duo)dx + cEo

]
(4.3)

holds true for any t > 0.
At this point it remains to show that the limit function u is a variational solution in the sense

of Definition 1.1. To this aim we fix T > 0 and let ϕ ∈ Lp(0, T ;W 1,p

0 (Ω,RN)) with ∂tϕ ∈
L2(ΩT ,RN). For θ ∈ (0, T

2 ) we define the following cut-off function with respect to time:

ζθ (t) :=
⎧⎨⎩

1
θ
t if t ∈ [0, θ)

1 if t ∈ [θ,T − θ ]
1
θ
(T − t) if t ∈ (T − θ,T ].

Then, for any choice of ε, δ ∈ (0,1) the function

ϕ̃ε,δ(·, t) :=
{

δe
t
ε ζθ (t)ϕ(·, t) if t ∈ [0, T ]

0 if t > T

belongs to Nε , and therefore uε + ϕ̃ε,δ is an admissible comparison function for the Fε-minimi-
zing mapping uε . By the minimizing property of uε we therefore obtain that

Fε(uε) � Fε(uε + ϕ̃ε,δ)

holds true, and this can be rewritten in the form

0 �
T∫

0

∫
Ω

e− t
ε

[
1

2

[∣∣∂tuε + δ∂t

(
e

t
ε ζθϕ

)∣∣2 − |∂tuε|2
]

+ 1 [
f

(
x,uε + δe

t
ε ζθϕ,Duε + δe

t
ε ζθDϕ

) − f (x,uε,Duε)
]]

dx dt.

ε
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Evaluating the terms containing the time derivative, and using the convexity of f with respect to
the variables (u, ξ), i.e. the fact that

f
(·, uε + δe

t
ε ζθϕ,Duε + δe

t
ε ζθDϕ

) − f (·, uε,Duε)

� δe
t
ε ζθ

(
f (·, uε + ϕ,Duε + Dϕ) − f (·, uε,Duε)

)
holds true (here we need to have that δe

T
ε � 1, which is of course satisfied for δ small enough),

we conclude that

0 �
T∫

0

∫
Ω

e− t
ε

[
1

2
δ2

∣∣∂t

(
e

t
ε ζθϕ

)∣∣2 + δ∂tuε · ∂t

(
e

t
ε ζθϕ

)
+ 1

ε
δe

t
ε ζθ

[
f (·, uε + ϕ,Duε + Dϕ) − f (·, uε,Duε)

]]
dx dt.

We multiply the preceding inequality by ε/δ and subsequently let δ ↓ 0. This yields the estimate

0 �
T∫

0

∫
Ω

e− t
ε
[
ε∂tuε · ∂t

(
e

t
ε ζθϕ

) + e
t
ε ζθ

[
f (·, uε + ϕ,Duε + Dϕ) − f (·, uε,Duε)

]]
dx dt

=
T∫

0

∫
Ω

ζθ

[
∂tuε · ϕ + f (·, uε + ϕ,Duε + Dϕ) − f (·, uε,Duε)

]
dx dt

+ ε

T∫
0

∫
Ω

[
ζ ′
θ ∂tuε · ϕ + ζθ ∂tuε · ∂tϕ

]
dx dt.

Now, we consider v ∈ Lp(0, T ;W 1,p
uo

(Ω,RN)) with ∂tv ∈ L2(ΩT ,RN). Then, ϕ = v − uε is an
admissible choice in the preceding calculation. Therefore, the last inequality can be rewritten in
terms of v as follows:

T∫
0

∫
Ω

f (·, uε,Duε) dx dt �
T∫

0

∫
Ω

(1 − ζθ )f (·, uε,Duε) dx dt +
T∫

0

∫
Ω

ζθ∂tuε · (v − uε) dx dt

+
T∫

0

∫
Ω

ζθf (·, v,Dv)dx dt

+ ε

T∫
0

∫
Ω

[
ζ ′
θ ∂tuε · (v − uε) + ζθ ∂tuε · ∂t (v − uε)

]
dx dt

=: Iε + IIε + IIIε + IVε.
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The meaning of Iε–IVε is obvious in this context. The term Iε is treated as follows: First we
decompose the domain of integration in two parts (note that 1 − ζθ (t) ≡ 0 for t ∈ [θ,T − θ ]):

Iε =
θ∫

0

∫
Ω

(1 − ζθ )f (·, uε,Duε) dx dt +
T∫

T −θ

∫
Ω

(1 − ζθ )f (·, uε,Duε) dx dt

=: I(1)
ε + I(2)

ε .

The terms I(1)
ε and I(2)

ε can be treated completely analogously, and therefore we restrict to the
first one. If θ � ε, the term I(1)

ε can be bounded with the help of (2.1) and Lemma 4.8 as follows:

I(1)
ε �

θ∫
0

(1 − ζθ )

[∫
Ω

f (·, uε,Duε) dx + cEo

]
dt

�
θ∫

0

[∫
Ω

f (·, uε,Duε) dx + cEo

]
dt

� cθ

[∫
Ω

f (x,uo,Duo)dx + Eo

]
.

Similarly, we can show that I(2)
ε is bounded by the same quantity, so that finally we have shown

that

Iε � cθ

[∫
Ω

f (x,uo,Duo)dx + Eo

]
.

The term IIε can be rewritten in the form

IIε =
T∫

0

∫
Ω

ζθ∂tv · (v − uε) dx dt − 1

2

T∫
0

∫
Ω

ζθ∂t |v − uε|2 dx dt.

Since ζθ (T ) = 0 = ζθ (0), we obtain for the second term on the right-hand side by an integration
by parts that

−1

2

T∫
0

∫
Ω

ζθ∂t |v − uε|2 dx dt = 1

2

T∫
0

∫
Ω

ζ ′
θ |v − uε|2 dx dt

= 1

2θ

θ∫
0

∫
Ω

|v − uε|2 dx dt − 1

2θ

T∫
T −θ

∫
Ω

|v − uε|2 dx dt.

For the first term on the right-hand side we use estimate (4.3) and get
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1

2θ

θ∫
0

∫
Ω

|v − uε|2 dx dt

�
[(

1

2θ

θ∫
0

∫
Ω

|v − u0|2 dx dt

) 1
2

+
(

1

2θ

θ∫
0

∫
Ω

|uε − u0|2 dx dt

) 1
2
]2

�
[(

1

2θ

θ∫
0

∫
Ω

|v − u0|2 dx dt

) 1
2

+ c
√

θ

(∫
Ω

f (·, uo,Duo)dx + Eo

) 1
2
]2

.

Collecting terms and using the weak convergence uε ⇀ u in L2(ΩT ,RN) we can pass to the
limit ε ↓ 0 in IIε and obtain that

lim inf
ε↓0

IIε �
T∫

0

∫
Ω

ζθ∂tv · (v − u)dx dt − 1

2θ

T∫
T −θ

∫
Ω

|v − u|2 dx dt

+
[(

1

2θ

θ∫
0

∫
Ω

|v − u0|2 dx dt

) 1
2

+ c
√

θ

(∫
Ω

f (·, uo,Duo)dx + Eo

) 1
2
]2

.

Finally, since ∂tuε and uε are uniformly bounded in L2(ΩT ,RN), we have that IVε → 0
as ε ↓ 0. Inserting the previous observations above and using the lower semicontinuity of
the convex functional w 	→ ∫ T

0

∫
Ω

f (x,w,Dw)dx dt with respect to weak convergence in
L1(0, T ;W 1,1(ΩT ,RN)), we arrive at

T∫
0

∫
Ω

f (·, u,Du)dx dt

� lim inf
ε↓0

T∫
0

∫
Ω

f (·, uε,Duε) dx dt

�
T∫

0

∫
Ω

ζθ

[
∂tv · (v − u) + f (·, v,Dv)

]
dx dt + cθ

[∫
Ω

f (·, uo,Duo)dx + Eo

]

+
[(

1

2θ

θ∫
0

∫
Ω

|v − u0|2 dx dt

) 1
2

+ c
√

θ

(∫
Ω

f (·, uo,Duo)dx + Eo

) 1
2
]2

− 1

2θ

T∫ ∫
|v − u|2 dx dt.
T −θ Ω
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Note, that this last inequality holds true for any θ ∈ (0, T
2 ), and therefore we can pass to the limit

θ ↓ 0 in the right-hand side. We arrive at

T∫
0

∫
Ω

f (·, u,Du)dx dt �
T∫

0

∫
Ω

[
∂tv · (v − u) + f (·, v,Dv)

]
dx dt

+ 1

2

∥∥v(·,0) − uo

∥∥2
L2(Ω)

− 1

2

∥∥(v − u)(·, T )
∥∥2

L2(Ω)
.

This proves the claim, that is u is a variational solution to (1.5).

4.4. Uniqueness for strictly convex integrands

Here, we prove that the parabolic minimizer is unique, if f is strictly convex. To this aim, we
suppose that

u1, u2 ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

)) ∩ C0([0, T ];L2(Ω,RN
))

, for any T > 0

are two different variational solutions to (1.5). Adding the variational inequalities (1.5) for u1
and u2 for some fixed T > 0 and taking into account the fact that ‖(v − ui)(·, T )‖2

L2(Ω)
� 0 for

i = 1,2 yields for any v ∈ Lp(0, T ;W 1,p
uo

(Ω,RN)) with ∂tv ∈ L2(ΩT ,RN) that

T∫
0

∫
Ω

[
f (x,u1,Du1) + f (x,u2,Du2)

]
dx dt

� 2

T∫
0

∫
Ω

[
∂tv · (v − w) + f (x, v,Dv)

]
dx dt + ∥∥v(·,0) − uo

∥∥2
L2(Ω)

.

Here, we have abbreviated w := u1+u2
2 . At this point we would like to choose the comparison map

v = w in the previous inequality. However, this is not allowed, since in general we do not know
that ∂tw belongs to L2(ΩT ,RN). For this reason, we shall use the time-regularized function [w]h
from (2.3) with vo = uo and h ∈ (0, T ]. By Lemma 2.2 we have [w]h ∈ Lp(0, T ;W 1,p(Ω,RN))

with ∂t [w]h ∈ L2(ΩT ,RN) and [w]h = uo on ∂PΩT . Therefore, we are allowed to choose v =
[w]h as comparison function in the last inequality and this leads to

T∫
0

∫
Ω

[
f (x,u1,Du1) + f (x,u2,Du2)

]
dz

� 2

T∫
0

∫
Ω

[
∂t [w]h · ([w]h − w

) + f
(
x, [w]h,D[w]h

)]
dz =: 2(Ih + IIh), (4.4)

with the obvious meaning of Ih and IIh. Due to Lemma 2.2 (v) we know that Ih is non-negative,
since



3940 V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942
Ih = − 1

h

∫
ΩT

∣∣[w]h − w
∣∣2

dz � 0.

In order to treat IIh we first observe by the convexity of f that

T∫
0

∫
Ω

f (x,w,Dw)dx dt � 1

2

T∫
0

∫
Ω

[
f (x,u1,Du1) + f (x,u2,Du2)

]
dx dt < ∞,

i.e. f (x,w,Dw) in L1(ΩT ,RNn). This allows us to apply Lemma 2.3 to infer that

lim
h↓0

IIh =
T∫

0

∫
Ω

f (x,w,Dw)dx dt =
T∫

0

∫
Ω

f

(
x,

1

2
(u1 + u2),

1

2
(Du1 + Du2)

)
dx dt

holds true. Using this observation and the fact that Ih � 0 from above we can pass in (4.4) to the
limit h ↓ 0 to obtain that

T∫
0

∫
Ω

[
f (x,u1,Du1) + f (x,u2,Du2)

]
dx dt

� 2

T∫
0

∫
Ω

f

(
x,

1

2
(u1 + u2),

1

2
(Du1 + Du2)

)
dx dt

<

T∫
0

∫
Ω

[
f (x,u1,Du1) + f (x,u2,Du2)

]
dx dt.

In the last step we used the strict convexity of f and the assumption that u1 �≡ u2. Thus, we
arrived at the desired contradiction. This proves the uniqueness of variational solutions and thus
finishes the proof of Theorem 1.2.
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Appendix A. Existence of the time derivative

In this Section we prove that under standard growth conditions from above and below, i.e.
(1.2) and (1.9), variational solutions admit a time derivative ∂tu in the natural dual space
Lp′

(0, T ;W−1,p′
(Ω,RN)). For the proof it is convenient to use the notion of parabolic min-

imizers from Definition 3.1. From Proposition 3.2 we already know that a variational solu-
tion u is also a parabolic minimizer. Therefore, taking sϕ instead of ϕ in (3.1), we get for any
ϕ ∈ C∞

0 (ΩT ,RN) and s ∈ (0,1) that

∣∣∣∣∣
T∫

0

∫
Ω

u · ∂tϕ dx dt

∣∣∣∣∣ �
∣∣∣∣∣

T∫
0

∫
Ω

1

s

[
f (x,u + sϕ,Du + sDϕ) − f (x,u,Du)

]
dx dt

∣∣∣∣∣.
Passing to the limit s ↓ 0, using the bounds for Dξf and Duf from (1.10) and Hölder’s inequal-
ity, we find that

∣∣∣∣∣
T∫

0

∫
Ω

u · ∂tϕ dx dt

∣∣∣∣∣ �
T∫

0

∫
Ω

[∣∣Dξf (x,u,Du)
∣∣|Dϕ| + ∣∣Duf (x,u,Du)

∣∣|ϕ|]dx dt

� c

T∫
0

∫
Ω

(|Du|p−1 + |u|p−1 + |g| + |G| + 1
)(|Dϕ| + |ϕ|)dx dt

� c

( T∫
0

∫
Ω

(|Du|p + |u|p + |g|p′ + |G|p′ + 1
)
dx dt

) 1
p′

‖ϕ‖Lp(0,T ;W 1,p(Ω))

holds true for any testing function ϕ ∈ C∞
0 (ΩT ,RN). By the density of C∞

0 (ΩT ,RN) in
Lp(0, T ;W 1,p(Ω,RN)) we can conclude from the preceding inequality that

∂tu ∈ Lp′(
0, T ;W−1,p′(

Ω,RN
))

,

proving the claim.

References

[1] G. Akagi, U. Stefanelli, A variational principle for doubly nonlinear evolution, Appl. Math. Lett. 23 (9) (2010)
1120–1124.

[2] G. Akagi, U. Stefanelli, Weighted energy-dissipation functionals for doubly nonlinear evolution, J. Funct. Anal.
260 (9) (2011) 2541–2578.

[3] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,
second edition, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008.

[4] V. Bögelein, F. Duzaar, P. Marcellini, Parabolic equations with p,q-growth, J. Math. Pures Appl. 100 (4) (2013)
535–563.

[5] V. Bögelein, F. Duzaar, P. Marcellini, Parabolic systems with p,q-growth: a variational approach, Arch. Ration.
Mech. Anal. 210 (1) (2013) 219–267.

[6] H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math. 9 (1971) 513–534.

http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416B6167692D53746566616E656C6C693A32303130s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416B6167692D53746566616E656C6C693A32303130s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416B6167692D53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416B6167692D53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416D62726F73696F2D4769676C692D536176617265s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib416D62726F73696F2D4769676C692D536176617265s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib426F6567656C65696E2D44757A6161722D4D617263656C6C696E69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib426F6567656C65696E2D44757A6161722D4D617263656C6C696E69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib426F6567656C65696E2D44757A6161722D4D617263656C6C696E692D32s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib426F6567656C65696E2D44757A6161722D4D617263656C6C696E692D32s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib6272657A6973s1


3942 V. Bögelein et al. / J. Differential Equations 256 (2014) 3912–3942
[7] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Notas
de Matemática (50), North-Holl. Math. Stud., vol. 5, North-Holland Publishing Co., American Elsevier Publishing
Co., Inc., Amsterdam–London, New York, 1973.

[8] H. Brézis, I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du
temps, C. R. Acad. Sci. Paris Sér. A–B 282 (17) (1976) 971–974.

[9] H. Brézis, I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du
temps, C. R. Acad. Sci. Paris Sér. A–B 282 (20) (1976) 1197–1198.

[10] Y. Cai, S. Zhou, Existence and uniqueness of weak solutions for a non-uniformly parabolic equation, J. Funct. Anal.
257 (10) (2009) 3021–3042.

[11] E. De Giorgi, Conjectures concerning some evolution problems, in: A Celebration of John F. Nash, Jr., Duke Math. J.
81 (2) (1996) 255–268 (in Italian).

[12] E. De Giorgi, Selected Papers, Luigi Ambrosio, Gianni Dal Maso, Marco Forti, Mario Miranda, Sergio Spagnolo
(Eds.), Springer-Verlag, Berlin, 2006.

[13] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Company, Tuck Link, Singa-
pore, 2003.

[14] J. Habermann, Global gradient estimates for non-quadratic vector-valued parabolic quasi-minimizers, preprint.
[15] J. Habermann, Vector-valued parabolic ω-minimizers, preprint.
[16] J. Habermann, Higher integrability for upper gradients of vector-valued parabolic quasi-minimizers on metric

spaces, preprint.
[17] J. Kinnunen, P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,

Ann. Mat. Pura Appl. (4) 185 (3) (2006) 411–435.
[18] J. Kinnunen, N. Marola, M. Miranda, F. Paronetto, Harnack’s inequality for parabolic De Giorgi classes in metric

spaces, Adv. Differential Equations 17 (2012) 801–832.
[19] J. Kinnunen, M. Masson, Parabolic comparison principle and quasiminimizers in metric measure spaces, Proc.

Amer. Math. Soc. (2014), in press.
[20] A. Lichnewsky, R. Temam, Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equa-

tions 30 (3) (1978) 340–364.
[21] M. Masson, M. Miranda Jr., F. Paronetto, M. Parviainen, Local higher integrability for parabolic quasiminimizers

in metric spaces, Ric. Mat. 62 (2) (2013) 279–305.
[22] M. Masson, M. Parviainen, Global higher integrability for parabolic quasiminimizers in metric spaces, J. Anal.

Math. (2014), in press.
[23] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions,

Arch. Ration. Mech. Anal. 105 (3) (1989) 267–284.
[24] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Sc. Norm. Super.

Pisa Cl. Sci. (4) 23 (1) (1996) 1–25.
[25] P. Marcellini, G. Papi, Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006) 412–443.
[26] A. Mielke, M. Ortiz, A class of minimum principles for characterizing the trajectories of dissipative systems, ESAIM

Control Optim. Calc. Var. 14 (3) (2008) 494–516.
[27] A. Mielke, U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc.

Var. 17 (1) (2011) 52–85.
[28] M. Parviainen, Global higher integrability for parabolic quasiminimizers in nonsmooth domains, Calc. Var. Partial

Differential Equations 31 (1) (2008) 75–98.
[29] R. Rossi, G. Savaré, A. Segatti, U. Stefanelli, A variational principle for gradient flows in metric spaces, C. R. Math.

Acad. Sci. Paris 349 (23–24) (2011) 1225–1228.
[30] E. Serra, P. Tilli, Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De

Giorgi, Ann. of Math. (2) 175 (3) (2012) 1551–1574.
[31] E. Spadaro, U. Stefanelli, A variational view at the time-dependent minimal surface equation, J. Evol. Equ. 11 (4)

(2011) 793–809.
[32] U. Stefanelli, The De Giorgi conjecture on elliptic regularization, Math. Models Methods Appl. Sci. 21 (2011)

1377–1394.
[33] W. Wieser, Parabolic Q-minima and minimal solutions to variational flow, Manuscripta Math. 59 (1) (1987) 63–107.

http://refhub.elsevier.com/S0022-0396(14)00114-4/bib6272657A69732D626F6F6Bs1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib6272657A69732D626F6F6Bs1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib6272657A69732D626F6F6Bs1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4272657A69732D456B656C616E642D31s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4272657A69732D456B656C616E642D31s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4272657A69732D456B656C616E642D32s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4272657A69732D456B656C616E642D32s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4361695A686F753A32303039s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4361695A686F753A32303039s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib446547696F7267693A31393936s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib446547696F7267693A31393936s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib446547696F7267693A32303036s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib446547696F7267693A32303036s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib474955535449s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib474955535449s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4C696E6471766973743A32303036s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4C696E6471766973743A32303036s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4D61726F6C612D4D6972616E64612D5061726F6E6574746Fs1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4D61726F6C612D4D6972616E64612D5061726F6E6574746Fs1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4D6173736F6Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4B696E6E756E656E2D4D6173736F6Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4C6963686E6577736B792D54656D616Ds1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4C6963686E6577736B792D54656D616Ds1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D6173736F6E2D4D6972616E64612D5061726F6E6574746F2D506172766961696E656Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D6173736F6E2D4D6972616E64612D5061726F6E6574746F2D506172766961696E656Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D6173736F6E2D506172766961696E656Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D6173736F6E2D506172766961696E656Es1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D617263656C6C696E693A31393839s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D617263656C6C696E693A31393839s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D617263656C6C696E693A31393936s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D617263656C6C696E693A31393936s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D617263656C6C696E692D506170693A32303036s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D69656C6B652D4F7274697A3A32303038s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D69656C6B652D4F7274697A3A32303038s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D69656C6B652D53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib4D69656C6B652D53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib506172766961696E656E3A32303038s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib506172766961696E656E3A32303038s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib52535353s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib52535353s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib53657272612D54696C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib53657272612D54696C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib5370616461726F2D53746566616E656C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib5370616461726F2D53746566616E656C6C69s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib53746566616E656C6C693A32303131s1
http://refhub.elsevier.com/S0022-0396(14)00114-4/bib5769657365723A31393837s1

	Existence of evolutionary variational solutions via the calculus of variations
	1 Introduction
	1.1 The main result
	1.2 Examples
	1.3 Passing to the parabolic system
	1.4 The method of the proof and some comments on the history of the problem

	2 Preliminaries and notations
	2.1 Notations
	2.2 Lower bound for the functional
	2.3 The initial condition
	2.4 Molliﬁcation in time

	3 Variational solutions versus parabolic minimizers
	4 Existence via elliptic convex minimization
	4.1 A sequence of minimizers to a variational functional on Ω∞
	4.2 Energy bounds
	4.3 Passage to the limit
	4.4 Uniqueness for strictly convex integrands

	Acknowledgments
	Appendix A Existence of the time derivative
	References


