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Abstract

As countries become increasingly urbanized, understanding how urban areas are
changing within the landscape becomes increasingly important. Urbanized areas are the often
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the strongest indicators of human interaction with the environment, and tandéerg how
urban areas develop through remotely sensed data allows for miaieatle practices. The
Google Earth Engine (GEE) leverages cloud computing services aid@r analysis
capabilities on over 40 years of Landsat data. As a remote seplatfgym, its ability to
analyze global data rapidly lends itself to being an invalualollefor studying the growth of
urban areas. Here we present (i) an approach for the automatactiex of urban areas
from Landsat imagery using GEE, validated using higher resolutiages, (i) a novel
method of validation of the extracted urban extents using chamgebei statistical
performance of a high resolution population mapping method. Temporallgctlistiban
extractions were classified from the GEE catalog of Lansisaid 7 data over the Indonesian
island of Java by using a Normalized Difference Spectratov€blDSV) method. Statistical
evaluation of all of the tests were performed, and the value of ggapuimapping methods
in validating these urban extents were also examined. Results ;shbatethe automated
classification from GEE produced accurate urban extent maps, antheéhetegration of

GEE derived urban extents also improved the quality of the population mapping outputs.

Keywords: Landsat, Multitemporal, Population Mapping, Google Earth néndbettlement

Mapping, Urbanization, spatial demography

1. Introduction

Landsat imagery have proven to be useful in understanding global utimanizeands over

different timescales. Satellite-derived data have been alteégunderstanding trends in urban
sprawl and many other dynamics of urbanization (Guindon et al., 2004} Ahgé., 2005;
Burchfield et al., 2006; Schneider & Woodcock, 2008; Potere et al., 2009; Schneider, 2012;

Taubenbock et al., 2012; Sexton et al., 2013).
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The Google Earth Engine (GEE) is an online environmental datatoning platform that
incorporates data from the National Aeronautics and Space Admimet(NASA) as well as
the Landsat Program. After the USGS opened access to its retdraisdsat imagery in 2008,
Google saw an opportunity to use its cloud computing resources to r@émnds of Landsat
imagery to be accessed and processed over its online systsnhat enabled users to reduce
processing times in analyses of Landsat imagery and make glddal Landsat projects more
feasible (e.g. Hansen et al., 2013). The 30m spatial and multi-$pestodution is ideal for
defining urban areas, and its revisit time is sufficient fonitoring applications (Woodcock et
al., 2008). Moreover, because of Landsat’s temporal continuity from 1972 to the presenday, it
a popular platform to use for urban change analysis (Albedl. e2004; Bagan & Yamagata,

2012; Rawashdeh & Saleh, 2006; Yuan et al., 2005).

In the past two decades, the Landsat platform has been pairedmaigiery from the
Advanced Very High Resolution Radiometer (AVHRR) (Hansen et1898), the Defense
Meteorological Satellite Program’s Operational Linescarté®ys nighttime imagery (Elvidge
et al., 1996, 1997, 1999; Sutton, 2003), and NASA’'s Moderate Resolution Imaging
Spectroradiometer (MODIS) (Schneider et al., 2003, 2009, 2010) to improvednaey of
urban detection and mapping across large areas. The improvementhofdsnéir detecting
urban extents has also driven improvements in population mapping. Satellifery has formed
the basis of many large area population mapping efforts, such asldabal Rural-Urban
Mapping Project (Center for International Earth Science Infoonatietwork (CIESIN), 2004)
LandScan (Bhaduri et al., 2007) and WorldPop (Linard et al. 2012, Gaughlar2@t? "The
WorldPop Project,” 2014). Satellite-derived urban extents and, moreafignkemd cover tend

to form an important component of accurate population mapping (Lindrdt&mn 2012, Linard
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et al., 2011), but detailed data can often be costly or time consumipgpduce. The GEE
presents the possibility for analyzing and classifying batelata with great speed, so that more
relevant and accurate outputs in terms of distributions of populatiorb@amme a reality

(Hansen et al., 2013).

Here we present an approach for the automated extraction of andss from Landsat
imagery built into the GEE, and a novel method of validation of tlpmmg using changes in
the statistical performance of a high resolution population mappirtboohgStevens et al.,

2014).

2. Methods

2.1 Study Area

The study area is the Indonesian island of Java, which, alongeiuity the world’s most
populous island, is also only the fourth largest island in Indonesiabtgics more than half of
the island nation’s population. Jakarta, the capital city is alsatéd on the island and is
Indonesia’s largest city. The island is 661 miles long from teasfest, it ranges in width from

about 60 miles in the center to more than 100 miles near each end (Fig. 1).

2.2 Urban Extent Extraction Procedure

The urban extraction methodology proposed here is based on superviséidatiassof
multispectral data. In this work we consider “urban areas'thal portion of a scene with
spectrum similar to selected training areas. These tragwiegs include buildings, roads and
other artificial surfaces. Therefore, in the following “urbateets” do not correspond to “built-

up extents”. Our definition of urban areas is instead more similar to “impervioasesitf
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Accordingly, the implemented processing chain is a spectratitzasdysis followed by a
spatial regularization that is undertaken using the Google Hamtine cloud computing
environment. Processing and implementation in a cloud environment albowes donsistent
scaling of the computational efforts when dealing with wide geographareas. The extraction
procedure includes three steps, briefly detailed below: (i) pregsimgeand selection of a set of
Landsat scenes covering the geographical area and time spaerest, (i) computation of the
Normalized Difference Spectral Vector index (NDSV), a coltecof spectral indices that have
already been proven (Angiuli & Trianni, 2014) to be an efficient infputurban extent

classification algorithms classification and, (iii) spatial-based pastessing.

2.2.1 Preprocessing and scene selection

Pre-processing include orthorectification and coregistration afi@lscenes, so that data
acquired at multiple dates overlap. This is done internally and essijnby the GEE platform at
the ingestion of the data from the USGS repository. No radiomattarcalibration or
atmospheric correction is performed however. Therefore, althougbcalles are calibrated
according to the sensor parameters, some differences in rag@nes due to the illumination

and atmospheric conditions still affect overlapping regions among scenes.

Scene selection is instead performed by our algorithm. Spelgifirabrder to reduce the
Landsat data set to the most suitable scenes, a filter on paeemmeters is first applied, to

consider only those with less than 10% of cloud coverage and the highest radiometsic qualit

2.2.2 Implementation of the Normalized Difference Spectral Vdontiex Stack into the Google

Earth Engine
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Unlike threshold-based recognition of human settlement (one index) apesoac
developed by Pesaresi et al. (2008) and Xu, (2008), the main input tdo&meextent extraction
outlined here is the Normalized Difference Spectral Ved®]V), proposed in the technical
literature (Angiuli & Trianni, 2014)ps a means to group existing normalized difference indices
(such as the Normalized Difference Vegetation Index - NDVINbanalized Difference Water
Index - NDWI, and the Normalized Difference Built-up Index -BIP NDSV includes in one
single vector all the possible normalized indexes that can bputethstarting from a Landsat 5
or 7 image, considering therefore 6 bands and 15 possible combinaterdué ones are not

considered as their result is the same but with just the opposite sign).

NDSV includes in one single vector all the possible normalized isdéheg can be
computed starting from the 30 m spatial resolution bands a Landsat ifnage. For each band

pair this is computed:

bi—bj

(1) NDSVU = bi+bj

Hence, using 6 bands and applying Eq. (1) to any possible pairerediffoands, a total
of 30 indexes are obtained. Due to the symmetry of the definition, 1beof are only the
negative of the other ones, and can be discarded. Each pixel ishdmasterized by a set of
values, some of which correspond to known indexes (éfV,; = NDVI, NDSV,, = NDWI,

NDSV,s = NDBI), while other ones have not been explored so far.

Each pixel is thus characterized by a set of values thatdesreat this point “labeled”
only partially. Considering a radiometrically and geometricallyrected Landsat scene, the
NDSV features characterizing urban areas, compared to otleseslaare shown for a few

sample pixels in Fig. 2. It can be noted that urban areas exhitgtiact NDSV spectral



O©CO~NOOOTA~AWNPE

signature which can be discriminated from other classes bydis¢inct behavior in this new
“multispectral” 15-dimensional space. Fig. 2 demonstrates Np®¥iles that can be obtained

from an image.

In summary, instead of relying on threshold-based recognition of hwetiements
according to a single index ((Pesaresi et al., 2008) and (Xu, 2008)procedure implemented
in this work considers more information as input to a suitable ifit@é®n chain, aimed at
providing a consistent methodology that works in many different enveotsn and is
reasonably robust with respect to the date of acquisition of theeiraad unaffected by

differences in spatial patterns.

2.2.3 Processing of multitemporal urban extents over Java

Four tests were conducted in order to validate the creation of url@msexising the
procedure discussed in the preceding subsections. A census-based popligatigregation
method was used for validation, a method that rasterizes GlSadatdistributes population
counts based on the GIS data that is provided. This method was usecehbeqaasides the
ability to analyze how the urban extents improve the stafisticeelations in the disaggregation

process.

In three of four tests, the urban extents were consideredeasf the inputs to a census-
based population disaggregation method (Stevens et al., 2014). In thesfjrststead, the same
method was run using the original data sets detailed in Tadnhel the landcover map, including

urban extents, was taken from the EarthSat Geocover land beveatic mapper-based dataset

(2007, 30m) by MDA FedergMDA Federal Inc., 2007). Test 1 served as the baseline data for
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validation because it does not use any Google Earth Engine extants and because its

classification has been validated by MDA Federal, serving as a useful cestrol t

The gqualitative differences of these different landcover-based experiments

» Test 1: EarthSat GeoCover Landsat Thematic Mapper (TMyatktand cover data from

MDA Federal (2007)

» Test 2: GEE urban extents for Java derived using three collechimagery from 2006,

2007 and 2008 merged with GeoCover

» Test 3: GEE urban extents for Java derived using three colisctimagery from 2009
T1 (January through April), 2009 T2 (May through August), 2009 T3 (September

through December) merged with GeoCover

» Test 4: GEE urban extents for Java derived using three collechimagery from 2008,

2009, 2010 merged with GeoCover

The GEE urban extractions were obtained using Landsat 5 or Landsat 7 datacaatg be
both satellites were operative in the years of interest. f8yadgi, multiple Landsat images in
the same area and covering a finite period of time were combireedo called GEE collection,
and each pixel was assigned the median value for all images wiappears. Collections are a
powerful way to get rid of many of the cloud contaminated pij{ecause clouds do not appear
in the same position in all images. A better approach would be tk chasd pixels with a
dedicated filter, a function which unavailable in GEE. Thereforapaffh we understand that
cloud-contaminated pixels may still be present in areas withstensicloud coverage along the
year, this technique was assumed as the best available option. Adlgitibmaust be noted that

collections change the radiometric properties of the data, reglube effectiveness of the

8
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proposed urban extent procedure. To reduce this effect, urban datemmg year were obtained
by subdividing the year into thirds. Computing collections for eachlihe$e time periods
involved extracting urban extents and then combining the resulting byapsajority voting.
Similarly, three year collections were subdivided into thirdse( for each year) and then
combined by majority voting. To prove the usefulness of the proposed appooatiapping
urban extents (and derive population counts) along multiple yearouhté test repeats the

approach of the third one, but using Landsat data collected two years later (20020873us

2.2.4 Post-processing

Human settlements can be characterized by peculiar spdteinsahowever, it is important
to include a post-processing step aimed at reducing issuesdrétaimisclassifications at the
pixel level. The simplest and most effective approach is to iechadrphological operators
aimed at discarding isolated pixels and at improving the homdgenéithe extracted
settlements with respect to their spatial distribution. Additlgnals the classification results
may be affected by spectral patterns (and sub-pixel mixing preplsimilar to urban ones in
water bodies with high turbidity (Carpenter & Carpenter, 1983; Foody, 2800h as inner
reservoirs, coastal areas and river estuaries, these zormg@ratically masked out from the
classification in GEE using ancillary GIS data. Similauss may be caused by clouds, and thus

“cloud removal” approaches had to be considered.

2.3 High Resolution Population Mapping Method

As mentioned above, the population mapping algorithm in Stevens et al. (8044) i
essential portion of this study. Thus, its processing steps afly loléscribed in the following

paragraphs.
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2.3.1 Population data grid

The 130 census polygons for Java (Figure 1) contained population counthéroear
2010. The population mapping algorithm outlined in Stevens et al (2014) was used, where census
counts from the census year are redistributed according to wdiggnsadjusted up/down based
on rural and urban growth rates to a particular year of int€t@8¥ in this case). This is usually
based on the classified urban/rural land cover (built pixelslassified as urban vs. rural using
Schneider, et al. (2010) urban/rural MODIS-derived classificatidng),in this circumstance
uses the new GEE-derived urban delineations to identify urban bulspirhe urban/non-urban
delineation was integrated into the MDA landcover data as “buikasar( BLT"). The
particular year of interest that was selected was 2007I|fdatsets, to pick one year for counts

to match and for a point of comparison for the accuracy assessment detailed in 2.3.3.

The administrative units were used to delineate the areas wieelandcover data in
continuous raster format and converted vector format are intergpdigteneans of the Random
Forest method to generate a weighting layer (Stevens28tldl). Once this weighting layer is
generated, population counts for each census unit are distributedhevesighting layer to
provide a map of population counts at a 100 by 100 meter resolution (BleelTar detail on

all covariate datasets used in the process).

2.3.2 Data preparation and the Random Forest population disaggregation method

The general process used for the data preparation, modeling and ealittatithe
population mapping is outlined in Fig. 3. Full details on these steps are provided imsXieak,
(2014). In brief, the steps in green represent the data prepatasks. The aggregated

population counts and the raster and vector layers shown in Tabletliearased to create a

10
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Random Forest model (Breiman, 2001) to predict log population density. R&folast (RF)
models are an ensemble, nonparametric modeling approach that grtaesst' of individual
classification or regression trees and improves upon bagging @relt896) by using the best
of a random selection of predictors at each node in each treen@r, 2001; Liaw & Wiener,

2002).

As expected when combining multiple observations that are mostly imdienqte the best,
most unbiased prediction was arrived at by taking the mean tka#i within the forest and
back-transforming the log to arrive at an estimate of ped-piagulation density. Medians and
percentile ranges were also assessed as alternative agsréacprediction; however, the back-
transformed mean consistently out-performed the alternative symmathods during
validation. The resulting country-wise population density map was theth as a weighting
layer for a standard dasymetric mapping approach as dekddbéhe AfriPop and AsiaPop
(now WorldPop) data sets by (Gaughan, et al., 2013; Linard, et al., 20h2d I& Tatem, 2012;

Tatem et al., 2007).

2.3.3 Accuracy Assessment

The four output population maps produced using administrative level 1 inputscdatg
(Fig. 1), were then compared to the level 2 census counts to provideethed of assessing
mapping accuracies, following Gaughan et al. (2013). The individualakiés of the output
population maps represent people per cell, and were then added tdgetech census unit.
These “predicted” sums were then compared with the observed census within each unit.
Summary statistics were then calculated, including root meamesquar (RMSE), the RMSE
divided by the mean census unit count (%RMSE) and the mean al=otrtéMAE). Together

these statistics were used to compare the predictive ability of edlcbdukgy.

11
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3. Reaults
3.1 Urban Extraction Results

For the urban extraction results in the test areas, all of thring to Landsat scenes
recorded in 2007, the validation was performed as follows: humidlensent extents were
manually digitized from Very High Resolution (VHR) Quickbird imagavailable in Google
Earth™, and recoded in 2007, if possible in the same month of the corresponding Lsaeahsat
The relatively small cities of Manado and Bandung, as welhadig urban agglomeration of

Jakarta were considered.

The mapping results are shown in Fig. 4, while the quantitative trahdeesults for
Manado with and without spatial post-processing (see section 2.2.2¢pamged in Table 2.
Visually, the approach shows an accurate extraction of the huritkemsat extents at the pixel
level, with a few misclassifications outside the actual urbaa,aand missing areas within the
boundary of the larger blocks. The quantitative evaluation shows instiede omission error
percentage. After post-processing, however, the overall accurgmpves to 85% and the
omission error decreases from 87% to below 19%. Satisfied withetagve accuracy of
detecting urban areas using the NDSV classifier on the G&Emsythe process was applied to
three collections on the Google Earth Engine, and then integratedthgitMDA Landcover
dataset. This combined land cover dataset, using the GEE-derivecreaildelineations was
then applied to the population mapping process and evaluated statisicaprediction

accuracy.

A small sample of the urban extents generated for testsr¢g] 8 are shown in Fig. 5 for

the central part of Jakarta along with the urban extents for the same #redlDA data set.

12
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3.2 Random Forest Statistical Output

The differences between results are determined by the aypalédasets used in the

population mapping detailed in Table 1.

Referring to the covariate names in Table 1, there are twifiséqt covariates in the
Random Forest mapping process, “BLT” (Built) and “lig” (VIIRSgNilights). Table 3 provides
some insight into the importance of the variables in the mappingssdxy showing how much
Mean Squared Error (MSE) increases when the specified ata/asi randomly permuted and
predictions re-calculated. The most important variables includ8thE covariates, indicating
“Built” areas, which include urban and rural settlements. In additaralf tests, except for Test
4 (GEE 2008-2010), the “lig” (VIIRS Nightlights data) have higher imgmre than other

covariates.

Table 3 also displays the increase in node purity in each test) dboctiments reduction
in residual sum of squared error for the predictions at the ends lofaihehes of each tree when
the specified variable is used during the Random Forest mappingragasn referring to the
variables detailed in Table 1, we show that the “BLT” (bwilfsses with the GEE integrations

in Tests 2, 3 and 4 are the most important in the Random Forest process.

Again referring to the variables detailed in Table 1, it canolserved that the “BLT”
classes with the GEE integrations in Tests 2, 3 and 4 are m#idenguilt classes the most

important in the Random Forest process.

3.3 Random Forest Accuracy Assessment

The accuracy assessment process detailed in Section 2.3.3 showsublovthen urban

extents improve the output when the census data were aggregateddimach tdi province. The

13
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tests in the previous sections detail how well the RF does in pngdpripulation values at the
census unit level, but more importantly is whether the population map pdstg built land
cover data from the three GEE-derived approaches is bettediatributing the population
numbers from coarser census units. Two different error assessrathuds are presented: root
mean square error (RMSE), also expressed as a percentagenoéahepopulation size of the

administrative level (% RMSE); and the mean absolute error (MAE).

For both RMSE and MAE, the results in Table 4 indicate that Tiestrdased population
mapping accuracy the most, with Test 3 slightly better thahIT@¢otably, the urban extraction
from Test 2, which used built extents derived from years 2006 to 2008 habbvibet
redistribution accuracy. It is notable that the landcover chaales for Test 3 and Test 4 to
outperform the MDA dataset in reducing error, creating more coerdubuilt data to correlate

better with our other datasets.

4. Discussion and conclusions

The possibilities that the Google Earth Engine offers in amadyremotely sensed data
on a global scale with the power of Google’s cloud computing areasiiagt The inclusion of
continuously updated Landsat data along with classification tools igndicant processing
power will enable newer and more accurate ways to map humamseits across large areas at
30 m spatial resolution, document past changes and continually update estiesttes. The
potential of this resource has been recently illustrated fortemalpioral forest mapping (Hansen
et al., 2013), and here we outline initial steps for similar efforthuman settlement and

population mapping.

14
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The application of the NDSV within the GEE shows significant iiakfor settlement
mapping within the tool. Characterizing human settlements canobsidered as a binary
problem, but where the “non-urban” class is very heterogeneoustdtdtesrequires a classifier
which is non-parametric, i.e. that does not assume any pedaliatical distributions of the
input values. Moreover, since the NDSV is built through a compositiod50bands, the
classifier has to be able to manage high-dimensional spacesforégotassifiers developed for
hyperspectral data are preferable, using, for example, ghetral angle mapper classifier
(Angiuli & Trianni, 2014), that captures the differences in mpédral vectors and is robust
with respect to difference in illumination. Since this classiiis not available in the GEE
environment, Support Vector Machines (SVM) and Classification anceBggn Trees (CART)
were considered instead ("Earthengine-api - Earth Engine édabsary - Google Project

Hosting," 2014), with similarly strong results shown.

Both the SVM and CART are suitable to binary problems, but our sagtgested that
CART produced more accurate urban extent maps. The statisttiaks explored in the
Random Forest population mapping process in Table 3 highlight to whaedbgrdistance to
“built” environments (lan_dstBLT) covariate plays a role in redu@ngr and increasing the
quality of the output of the population mapping process. When the focus wdsamvariable,
if removed, would increase the RMSE, the GEE experiments (Ze8tsand 4) showed that the
distance to “built” covariate was an important one. Table 3 aldectefthe same results in
increasing node purity in the process. It is important to notdrthasts 2 and 4, urban extents
extracted in 3 consecutive years are combined, while in tesingla gear is considered. Test 2
showed the greatest amount of error, utilizing urban extents ératabtained from the GEE for

years 2006, 2007 and 2008. It is clear that the modification of the landconetedst 1 for the

15
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same time period reflected in test 2, changes the ardas J@tkarta significantly. The improved
accuracy of test 1 over test 2 could just reflect a betteelation of values instead of informing
what is making the data more spatially significant, antian ¢tircumstance, it can be argued that
the GEE urban extents can be a critical component in the creatioultitemporal datasets that
can modify existing landcover datasets in order to examimeldren an efficient manner, for
different years. Table 4 shows how the integration of GEE exwmt®lates well in the
population mapping process and decreases error, by adding more aunbuiitedata along

with our other covariate datasets.

In using census data from 2010, land cover data closest to thistgeds a better chance
of being the best proxy for disaggregation if all other factorequal. In this sense, there is an
inherent bias in the tests, but it also highlights the benefitseofSEE approach, that is being
able to produce an accurate urban extent map for any time peribdhe ability to match up

land cover data to particular census dates.

Overall, the NDSV is shown here to be a reliable method to detben extents,
especially when using a powerful tool to analyze the data sutie &3EE. Moreover, the GEE
represents one of the most powerful tools offered today in remotsgemith its ability to
analyze and classify remotely sensed data over different tehguail@s. Finally, the use of
NDSV derived extents produced in the GEE and integrated in iblfgxopulation mapping
method enables testing of the validity of the classificationmpraving population distribution
mapping, providing an additional novel accuracy assessment approash.urbAnization
processes continue to accelerate in many countries around thg acelurate, powerful and
efficient methods for rapid mapping of settlements and their chaagesgll as populations

within them are a prerequisite for strategic planning and imgss#ssments. The results here

16
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point towards the integration of classification and population mappingoaetvithin GEE as a

way of meeting this need.
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Table 1. Test-specific data sources and variable names uspdpolation density estimation

used for dasymetric weights.

Type Variable Name(s)* Description Indonesia JaedisD
Census Country-specific census and scale 2010, irAthvel 2
(GADM,2014),
(Geohive, 2014)
Land Cover lan_cls011, lan_dst011  Cultivated terisddands Landcover Experiments
detailed in Table 2
lan_cls040, lan_dst040  Woody / Trees
lan_cls130, lan_dst130  Shrubs
lan_cls140, lan_dst140  Herbaceous
lan_cls150, lan_dst150  Other terrestrial vegatatio
lan_cls160, lan_dst160  Aquatic vegetation
lan_cls190, lan_dst190  Urban area
lan_cls200, lan_dst200  Bare areas
lan_cls210, lan_dst210  Water bodies
lan_cls230, lan_dst230  No data, cloud/shadow
lan_cls240, lan_dst240  Rural settlement
lan_cls250, lan_dst250  Industrial area
lan_clIsBLT, Built, merged urban/rural class
lan_dstBLT
Continuous
Raster-Format
lig Lights at night Suomi  VIIRS-Derived
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tem
pre
ele

ele_slope

Converted
Vector-Format roa_dst

riv_dst

pop_cls, pop_dst
wat_cls, wat_dst
pro_cls, pro_dst
poi_cls, poi_dst
bui_cls, bui_dst

Mean temperature, 1950-2000
Mean precipitation, 1950-2000
Elevation

Slope

Distance to roads
Distance to rivers/streams
Generic populated places
Water bodies

Protected areas
Populated Points
Buildings

(NOAA, 2012)
WorldClim/BioClim
WorldClim/Bia@li

HydroSHEDS (Lehner

et al., 2006)

HydroSHEDS-Derived
(Lehner et al., 2006)

OSM (2013)
OSM (2013)
VMARGQed'
World Food Programme
WDPA, IUCN (2012)
OSM (2013)
OSM (2013)

* The variable names are used in Random Forest hoadput and throughout the text as reference ¢ostecific
data they were derived from. The first three lstt@re derived from the data type (e.g. “lan” intheadand cover)
and the last three letters, if present, indicatbatwype of data each variable represents (e.ds™ig a binary
classification and “_dst” is a calculated Euclidetistance-to variable.

T The default data for populated places is mergeah Several VMAPO data sources. There are three PDlAata
sets used: The point data pop/builtupp and popbpispare buffered to 100 m and merged with the poiipa
polygons creating a vector-based built layer. Téyer is then converted to binary class and digidnaasters for

use in modeling. (NGA, 2005)

Table 2. Confusion Matrices for Kota Manado without (top) and with (bottbenspatial Post-

Processing Step (Fig. 4):

Overall Accuracy =(2242/4000) 56.05%
Ground Truth (Pixels)
Class urban non urban Total
urban 245 3 248
non urban 1755 1997 3752
Total 2000 2000 4000
Overall Accuracy = (3398/4000) 84.95%
Ground Truth (Pixels)
Class urban non urban Total
urban 1625 227 1852
non urban 375 1773 2148
Total 2000 2000 4000

Table 3: Top Five Statistical Outputs: Percent IncreaseeafVEquared Error When Variable is
Randomly Permuted and Total Decrease in Residual Sum of S§ubessVariable is Selected

For Decision Tree Node

| Per cent | ncrease of M ean Squared Error When Variable Randomly Per muted
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Test 1 (MDA) (total of 23 covariates used),
(81% Variance Explained)

Test 2 (GEE 2006-2008) (total of 22
covariates used), (83%  Variance
Explained)

20.2 (Lights)

18.4 (Lights)

12.7 (Landcover Distance to Built Areas)

17.4 (Landcover Distance to Built Area

1S)

10.8 (Distance to Populated Points)

10.6 (Distance to Populated Points)

9.24 (Distance to Buildings)

7.91 (Distance to Generic Populs
Places, VMAPO)

ation

9.08 (Landcover Distance to Cultivated Terres
Areas)

trial79 (Landcover Distance to Cultivat
Terrestrial Areas)

d

D

Test 3 (GEE 2009) (total of 22 covariates used),
(83% Variance Explained)

Test 4 (GEE 2008-2010) (total of 23
covariates used), (84%  Variance
Explained)

19.3 (Lights)

19.8 (Landcover Distance to Built Areas)

16.5 (Landcover Distance to Built Areas)

18.8 (Lights)

9.13 (Distance to Populated Points)

8.00 (Distance to Populated Points)

7.13 (Distance to Roads)

7.77 (Landcover Distance to Cultiy
Terrestrial Areas)

ated

6.90 (Landcover Distance to Cultivated Terres
Areas)

TFaJZS (Distance to Roads)

Total Decrease in Residual Sum of Squares When Covariate Used

Test 1 (MDA) (total of 23 covariates used) ,
(81% Variance Explained)

Test 2 (GEE 2006-2008) (total of 22
covariates used), (83%  Variance
Explained)

53.8 (Lights)

49.3 (Landcover Distance to Built Areas)

31.7 (Landcover Distance to Built Areas)

43.7 (Lights)

19.1 (Distance to Roads)

17.7 (Distance to Populated Points)

17.2 (Distance to Populated Points)

16.9 (Distance to Roads)

16.9 (Distance to Buildings)

13.7(Distance to Buildings)

Test 3 (GEE 2009) (total of 22 covariates used),
(83% Variance Explained)

Test 4 (GEE 2008-2010) (total of 23
covariates used), (84%  Variance
Explained)

56.5 (Landcover Distance to Built Areas)

58.4 (Landcover Distance to Built Ared

1S)

46.6 (Lights)

45.3 (Lights)

15.3 (Distance to Roads)

15.3 (Distance to Roads)

13.5(Distance to Populated Points)

12.0 (Distance to Populated Points)

9.76 (Distance to Generic Populated Placdd,.2 (Distance to Buildings)

VMAPO)

Table 4: Accuracy Assessment Results for Four Urban Land Cover Treatments
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Ul

RMSE %RMSE| MAE
Test 1 (MDA) 1450.286 0.129064| 787.8362
Test 2 (GEE 2006-2008) 2277.501 0.20268 | 1352.68}
Test 3 (GEE 2009) 1377.889 0.122621| 773.6329
Test 4 (GEE 2008-2010) 1346.32 0.119812 759.3168
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Figures
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Sources: Global Administrative Areas (GADM, http://www.gadm.org), Thematic Mapping (http://thematicmapping.org/)

Fig. 1: Map of study area and Java administrative boundaries levels 1 and 2
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Fig. 3: General structure of the data processing and map productiodyrcsed to compare

the methodology outlined in Stevens et al (2014). The orange boxes n¢pteses that are
specific to the research presented here and not part of end-usdatagoduct generation. The
green boxes represent data pre-processing stages. Iltems iefkesent Random Forest model
estimation, per-pixel prediction and dasymetric redistribution of census counts.
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Fig. 4: Human settlement extraction results for Manado, Bandung and Jakarta, irsilndone
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Legend
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Fig. 5: A small sample of the area around central Jakartaiusiee tests. Test 1 displays
the EarthSat GeoCover Land Cover Thematic Mapper from MDA He(tefecting extents
from 2007). Tests 2, 3 and 4 represent the Google Earth Engine dedigatseéhat are merged
into Test 1. Test 2 integrates urban areas from 3 collections 2@¥6, 2007 and 2008 (a
collection for each year), Test 3 integrates urban areas 3raoilections in 2009, and Test 4
integrates urban areas from 2008, 2009, and 2010 (a collection for emgh Glassifications
reflected in the Legend are all from the MDA Federal datathetr than the “Urban Area” class,
which was obtained from the Google Earth Engine derived NDSV extents.

32





