
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Mapping forest windthrows using high spatial resolution multispectral
satellite images
Michele Dalpontea,*,1, Sebastian Marzinia,b,1, Yady Tatiana Solano-Correac,1, Giustino Tononb,
Loris Vescovoa, Damiano Gianellea
a Dept. of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige (TN),
Italy
b Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 5, 39100 Bolzano, Italy
c Center for Information and Communication Technology, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy

A R T I C L E I N F O

Keywords:
Windthrows mapping
Change vector analysis
Satellite multispectral data
Sentinel-2
PlanetScope
Change detection
Forests

A B S T R A C T

Wind disturbances represent the main source of damage in European forests, affecting them directly (wind-
throws) or indirectly due to secondary damages (insect outbreaks and forest fires). The assessment of wind-
throws damages is very important to establish adequate management plans and remote sensing can be very
useful for this purpose. Many types of optical remote sensing data are available with different spectral, spatial
and temporal resolutions, and many options are possible for data acquisition, i.e. immediately after the event or
after a certain time. The objective of this study is to compare the windthrows mapping capabilities of two
multispectral satellite constellations (i.e. Sentinel-2 and PlanetScope) characterized by very different spectral,
spatial and temporal resolutions, and to evaluate the impact of the acquisition conditions on the mapping results.
The analysed area, with an extent of 732 km2, is located in the Trentino-South Tyrol region (Italy) which was
affected by the Vaia storm on the 27th-30th of October 2018, causing serious forest damages. The change vector
analysis technique was used to detect the windthrows. For each data source, two pairs of images were con-
sidered: 1) pre- and post- event images acquired as close as possible to the event; 2) pre- and post- event images
acquired at optimal conditions, i.e. at similar phenological state and similar illumination conditions. The results
obtained with the two satellite constellations are very similar despite their different resolutions. Data acquired in
optimal conditions allowed having the best detection rate (accuracy above 80 %), while data acquired just after
the event showed many limitations. Improved spatial resolution (PlanetScope data) allows for a better deli-
neation of the borders of the windthrow areas and of the detection of smaller windthrow patches.

1. Introduction

Disturbances are essential elements of forest environments, driving
the natural processes of regeneration and adaptation. Among the dif-
ferent disturbance events, wind is the most important, being re-
sponsible for more than 50 % of the primary damages to the forest
ecosystems (Schelhaas, 2008). Wind can act on small patches or at the
landscape scale and the severity of the damages depends on different
factors, but mainly on the intensity of the event. In Europe extreme
winds are mostly linked to winter extra-tropical cyclones that develop
over the Atlantic ocean due to temperature gradients between the dif-
ferent latitudes (Mitchell, 2013). Usually, such events are preceded by
heavy rainfalls, followed by strong wind guts, which reach a speed

higher than 120 km/h. Events with a long recurrence interval are more
intense and dangerous than those with a short return period. Generally,
windthrows happen when trees experience uprooting or stem breakage,
particularly when the wind pressure on the tree is higher than the shear
strength of the soil and the root system (Ruel, 1995). Different variables
influence these dynamics such as topography, soil conditions (soil water
content, depth, soil organic matter, permafrost), stand conditions
(vertical and horizontal structures, species composition) and manage-
ment activities (Albrecht et al., 2012; Jalkanen and Mattila, 2000;
Mitchell, 2013; Schelhaas, 2008; Seidl et al., 2014). Windthrows events
can have considerable economic effects; trees that experience uprooting
or stem breakage have a low timber quality due to the different log
damages, while those that resist produce reaction wood, which alters
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the structure making the timber less desirable for economical purposes.
Economic consequences are more serious when the damaged parts of
the tree are the most valuable, such as those below the crown. More-
over, secondary disturbances (saproxylic parasites outbreak or fungal
infections) concur at reducing the timber value, amplifying the da-
mages also to stand patches that were not directly subjected by a
windthrow. Therefore, it is very important to timely map the wind-
throw areas with a high level of accuracy as timber and other woody
debris should be harvested in reasonable time (normally one/two years
after the event) to overcome serious economic loss (Moreau et al.,
2003).

The detection and delineation of windthrow areas can be done in
different ways. Usually, field surveys and aerial imagery interpretation
are carried out as a preliminary assessment, though they present many
different limitations related to the techniques and the working en-
vironment (Rüetschi et al., 2019; Schwarz et al., 2003). Nowadays,
remote sensing represents the main cost-effective tool for windthrows
detection and analysis. The efficiency in detecting windthrows using
optical remote sensing systems depends on different criteria (Schwarz
et al., 2003): i) data availability/temporal resolution: operational
analysis and assessments need a continuous provisioning of data, thus
remote sensing images acquired with a high temporal frequency are
decisive. Moreover, images acquired frequently can help to cope with
limitations related to the weather (presence of clouds that occlude the
information); ii) spectral resolution: the sensor used should acquire
several bands sensitive to vegetation changes across the visible and
infrared domains (including also both short-wave infrared and near-
infrared wavelengths); and iii) spatial resolution, depending on the
landscape homogeneity and on the type of damages that need to be
mapped (large scale or small scale).

The temporal and spatial resolutions are very important factors to
consider. Since the mapping of damages is required as soon as possible
after an event, it is important to access data acquired with a high fre-
quency, so the chance to have a clear sky day during an image acqui-
sition after the event should be maximized: a daily product maximizes
the probability to get a good image while a weekly product could create
significant delays. Frequently, catastrophic natural events, such as
storms, happen in seasons characterized by high precipitation and thus
cloudy sky is a major constraint. On the other side, remote sensing
images obtained in a period soon after the event could not be the best
due to high levels of humidity, woody materials on the ground, debris,
and the possible presence of snow.

A trade-off between spatial and spectral resolution exists. Regarding
the spatial resolution, medium-resolution sensors (e.g. MODIS) are not
very helpful in the analysis of forest cover changes, while High spatial
Resolution (HR, e.g. Sentinel-2) and Very High Spatial Resolution
(VHR, e.g. GeoEye, Quickbird, Ikonos, PlanetScope) data are able to
detect small-scale changes or even damaged single-trees, in relation to
the heterogeneity/homogeneity of the landscape (Rich et al., 2010).
Nevertheless, the application of VHR images in forestry studies involves
high costs for the acquisition of such data (Einzmann et al., 2017; Rich
et al., 2010). Regarding the spectral resolution, medium resolution
sensors usually acquire information in several spectral bands (at the
cost of a lower spatial resolution), whereas HR and VHR sensors usually
acquire information in four (blue, green, red, and near infrared - NIR) to
ten bands (including some Short Wave Infrared bands - SWIR). Green,
red, and NIR bands and their combinations provide information related
to vegetation phenology and health status, while SWIR bands can be
useful to study vegetation properties related to water content (Ceccato
et al., 2002, 2001; Vogelmann, 1990). Thus, HR sensors represent a
good trade-off between spatial and spectral resolutions.

The identification of windthrows using remote sensing data is not a
new topic and in the literature many studies using different methods
and different platforms can be found. Different temporal approaches are
adopted: there are studies based on single time data (one image before
and one after the event - (Rich et al., 2010)) and others using multi

temporal data (several images around the event - (Einzmann et al.,
2017; Jonikavičius and Mozgeris, 2013; Rüetschi et al., 2019; Schwarz
et al., 2003). Regarding the identification methods, some authors are
using supervised classification techniques (Einzmann et al., 2017;
Schwarz et al., 2003) while others make use of unsupervised thresh-
olding (Jonikavičius and Mozgeris, 2013; Rich et al., 2010). Con-
sidering different platforms, the identification of windthrows is often
based on satellite data (Einzmann et al., 2017; Jonikavičius and
Mozgeris, 2013), although several studies make use of airborne (Hamdi
et al., 2019; Wang and Xu, 2010) or UAV data (Duan et al., 2017;
Einzmann et al., 2017).

Studies based on single time data use data acquired after the event
and in many cases with specific acquisitions from airborne (Hamdi
et al., 2019) and UAV platforms (Duan et al., 2017; Einzmann et al.,
2017). Multitemporal studies are mainly carried out with satellite data
such as e.g. Landsat ETM+data (Jonikavičius and Mozgeris, 2013;
Schwarz et al., 2003; Vorovencii, 2014; Wang and Xu, 2010) or in-
cluding SAR data (Rüetschi et al., 2019; Schwarz et al., 2003; Tanase
et al., 2018). Classification techniques include Support Vector Machines
(Baumann et al., 2014; Hamdi et al., 2019), Random Forest (Duan et al.,
2017; Einzmann et al., 2017) or Maximum Likelihood (Wang and Xu,
2010). Among the unsupervised studies, the detection of the windthrow
areas is done mainly by extracting specific indexes like the windthrow
index (Rüetschi et al., 2019) or the disturbance index (Baumann et al.,
2014; Haidu et al., 2019). A few studies were based on the identifica-
tion of fallen tree stems and these studies were all based on VHR images
(Chirici et al., 2019; Nyström et al., 2014; Pirotti, 2011).

Analysing the literature of remote sensing data, one possible ap-
proach to be considered is the Change Detection (CD) one. It is worth
noting that this approach is generally not used for windthrows detec-
tion. One of the most well-known CD techniques is the Change Vector
Analysis (CVA). The principle of CVA is to describe the change of in-
dividual features between two dates as a vector within the features
space, which can be described by a magnitude and an angle/direction
component. The magnitude component expresses the amount of change
while the angle/direction component informs about the type of change.
This technique is widely used for many different applications such as
fire detection, vegetation monitoring, deforestation detection, wetland
change detection, agriculture monitoring, among others (Johnson and
Kasischke, 1998; Roemer et al., 2010; Singh and Talwar, 2014), but to
the best of our knowledge, very few studies exist that have used such
technique for windthrows detection (Wang and Xu, 2010). In parti-
cular, (Wang and Xu, 2010) compared four CD algorithms to detect
hurricane damages to forests. They concluded that CVA, compared with
two other methods (post-classification comparison and univariate
image differencing), was providing the best results. The full potential of
using CVA for detection of windthrows needs to be fully explored,
alongside with the relevance of using images acquired at different
spectral, spatial and temporal resolutions.

Accordingly, this study aims at comparing the windthrows mapping
capabilities of two multispectral satellite constellations (i.e. Sentinel-2
and PlanetScope) characterized by very different spectral, spatial and
temporal resolutions, and to evaluate the impact of the acquisition
conditions (i.e. sun illumination and phenological phase of the vege-
tation) on the mapping results. To reach such goals, we analysed two
scenarios: one considering data of pre- and post-event as close as pos-
sible in time (as allowed by weather conditions) to the windthrows
event, and one scenario considering data of pre- and post-event ac-
quired at optimal conditions (i.e. equal phenological phase and equal
illumination conditions).

2. Study area and data set description

2.1. Study area

The study area is located in the North-East of the Autonomous

M. Dalponte, et al. Int J Appl  Earth Obs Geoinformation 93 (2020) 102206

2



Province of Trento (PAT) in Italy (Fig. 1) and it includes the forest areas
of the administrative districts of the Fiemme and Fassa valleys. The
total extension of the area is 732 km2 out of which 454 km2 are forests.
The most common tree species include Norway spruce (Picea abies (L.)
H. Karst), silver fir (Abies alba Mill.) and European beech (Fagus sylva-
tica L.). The landscape is primarily mountainous. The location and the
extension of the study area was chosen as it was heavily hit by a
windthrows event.

Between the 27th and the 30th of October 2018, the North East of
Italy was hit by the Vaia storm, one of the most intense storm events of
the country in the last decades. The precipitations during the storm
were very severe fluctuating around 300−400mm (Cat Berro et al.,
2018): they were more intense on mountain areas (with peaks of
800mm) including severe snowfalls at higher altitudes. Winds reached
peaks of 200 km/h. The consequences were different: in many moun-
tain valleys rivers and streams flooded, triggering debris flows and
landslides that impacted both facilities and infrastructures with mul-
tiple and several damages and also some casualties. Quantification of
forest damages was carried out by local Government entities (Forest
Service of PAT) by field surveys and photo-interpretation on satellite
images (a windthrows map was produced from this analysis). From this
first quantification, inside our study area, a total of 59.4 km2 of forest
were damaged (out of 454 km2). These quantifications are not really
reliable due to the techniques used to quantify the damages right after
the event, together with the vegetation and meteorological conditions
(e.g. phenology changes, presence of snow, high cloud coverage) re-
lated to the interested sites. Field operations (salvage logging) are still
ongoing (as May 2020) to harvest the timber in windthrow areas and
will require more than three years of work. Moreover, not all the trees
can be collected since on many sites the slope is too steep.

2.2. Data set description

In order to achieve the proposed goals of this research, data from
two different sensors were considered: Sentinel-2 (S2) and PlanetScope
(PS). These two sensors have different characteristics in terms of spa-
tial, spectral and temporal resolution and thus, we expect to see slightly
different results from each of them. Associated with the spectral in-
formation (see Table 1) there is also the radiometric quality which
could be particularly important for PS, since at higher spatial resolu-
tions the radiometric quality is not always guaranteed. In any case,
there are already some studies in literature that have proven the
radiometric quality of PS to be similar to that of Landsat (Houborg and
McCabe, 2018).

2.2.1. Sentinel-2 data
Sentinel-2 is a constellation of two satellites managed by the

European Space Agency (ESA) under the Copernicus programme, pro-
viding high spatial resolution (HR) optical imaging every 5 days (with
its two satellites). S2 images can be freely downloaded and they are
widely used for monitoring changes on the Earth’s surface (https://
scihub.copernicus.eu/). Each S2 multispectral image has a swath width
of 290 km and is composed of 13 spectral bands at three different
spatial resolutions (see Table 1). For the purposes of this paper, S2
images of the designated study area were downloaded for four different
dates (see Table 2). Two dates were selected as close as possible to the
event, before and after it, while two other dates were selected -in June
2018 and 2019- before and after the event to obtain optimal acquisition
conditions, i.e. optimal sun angle and comparable forest phenological
stage for both images (see Table 2 for phenological phases). Due to the
weather conditions typical of the autumn season, and of the fact that S2
has a revisit time of about 5 days the closest images without cloud cover
covering the entire study area were quite far from the event, compared
to PS data.

Fig. 1. S2 satellite image (10m resolution) of the area analysed
with the administrative boundaries (red line) of the valleys in-
terested by this study and the subset area used for as manual re-
ference (blue line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of
this article).

Table 1
Spectral bands and spatial resolution for the Sentinel-2 (S2A & S2B)a and Pla-
netScope sensorsb.

Sentinel-2 PlanetScope

Band Spectral
range (nm)

Spatial
resolution
(m)

Band Spectral
range (nm)

Spatial
resolution
(m)

Blue 1 432–453 60 1 455–515 3
2 459–525 10

Green 3 542–578 10 2 500–590 3
Red 4 649–680 10 3 590–670 3
NIR 5 697–712 20 4 780–860 3

6 733–748 20
7 773–793 20
8 780–886 10
8A 854–875 20

SWIR 9 935–955 60
10 1358–1389 60
11 1568–1659 20
12 2115–2290 20

a https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-
instrument.

b https://earth.esa.int/web/guest/missions/3rd-party-missions/current-
missions/planetscope.
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2.2.2. PlanetScope data
PlanetScope is a constellation of more than 120 nano-satellites

(Dove satellites) owned by the imaging company Planet Labs, Inc.
(PlanetTeam, 2017) providing daily HR multispectral images, com-
posed by four spectral bands (see Table 1) at 3m spatial resolution.
Though PS is a commercial satellite, many of its products are open
access for research purposes and they can be downloaded from their
website (www.planet.com). Each PS multispectral image covers an area
of 24× 8 km. As per the S2 case, images of the designated study area
were downloaded for four different dates (see Table 2). In this case, the
pre-near event images (22nd of October 2018) were not completely
covering the study area (they covered 95.7 % of it) and thus they were
mosaicked with images acquired on the 21st (2.8 % of the area) and
24th of October 2018 (1.4 % of the area).

2.3. Ancillary data

Three ancillary data were used for the analyses. All the maps were
available as vectorial files and were converted to raster ones (at the
corresponding spatial resolution of S2 or PS) for validation analysis.

1 A forest type map of the study area. This map indicates the type of
forest present in each cadastral parcel of the study area that is
classified as forest. These data are the results of forest management
plans based on field inspections. This map was used in order to mask
the satellite images and focus only on forest areas.

2 Ground truth PAT map: a map of the windthrows due to the Vaia
storm (covering the whole study area) created by the Forest Service
of the PAT after the Vaia storm by photo interpretation on two SPOT
images acquired the 17th and 27th November 2018 (further details
can be found in: (Servizio Foreste e Fauna - Provincia Autonoma di
Trento, 2020, 2018)). The initial map was then validated in the field
during the clearings of the forest and only 34 % of the photo in-
terpreted areas resulted to be reliable. The map was then updated
and 43 % of the original polygons were redefined according to the
field surveys, while 23 % were considered unreliable but kept in any
case in the map as they were referring to areas complex to reach
where scattered windthrows happened. In particular, areas char-
acterized by scattered windthrows were considered as all damaged
even if only a part of the trees really felt down. The map used in this
study was the most updated one, but due to all these problems it was
used only to qualitatively evaluate the CD results obtained with CVA
over the entire area.

3 Manual reference map: detailed reference windthrows map deli-
neated by photo interpretation (due to the lack of accuracy of

ground truth PAT map). This map was created by the authors over a
smaller portion w.r.t. the study area (6.6 km x 4.2 km; 29 km2; cor-
responding to the 6% of the forested areas of the study area). This
map was built in order to validate the results of the CVA and also to
have a reference point with respect to the ground truth PAT map,
due to the lack of reliability of the latter one. The area on which it
was built is smaller than the study area because of the complexity
arising on its construction. VHR images of “Bing maps” (in QGIS
software with a spatial resolution of 40 cm (QGIS Development
Team, 2020)) available after the event and false colour multi-
temporal compositions of PS before and after the event (near event
images) were used to create this map. The VHR images in QGIS are
available in true colour composition (RGB), allowing to easily detect
the fallen trees where no shadow occlusions were present. Whereas,
the false colour composition of the PS images used was: red band at
time 1, green band at time 1, blue band at time 2. Such combination
highlights in bright green or magenta colours the pixels where
changes have happened, and shows in true colour the areas where
no changes have occurred. Comparing the highlighted areas to the
ones seen in QGIS, a detailed windthrows map could be built. The
size of the manually delineated windthrows areas is ranging from a
minimum of 9 m2 to a maximum of 389,781m2 with median value
of 288m2 and mean value of 3996m2.

3. Methods

Fig. 2 presents the general block scheme of the procedure followed
in order to map the forest windthrows. Four experiments (see Table 3)
were considered to guarantee the detection of windthrows together
with two HR optical images, X1 and X2, acquired over the affected area
at different times, before (t1) and after (t2) the event. X1 and X2 were first
pre-processed to make them homogeneous. They were then used in a
CD strategy in order to map the forest windthrows.

3.1. Remote sensing data pre-processing

Both S2 and PS images were retrieved from the corresponding ar-
chives already corrected from the geometric and topographic/ortho-
graphic point of view. For the atmospheric corrections, PS images were
already provided at level 3B (which is atmospherically corrected),
whereas S2 images could be found in both L1C (radiance values only)
and L2A levels. Nevertheless S2 images close in time to the event were
not already available at L2A level. In order to avoid different processing
steps from our side and that made by ESA, we decided to download all
the S2 images at L1C level and apply atmospheric corrections with

Table 2
Acquisition dates and phenological phases (Vilhar et al., 2013) of the images used in this study.

Satellite Dates Illumination
condition

Phenological phase

Sun altitude Sun azimuth Shadow length at an
object level 25 m

Conifers Broadleaves

Pre-event S2 2018−06-23 63.65° 144.78° 12.07 m Flowering Flowering
2018−09-26 41.24° 163.97° 28.52 m Flowering and autumn colouring (just for

Larix decidua Mill.) depending on the
altitude

Flowering and autumn colouring
depending on the altitude

PS 2018−06-23 59.29° 129.47° 14.85 m Flowering Flowering
2018−10-21 30.27° 157.33° 42.83m Autumn colouring (just for Larix decidua

Mill.)
Autumn colouring

2018−10-22 29.94° 157.48° 43.41 m
2018−10-24 28.67° 155.36° 45.72 m

Post-event S2 2018−12-15 20.43° 182.28° 67.13m Leaf fall (just for Larix decidua Mill.) Leaf fall
2019−06-28 64.10° 147.76° 12.14 m Flowering Flowering

PS 2018−11-14 25.33° 175.27° 52.83m Leaf fall (just for Larix decidua Mill.) Leaf fall
2019−06-26 60.34° 132.70° 14.24 m Flowering Flowering
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Sen2Cor2 by ourselves.
Despite the atmospheric corrections, PS images belonging to dif-

ferent acquisition paths and different days have slightly different re-
flectance values and thus a relative radiometric normalization (RRN)
was carried out in order to get a mosaic to be used for the CVA. In the
literature we can find many RRN algorithms (Solano-Correa et al.,
2019a; Yong et al., 2001; Yuan and Elvidge, 1996). In order to apply
any normalization process, an overlap between the slave (image to be
normalized) and the reference image should exist. In our case, overlap
along different PS swaths exist. In this study we applied a linear RRN as
follows:

= +x x s
s

m s
s

m* *new
1

2
1

1

2
2

(1)

where s1 and m1 are the standard deviation and the mean value of the
pixels of the reference image in the overlapping part between the two
images, s2 and m2 are the standard deviation and mean value of the
pixels of the of the slave image in the overlapping part between the two
images, x is the pixel to be radiometrically normalized, and xnew is the
relative radiometrically normalized value. This procedure was applied
to all the PS mosaics and it allowed us to completely remove all the
spectral differences among the images mosaicked.

In order to apply the CVA algorithm, X1 and X2 were normalized
between 0 and 1, since normalization has been observed to reduce the
commission error and to maximize the detection of small-magnitude
changes (Johnson and Kasischke, 1998). Moreover all the data were
clipped using the map of the forested area in order to analyse only the
forested areas and not changes occurred on other land cover types. In
the case of S2, all bands at 20m were re-scaled to 10m spatial re-
solution by means of a bilinear interpolation (using the software R, in
particular the resample function of the package raster), and only after all
the atmospheric and normalization steps were applied. S2 bands at
60m were not considered for further analysis, since they were used
only for atmospheric correction purposes.

3.2. Mapping forest windthrows using the CVA technique

The mapping of any disturbance or event in a given study area is
nothing else than the detection of the changes happening between two
periods of time. To detect such changes, several techniques have been
introduced in the literature (Bovolo et al., 2018). Among them, the CVA
has been frequently used and explored (though seldom times for
windthrows mapping). CVA is an unsupervised technique that does not
require reference data in order to detect the changes, though it is lim-
ited by the need to select a threshold to separate between changes and
no changes. The selection of this threshold can be done in an un-
supervised or supervised way (Solano-Correa et al., 2014; Zanetti et al.,
2015). CVA exploits both multispectral and multitemporal information
by means of the difference operator. The multispectral difference image

=X X XD 2 1 is composed of spectral change vectors (SCV -
X X, . ..,D D n,1 , according to the number of features used). The reason for
using the difference operator is that unchanged pixels/areas in an
image will show similar (if not equal) spectral responses resulting in
SCVs equal or close to zero, whereas changed pixels/areas will show
SCVs higher than zero. However, in order to obtain such a result, CVA
requires basic pre-processing operations of the raw data that guarantees
homogeneous data in terms of both spatial and spectral information.

CVA can work in a n-dimensions space, but is mostly used in a two
dimension one where information redundancy from different features is
reduced. The space dimension is defined by the number of features used
to highlight particular types of changes, going from one single feature
(when it is better known as univariate image difference) to as many as
spectral bands a sensor may have (and possible combinations of those
spectral bands). In this study we decided to use a two dimensions space,
mainly for two reasons: i) we want to detect just one type of change that
is the one caused by windthrows, while we are not interested in other
changes; ii) the idea is to have simple system that can be used in
practical applications and thus a 2-dimension system appeared to be the
best trade-off between complexity and usability. The type of change
that we are focusing on is vegetation related, and it is well-known in
literature that bands corresponding to the visible and infrared spectrum
help to highlight vegetation (Vogelmann, 1990; Xue and Su, 2017).
Some examples of such combinations are the Normalized Difference
Vegetation Index (red and NIR) and Normalized Difference Water index

Fig. 2. General block scheme representing the different steps to map forest windthrows.

Table 3
Experiments carried out in this study.

Experiment Date 1 (X1) Date 2 (X2) Description

A June 2018 June 2019 CVA applied to two bands of S2 using data acquired in the same season
B June 2018 June 2019 CVA applied to two bands of PS using data acquired in the same season
C September 2018 December 2018 CVA applied to two bands of S2 using data acquired near the event
D October 2018 November 2018 CVA applied to two bands of PS using data acquired near the event

2 https://step.esa.int/main/third-party-plugins-2/sen2cor/
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(blue and SWIR). In order to render the paper more general, all possible
combinations of two bands for both S2 and PS were evaluated, and the
best of them (in terms of windthrows detection accuracy) was selected
for the analysis.

To effectively map windthrows, XD vector is represented in polar
coordinates by computing the magnitude ( ) and angle ( ):

= +X XD D,1
2

,2
2 (2)

= atan
X
X

2 D

D

,2

,1 (3)

Fig. 3 shows a 2D-CVA exemplary representation, where the main
characteristics of the changed and unchanged samples in a polar do-
main (magnitude and angle) are displayed: i) un-changed samples tend
to cluster near the origin (light grey circle); ii) pixels with the same kind
of change tend to cluster (coloured clusters); iii) different kind of
changes may show stronger or weaker magnitude (green vs red cluster);
and iv) there exists a probability for each kind of change of overlapping
(orange and blue clusters) (Solano-Correa et al., 2019b, 2016).

According to the previous observations, a magnitude-direction do-
main (D) can be defined as:

=D { [0, ], [0,2 )}max (4)

where max is the maximum magnitude of XD. A set of thresholds can be
applied to both magnitude (T ) and direction (T ) variables that allow to
separate among changes ( c) and no-changes ( n). T and T can be
calculated manually or automatically and they are generally guided by
the complexity of the studied problem (Solano-Correa et al., 2014;
Zanetti et al., 2015). For the case of this manuscript, we want to be able
to map only windthrows, therefore, these thresholds could be calcu-
lated in a manual way, but, in order to keep a generalized comparison
between S2 and PS, a semi-automatic strategy was implemented. We
defined the thresholds testing different combinations of values (in an
automatic way) for both the magnitude and angle on the basis of the
histogram distribution over a training set and validating the results over
a test set. In particular, we set two thresholds for the magnitude
(T T,1 2) and two thresholds for the angle (T T,1 2). We started by taking
the windthrows reference map and overlapping a grid of 500m×500m
squares on it. We then split all the squares in two sets, training and test,
by selecting each of them in an alternate manner (like a chessboard).
For each set, we calculated the CVA and selected the thresholds values
based on histogram quantiles of magnitude and direction variables of
the training set. In total we considered four thresholds: a minimum and
maximum limit for the magnitude and a minimum and maximum limit
for the angle. Many combinations of thresholds were tested and the
ones providing the highest kappa accuracy and the lowest false and
missed alarms on the test set were selected as the optimal one.

3.3. Experimental setup and accuracy assessment

In order to reach the objectives of this study, four experiments were

carried out (Table 3). The results of each experiment were assessed
defining confusion matrices with respect to the manual reference map
in a subset study area where windthrows were carefully delineated by
using photo-interpretation. All the confusion matrices were generated
considering all the forest areas (initial experiments) and considering
only the forest parcels classified by the forest management as Norway
spruce and silver fir (additional experiments). These additional ex-
periments helped us to further understand the impact of the time lag
(about 11 weeks in the case of S2 images, and about 3 weeks in the case
of PS) between the images acquired right before and right after the
event. As shown in Table 2 a slight change of vegetation phenology is
expected, as in autumn the forest canopy and the understory are un-
dergoing rapid structural and pigment changes. Also, the illumination
conditions changed in the time lag considered (Table 2). Conversely,
the impact of using images acquired at around the same date (in this
case the sun angle is constant, while some inter-annual phenology
changes may occur) was also analysed.

In order to avoid redundancy of data, only two bands were selected
for the CVA analysis. The selection was carried out by evaluating all
possible combinations in the manual reference map area and selecting
the two bands providing the best kappa and user accuracy. The best
result among the four experiments on the subset area was extended to
the entire study area and compared with the ground truth PAT map
over the entire study area. Additionally, the reference map and the
ground truth PAT map were compared over the subset area in order to
see the agreement level among them and in order to validate the ground
truth PAT map. All these analyses were carried out using the R software
(R Core Team, 2017).

4. Results

Fig. 4 presents the kappa accuracies for different band pairs com-
binations in the four experiments. It can be clearly seen how the ac-
curacy varies a lot between experiments A–B and C–D. Analyzing ex-
periments A–D we can see that for both S2 and PS the infrared bands
play an important role. In particular in experiment A it is clear that in
order to obtain good results it is necessary either to combine a band in
the visible/red edge part of the spectrum (bands 2, 3, 4, and 5) with one
in the NIR (bands 6, 7, 8, and 8A), or one in the NIR (bands 6, 7, 8, and
8A) with one in the SWIR (bands 11 and 12). In experiment B the
available bands were less but the trend is very similar. In order to get an
accurate detection it is important to combine the NIR band (band 4)
with one of the other three. Looking only at the visible part of the
spectrum green and red bands (3 and 4 in S2 and 2 and 3 in PS) could
also provide good results. In contrast, the kappa accuracies obtained in
experiments C and D are not very high, and in none of the cases the
kappa value is above 0.25. In any case the trends are quite similar to
experiments A and B. The combination of the best bands selected along
with the thresholds on the magnitude and angle of the CVA are shown
in Table 4. The CVA images were thresholded according to the semi-
automatic thresholding done in the bands optimization. Looking at
Table 4 it is clear that the thresholds on the angle are constant in the
different experiments, while there is a higher variability for the mag-
nitude thresholds even if the ranges are all overlapping. This behaviour
is expected given the characteristics of CVA in the polar domain.

In Fig. 5 the windthrow maps generated for the four experiments in
the subset area are shown along with the manual reference map and the
ground truth PAT map. As it can be visually seen, experiment A, and B
have a high level of agreement with the two reference maps, while
experiments C and D do not. Among these last two maps it is worth
noting how the map obtained in experiment C is less noisy than the one
in experiment D and it is possible to see that the main areas present in
the reference map are detected but many other additional changes are
also detected. Moreover, it can be seen that the reference map and the
ground truth PAT map disagree in several areas. We analysed in more
details some of the disagreement areas by directly looking at the true

Fig. 3. Representation of CVA in a polar space (modified from (Solano-Correa
et al., 2019b)).
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colour RGB composition images after the event, and noticed that most
of the places marked by the ground truth PAT map as windthrows were
actually false alarms corresponding to big areas covered by shadows
due to mountains, but clearly not affected by the event, since many big
trees were present in the area. The rest of the disagreement corresponds
to missed alarms from the ground truth PAT, for small windthrows or
improper delineation of existing ones.

Given the results presented in Fig. 5, we performed a comparison
among the reference map and the ground truth PAT map in order to
understand the level of agreement among them. Table 5 shows the
confusion matrix for the ground truth PAT map (delineated by the
forest service just after the storm) with respect to the manual reference
map over the restricted area. The OA is around 85.9 % (that can be
translated as the level of agreement) but the false alarms (225.5 ha),
and missed alarms (111.4 ha) are very high. This shows how difficult it
is to map the windthrows in a quick way in the field and through photo
interpretation just after an event.

Table 6 shows the confusion matrix for the subset area in the four
experiments, and it appears clear that experiments A, and B out-
performed experiments C and D. Looking at the first two experiments (A
and B) we can see that the results are really similar with slightly higher
OA and KA in experiment B. In general, the amount of false alarms is
higher than the missed alarms. Looking at experiments C and D we can
see that experiment C is giving slightly better results than experiment D.

Fig. 4. Kappa accuracies on the test set areas for all the possible pairs of bands combinations in the four experiments.

Table 4
Bands and thresholds T and T for experiments. AeD.

Experiment Bands T T

A 2–6 0.09 < T < 0.42 314 < T < 316
B 3–4 0.16 < T < 0.80 314 < T < 316
C 3–8 0.01 < T < 0.43 314 < T < 316
D 1–2 0.09 < T < 0.55 314 < T < 316
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These two experiments had almost identical detection rates for the
windthrow class (about 190 ha and PA of about 61 %), very similar
missed alarms (about 118 ha and about UA of 92 % for the non-wind-
throw class) but they have very different false alarms (514.4 ha vs.
666.8 ha). In general, the results in experiments C and D are very poor.

A similar situation can be seen in Table 7, where only areas clas-
sified as forests of Norway spruce and silver fir are considered. In this
case, it is interesting to note that while the changes in accuracy are very
small for experiments A and B, for experiments C and D the false alarms
decrease by more than 100 ha.

Fig. 6 shows the density distribution of the aspect for the four ex-
periments in the area where the manual reference map was drown
considering the entire area, the correctly detected areas, and the areas
of missed and false alarms. As it can be seen while the correctly de-
tected areas have a distribution similar to the one of the entire area, the

missed and false alarms are mainly located in a range of aspect around
180 degrees (especially in experiments A and B). This is probably due to
the fact that in June on North facing slopes the illumination is more
uniform compared to south facing slopes where there are more shadows
created by the trees. Moreover, the vast majority of missed and false
alarms are located on the borders of the windthrows areas.

From Tables 6 and 7 we selected the best result (experiment B) and
we compared the windthrow map obtained in this experiment over the
entire study area with the ground truth PAT map (Table 8). These re-
sults confirm that there is a big difference between the windthrows

Fig. 5. Windthrows maps for the four experiments in the area in which the reference map was drawn. The manual reference map and the ground truth PAT map are
also shown.

Table 5
Confusion matrix for the ground truth PAT map just after the storm with respect
to the manual reference map over a restricted area. The numbers are in hec-
tares.

Manual reference map User’s accuracy
(%)

No windthrow Windthrow

Ground truth
PAT

No windthrow 1854.7 111.4 94.3
Windthrow 225.5 196.9 46.6

Producer’s accuracy (%) 89.2 63.9
Overall Accuracy (%) 85.9
Kappa Accuracy 0.46

Table 6
Confusion matrices for the four experiments with respect to the manual re-
ference map over a restricted area. The numbers are in hectares. NW=no
windthrows; W=windthrows; PA=producer’s accuracy; UA=user’s accu-
racy; OA=overall accuracy; KA= kappa accuracy.

A NW W UA (%) B NW W UA (%)

NW 1992.3 59.4 97.1 NW 1989.9 53.0 97.4
W 88.5 248.9 73.8 W 90.9 255.3 73.7
PA (%) 95.7 80.7 PA (%) 95.6 82.8
OA (%) 93.8 OA (%) 94.0
KA 0.74 KA 0.75

C NW W UA (%) D NW W UA (%)

NW 1566.3 119.2 92.9 NW 1413.9 117.4 92.3
W 514.4 189.1 26.9 W 666.8 190.9 22.3
PA (%) 75.3 61.3 PA (%) 68.0 61.9
OA (%) 73.5 OA (%) 67.2
KA 0.24 KA 0.17
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maps obtained by photo interpretation, in the weeks just after an event,
and those obtained by using remote sensing data and CVA. Moreover, it
is worth noting how the results in Table 8 are quite similar to the ones
in Table 5 confirming the good agreement between the map in ex-
periment B and the manual reference map.

In Fig. 7 the maps obtained in experiment B, the ground truth PAT
map and the difference map among them are shown. From the differ-
ence map it is clear that the main difference among the two maps are
the areas marked as windthrow in the ground truth PAT map and not
detected in experiment B. Analysing in detail such areas, we noticed
that they are either areas in steep slope (where in the SPOT image of
November 2018 there were shadows), or areas characterized by scat-
tered windthrows. As stated in the report provided by the forest service
(Servizio Foreste e Fauna - Provincia Autonoma di Trento, 2020), such
areas were kept inside the map even if it was known that the windthrow
area amount was over predicted (Servizio Foreste e Fauna - Provincia
Autonoma di Trento, 2020). It is interesting to note the red line along
Val Cadino (bottom left of Fig. 6) where we detected the change of the
vegetation along the river due to the flood connected with the storm,

while it was not considered in the ground truth PAT map probably as
that vegetation is not productive forest.

5. Discussion

In this study we showed that forest windthrows can be mapped with
S2 and PS data using CVA, a simple and straightforward CD technique,
with high level of accuracy. The analyses that we performed represents
a novelty as, at the best of our knowledge, this is the first study that: (i)
analyses the use of S2 and PS data to map windthrows; (ii) compares
data acquired both near and far from the event; and (iii) analyses the
use of CVA to map windthrows.

The two data considered are characterized by very different spec-
tral, spatial, and temporal resolutions. Regarding the spectral resolu-
tion, from the band optimization experiment (Fig. 4) it is clear that a
band in the NIR is very important. Considering S2, also the SWIR bands
(bands 11 and 12) resulted to be useful. These bands are strongly re-
lated to leaf water content (Ceccato et al., 2002). The good performance
of CVA when the SWIR bands are used may be related to the fact that,
after the windthrow, the Norway spruce and silver fir leaf water content
- during the time lag between the tree fall and the image acquisition
after the event - is varying very quickly, while the pigments remain
more constant (Thiagarajan et al., 2016).

The spatial resolution seems to not affect the results as the detection
accuracies of S2 and PS obtained in similar conditions (same bands and
same dates) are not very different. The main advantage of a higher

Table 7
Confusion matrices for the four experiments with respect to the manual re-
ference map over a restricted area considering only parcels of Norway spruce
and silver fir. The numbers are in hectares. NW=no windthrows;
W=windthrows; PA=producer’s accuracy; UA=user’s accuracy;
OA=overall accuracy; KA= kappa accuracy.

A NW W UA (%) B NW W UA (%)

NW 1830.4 57.8 96.9 NW 1830.6 51.7 97.3
W 85.1 248.5 74.5 W 84.9 254.6 75.0
PA (%) 95.6 81.1 PA (%) 95.6 83.1
OA (%) 93.6 OA (%) 93.9
KA 0.74 KA 0.75

C NW W UA (%) D NW W UA (%)

NW 1505.9 118.3 92.7 NW 1341.2 116.3 92.0
W 409.7 187.9 31.4 W 574.3 189.9 24.8
PA (%) 78.6 61.4 PA (%) 70.0 62.0
OA (%) 76.2 OA (%) 68.9
KA 0.29 KA 0.20

Fig. 6. Density distribution of the aspect for the four experiments in the area where the Manual reference map was drown. The density distribution was computed
considering the entire area (black line), only the areas correctly identified as windthrows and non-windthrows (red line), only the areas of false alarms (green line),
and only the areas of missed alarms (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).

Table 8
Confusion matrices for the best experiment on the subset area with respect to
the ground truth PAT map over the entire area. The numbers are in hectares.
NW=no windthrows; W=windthrows; PA=producer’s accuracy;
UA=user’s accuracy; OA=overall accuracy; KA= kappa accuracy.

NW W UA (%)

NW 36952.4 2203.8 94.4
W 3200.2 2883.5 47.4
PA (%) 92.0 56.7
OA (%) 88.1
KA 0.45
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spatial resolution is the better delineation of the border of the wind-
throws and the detection of the small windthrow patches. Indeed, false
windthrows detection may occur along roads and bare areas at the
forest edge, where different vegetation and soil conditions are mixed
(Liu et al., 2006), and thus a higher spatial resolution could reduce such
problems. Looking at the manual reference map, we can see that the
average size of the windthrows areas is 3996m2, thus they are also
visible in the S2 images that have a pixel size area of 100m2. About 25
% of the windthrow areas size of the manual reference map is smaller
than the size of the S2 pixels making them hardly traceable in the S2
images. To support this statement, we considered in experiments A and
B only windthrows areas of size smaller than the median value of the
windthrows patches (288m2) and the producer’s accuracy of the
windthrows moved from a 22.7 % using S2 (experiment A) to a 38.6 %
using PS (experiment B). Differently considering only the large areas
(above the median value) the producer’s accuracy of the windthrows
were quite similar for both S2 and PS (81.6 % and 83.5 % respectively).
Moreover, if we look at the size of the non-windthrow areas inside large
windthrow areas, about 35 % of them are smaller than 100m2 thus
making them again hardly traceable in S2 images. Looking at the small
windthrow areas, obviously they also represent a very small amount of
the total damaged areas (0.3 %), but in any case it is useful and im-
portant to have them mapped since they are linked to secondary dis-
turbances such as the outbreaks of saproxylic insect species (Bouget and
Duelli, 2004). In general, the amount of false alarms is higher than the
missed alarms, and this is important as the main interest of the prac-
titioners is to know where the windthrows are and to not miss them in
order to avoid insect outbreaks in the long term.

The temporal resolution plays an important role in the probability
to obtain an image as soon as possible after a windthrow event. In the
specific case analysed in this study, the first available image with S2
was 45 days after the storm, while PS had a good image already after 14
days. Thus, in the case where there is the need to plan the first inter-
ventions and to define where to send the field crews to clean up
mountain roads, etc. it is very important to have a map as soon as
possible, and thus a daily product like PS can outperform S2. There are
also other alternatives that could include the use of active sensors (SAR
data), that are less influenced by the weather conditions but they re-
quire much more complex analysis and they were not considered in this
study.

With images acquired in similar conditions (similar phenological
status, similar illumination conditions) the results are very good and the
windthrows can be mapped with an accuracy above 80 %. Differently,
using data acquired near the event the results are not that good, and
there is a difference between S2 and PS. It is worth noting that in this
case the results obtained are limited to the fact that the analysed
windstorm happened in autumn/winter, as probably different conclu-
sions could have been drawn if the event was happening in summer-
time. In any case, if we look at our specific event, it happened during
the transition period between autumn and winter. Autumn 2018 was
quite mild in Northern Italy thus many deciduous trees still had leaves/
needles on. The storm removed all the leaves/needles from the decid-
uous species creating areas of change due to this phenomenon.
Moreover, suddenly after the storm there was a drop in temperatures
and many areas were covered by snow. Also, in open forests, the un-
derstory brown off might have played a role in the spectral response
and amplified the canopy phenology change. This means that the forest
canopies observed in the images acquired in September/October were
pretty different from the canopies observed in images acquired in
November/December. Additionally, the shadows created by the
mountains increased quite a lot, decreasing the sun angle moving from
September to December. The different shadows position created an-
other type of changes, and made windthrows happened in North facing
slopes hardly detectable. Differently the use of data acquired in June,
thus with similar acquisition conditions, minimum shadows due to the
sun position, and equal phenological status between deciduous and
evergreen trees, maximized the detection rate.

Another important aspect to be considered is the cleaning of the
windthrown areas (harvesting operations) through the removal of the
tilted/damaged trees, and the presence of regeneration (seedlings). As
reported by the forest service of PAT, the challenging environmental/
meteorological conditions after the storm have hampered the field
operations aiming at the removal of the material (presence of snow and
steep slopes). By the end of June 2019, only 26 % of the overall
windthrown material in the study area had been collected (Servizio
Foreste e Fauna - Provincia Autonoma di Trento, 2020). Therefore, the
presence of lying trees might have concurred to the loss of accuracy for
the analysis of the winter images, enhancing that of the summer period
instead. Moreover, the plantation of seedlings or the presence of natural
regeneration in the windthrown areas might lead to errors in the

Fig. 7. Windthrow maps over the entire area: i) ground truth PAT map; ii) map obtained in experiment B, and iii) difference map between the previous two.
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analysis of images collected in the summer period. In this case, the
Forest Service started the plantation of larch seedlings in the period
August-September 2019, therefore our analysis might include errors
related to the natural regeneration only (Servizio Foreste e Fauna -
Provincia Autonoma di Trento, 2020).

When only areas classified as forests of Norway spruce and silver fir
were considered, and all the deciduous species were not present, the
detection accuracy improved using the near event data. We chose
Norway spruce and silver fir as these are the species that were mainly
affected by the windthrows event as they are the main species in such
areas and also in general the ones more prone to be windthrown
(Albrecht et al., 2012; Schmidt et al., 2010). As expected, the im-
provement is mainly in the false alarms as in experiment C they reduced
by about 105 ha, and in experiment D by about 92 ha. These results
show us that there is an effect of the species composition in the results
obtained in the near event data, especially when the event is in the
transition phase between leaves on and off seasons, even in an area like
this one where the deciduous species cover a few hectares. We can
expect that in the presence of a more mixed forest the effect could be
even higher. In that case, if the ecosystem is characterized by only (or
mainly) deciduous species, a reasonable solution would be to use ad-
ditional spectral bands, if available, or to extract additional features. In
any case the false alarms are expected to be quite high (if the event has
happened near the autumn/winter period) as the problems related to
shadows, snow areas and presence of lying trees cannot be removed.

As we stated in the introduction, the vast majority of the previous
studies on windthrows used other techniques than CVA (Baumann
et al., 2014; Chirici et al., 2019; Duan et al., 2017; Einzmann et al.,
2017; Hamdi et al., 2019; Jonikavičius and Mozgeris, 2013; Nyström
et al., 2014; Pirotti, 2011; Rich et al., 2010; Rüetschi et al., 2019;
Schwarz et al., 2003; Tanase et al., 2018; Vorovencii, 2014; Wang and
Xu, 2010). Such techniques rely a lot on a priori knowledge from the
user's side on bands combination or spectral indices to be used. Whereas
CVA in the polar domain takes advantage of the statistical distribution
of the pixels in the difference image (XD) in order to further understand
the behaviour of the data. Yet, the problem of automatically finding
these thresholds remains not only for CVA, but also for all the other
methods in literature.

Considering previous studies using satellite remote sensing data to
map windthrows, our results are similar or better in terms of accuracies.
In Baumann et al. (2014) a disturbance index computed using Landsat
data was used to map windthrows in a mixed forest of Norway spruce
and Scots pine. The authors validated the results on a manually deli-
neated reference map obtaining a kappa accuracy around 0.55 and an
overall accuracy around 77 %. Einzmann et al. (2017) used Random
Forest and object based change detection techniques on RapidEye data
in a Norway spruce forest. The validation was done on both a manually
delineated map and on forest inventory data and they obtained an
overall accuracy of 93 %. Jonikavičius and Mozgeris (2013) used image
difference of Landsat bands and k-Nearest Neighbour with manual
thresholding and they obtained overall accuracies between 95–98 %. In
Schwarz et al. (2003) four data sources were considered (i.e. Landsat 7,
Spot 4, IKONOS and SAR) together with classification methods and the
authors obtained kappa accuracies between 0.46 and 0.51. In the study
of Wang and Xu (2010), CVA was compared with other techniques
using different types of features extracted from Landsat data. The re-
sults changed according to the features used and the kappa ranged from
0.02 to 0.72. Other studies exist that used airborne or UAV data. In such
cases results are maybe better (mainly due to the highest spatial re-
solution) but obviously the costs for the data acquisitions were much
higher compared to satellite data, especially compared to S2 data that
are freely available.

Regarding the threshold’s selection, if the goal is to get a binary CD
map only (change and no change), applying a threshold over the
magnitude variable is enough (Bovolo and Bruzzone, 2007). A different
scenario has to be considered when the problem to be analysed implies

the identification of different types of changes, or a specific type of
change, as it is our case, where windthrows have to be separated from
any other types of change. In fact, we exploited the CVA in the polar
domain, where different kinds of changes tend to fall in the same sector
(see Fig. 3). Because of this, it is expected to have different thresholds
for the magnitude variable along different datasets, but slightly similar
ones for the direction variable (see Table 4). This characteristic allowed
us to obtain the different thresholds in a relatively easy way, resulting
in a high detection accuracy. However, if different types of changes
with similar nature occur at the same time, i.e., several types of changes
due to different types of vegetation in the area, the selection of these
thresholds becomes harder, leading to a reduction in the final accuracy
detection. This was observed for experiments C and D, where more than
one change was present (i.e. windthrows, illumination conditions, and
phenological phase). Additionally, shaded areas due to the irradiation
angle and the mountainous landscapes can also hamper the recognition
of important changes, altering the CVA performance.

6. Conclusions

In this study we showed that both S2 and PS data are suitable to
detect windthrows with high levels of accuracy (OA above 90 % and PA
of windthrows class above 80 %). Furthermore, we also showed the
suitability of CVA for detecting windthrows independently of the
multispectral images and the weather conditions. The data considered
are characterized by very different resolutions (spectral, spatial, and
temporal) but the results obtained in both scenarios are very similar.
With both data it emerged that the infrared bands are very important to
obtain high accuracies, in particular it is necessary to combine a band in
the visible spectral range with one in the infrared. The acquisition
conditions strongly affect the accuracy in detecting windthrows, though
it depends on the season in which the windthrows happened and on the
topography of the area. In the case of windthrows happening in fall
season, it was clear that data acquired in non-optimal conditions do not
allow to have a proper detection of the windthrows, reducing the final
accuracy.
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