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Modelling rockfall phenomena is complex and requires various inputs, including an accurate location of the
source areas. Source areas are controlled by geomorphological, geological, or other geo-environmental factors
and may largely influence the results of the modelling. In the Canary Islands, rockfalls are extremely common
and pose a major threat to society, costing lives, disrupting infrastructure, and destroying livelihoods. In 2011,
the volcanic event on the island of El Hierro triggered numerous rockfalls that affected strategic infrastructures,
with a substantial impact on the local population. During the emergency, the efforts performed tomap the source
areas and tomodel the rockfalls in the considerably steep landscape characterising the islandwere not trivial. To
better identify the rockfall source areas, we propose a probabilisticmodelling framework that applies a combina-
tion of multiple statistical models using the source area locations mapped in the field as the dependent variable
and a set of thematic data as independent variables. The models use as input morphometric parameters derived
from the Digital ElevationModel and lithological data as an expression of the mechanical behaviour of the rocks.
The analysis of different training and validation scenarios allowed us to test the model sensitivity to the input
data, select the optimal model training configuration, and evaluate the model applicability outside the training
areas. The final map obtained from the model for the entire island of El Hierro provides the probability of a
given location being a potential source area and can be used as the input for rockfall runout simulationmodelling.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rockfalls are dangerous instability phenomena that occur frequently
worldwide, particularly in mountainous areas. Rockfall impacts can
cause severe damage due to the high kinetic energy associated with
the velocity of the falling bocks (Crosta et al., 2015; Hungr et al., 2014;
Mateos et al., 2020; Sarro, 2019; Volkwein et al., 2011). Rockfalls are
often described in the literature by distinguishing among different spa-
tial features: the source area, also defined as the release or detachment
area; the transport area, also defined as the propagation or transit area;
and the deposition or accumulation area. Such spatial subdivision is not
simple, and the identification of the source, transport, and depositional
areas can be obtained only with accurate mapping (Luckman, 2013;
Melzner et al., 2020). Rockfalls occur under different geo-
environmental settings, controlling the stability conditions of single
boulders or of a portion of the cliff/outcrop. The factors controlling the
occurrence of rockfall can be broadly grouped into morphometric,
sarro@igme.es (R. Sarro),
@igme.es (R.M. Mateos).
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lithological, structural, and vegetation-related factors (Hernández
Gutiérrez et al., 2015; Jaboyedoff and Labiouse, 2011; Lambert et al.,
2012; Paredes et al., 2015; Sturzenegger et al., 2007).

Under susceptible conditions, rockfalls occurrence can be deter-
mined by a variety of natural processes, acting both over short or long
term. Seismic shaking/acceleration or rainfall-induced pore pressure in-
creases can be easily recognised as short-term rockfall triggers, whereas
it is more difficult to identify long-term triggers, for example, related to
frost and thaw cycles or thermal rock movements and expansions
(Luckman, 2013; Mateos et al., 2012).

A rockfall model does not necessarily have to be able to describe all
parts of the rockfall process and the movements of boulders from the
source to the deposition area, even though complete information is rel-
evant for effective hazard management. One of the major difficulties of
rockfall modelling is related to the uncertainty associated with the
source area identification, and in the literature, various approaches
have been utilised for this identification. Some authors have proposed
direct recognition in the field (Agliardi et al., 2009) and the interpreta-
tion of aerial photographs or topographic base maps (Guzzetti et al.,
2004), while others have used remote sensing techniques such as Un-
manned Aerial Vehicle (UAVs) or Laser Scanning (Santangelo et al.,
2019; Sarro et al., 2018). Aksoy and Ercanoglu (2006) identified source
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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areas from field surveys combined with a rule-based fuzzy evaluation,
incorporating the altitude difference, number of discontinuities, num-
ber of wedges, and number of potential slides. The most common sim-
ple morphometric approach consists of a heuristic definition of a
threshold angle, above which the hillslope may be considered as unsta-
ble and potentially a rockfall source area (Corona et al., 2013; Frattini
et al., 2008; Guzzetti et al., 2003; Jaboyedoff and Labiouse, 2003; Sarro
et al., 2020; Toppe, 1987). The threshold angle can also be identified
with more complex approaches. Loye et al. (2009) introduced a meth-
odology that enables the detection of rockfall sources at a regional
scale based on a geomorphometric analysis performed on High-
Resolution DEMs (1 m cell size). Losasso et al. (2017) adopted a meth-
odology based on the evaluation of the slope angle distribution of the
main lithological unit. Muzzillo et al. (2018) considered a slope angle
greater than the formation frictional angle. Fanos and Pradhan (2018)
proposed a hybrid model for rockfall source identification based on
the stacking ensemblemodel of random forest, artificial neural network,
Naive Bayes, and logistic regression in addition to a Gaussian mixture
model using high-resolution airborne laser scanning data (LiDAR).

In this study, we investigated amethod for the identification of rock-
fall source areas in El Hierro, the westernmost island of the Canary
Islands. Because of the steep topography and volcanic geological com-
plexity, rockfalls in the Canary archipelago are exceptionally common
and represent a major threat to society, costing lives, disrupting infra-
structure, and destroying livelihoods. The focus of the study is the de-
scription of a regional approach for the identification of rockfall source
areas, exploiting a combination ofmultiplemultivariate statistical prob-
abilistic models. In the manuscript, we first describe the study area and
Fig. 1. Simplified lithological map of El Hierro derived from the geological map. Crown
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the available data. We then present themethodology and analyses per-
formed for theprobabilistic identification of the source areas. Finally, we
discuss the results and provide concluding remarks.

2. Study area and data

The Canary Islands are a Spanish overseas territory and one of the
larger volcanic archipelago. They consist of eight volcanic islands off
the Atlantic coast ofMorocco, aligned along aW–E direction for approx-
imately 800 km (Fig. 1). The geological origin of the archipelago is still
under debate, but in the literature, it is commonly interpreted as a
hotspot track (Fullea et al., 2015). El Hierro, located at the southwestern
edge of the Canary Islands (Fig. 1), has an extension of 268.71 km2 and a
population of 10,968 inhabitants (Instituto Nacional de Estadística,
2019) distributed in three municipalities: Frontera, El Pinar, and
Valverde. The island has a peculiar truncated trihedral shape, with
three convergent ridges of volcanic cones separated by wide
horseshoe-shaped embayment (Fig. 1). The elevation reaches a maxi-
mum of 1501 m at the top of a relief formed by three overlapping sea-
floor volcanoes (Carracedo et al., 2001; Martí et al., 1996). At least four
giant landslides (El Golfo, El Julan, San Andres, and Las Playas) have
modified approximately 450 km3 of the island during the last
200–300 thousand years, with each landslide removing approximately
3% of the total edifice volume (Gee et al., 2001). The island is located
in a transitional zone between temperate and tropical climates. Higher
rainfall levels are recorded during the autumn andwinter, mainly in De-
cember, when heavy storms are frequent, which are associated with in-
tense rainfall and strong winds (Bechtel, 2016).
s of giant landslides shaping the island morphology are shown with dashed lines.
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On the island, rockfalls are a widespread natural process, occurring
generally along the steepest cliffs and forming evident talus deposits
with a conical shape. The impact of rockfalls is significant, as reported
by the numerous damages to structures and infrastructures. In 2011,
the seismicity induced by a submarine volcanic eruption triggered nu-
merous rockfalls, which severely affected the road network, causing
substantial direct and indirect social and economic damage. During the
event, field observations carried out by technicians of the Geological
Survey of Spain (IGME) in the El Golfo area enabled a preliminary eval-
uation of the cliff stability along road HI-5, near the Roquillos tunnel.
IGME highlighted a complex scenario for the analysis of rockfall hazard,
particularly for the identification of rockfall source areas. Rockfall occur-
rences are primarily conditioned by numerous factors, such as the distri-
bution of different volcanic materials, diversified slope gradients, and
large erosion rates. In addition, the difficult accessibility to the rockmas-
sifs limited the ability to directly map the rockfall source areas in the
field. One year after the seismic event, a research group at the Polytech-
nic University of Madrid and the Geological Survey of Spain developed a
semi-quantitative heuristic methodology for the rockfall detachment
susceptibility zonation of El Hierro (Fernandez-Hernández et al.,
2012). The methodology is based on the overlapping of thematic maps
of conditioning factors to mass movements using standard GIS proce-
dures in order to obtain a susceptibility numerical index.

2.1. Identification of active and prone rockfall source areas

In this work, we used a combination of different techniques to iden-
tify source areas. First, we selected four test sites that are well
recognised as prone to rockfalls: Las Playas, Sabinosa, El Golfo, and La
Estaca harbour (Fig. 2). Then, for the test sites, we mapped the source
areas using the following methods: orthophoto interpretation (Petje
et al., 2005), analysis of the digital elevation model (Abellán et al.,
2006; Jaboyedoff et al., 2012; Losasso et al., 2017; Loye et al., 2009),
and analysis of geological and geomorphological features and field
Fig. 2.Map of active and prone rockfall source areas in the 4 test sites: Las Playas, Sabinosa, El Go
El Hierro).
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surveys (Ruiz-Carulla et al., 2015). For the sites,wewere able to differen-
tiate “active” and “prone” source areas. In the active areas,we recognised
recent evidence of rockfall detachments by performing detailed map-
ping, which combines DEM analysis, orthophoto interpretation,field ob-
servations, UAV analysis, and the information provided by the local
authorities. First, the DEM analysis allowed us to identify relevant topo-
graphical features, such as cliffs and steep slopes, successively during the
field campaign in December 2018, fresh detachment areasweremapped
and verified in situ with the local authorities (Road Maintenance Ser-
vice). At the El Golfo test site, owing to the difficult and limited accessi-
bility of the cliffs, UAVswere used for the recognition of active areas. The
active areas are predominantly located in hard rocks, such as basalts and
cemented pyroclastic deposits with slope angles over 45°–50°.

In the prone areas, we distinguished geological and geomorpholog-
ical characteristics potentially prone to rockfall occurrence, without re-
cent evidence of detachments. Prone areas were identified heuristically
by analysing orthophotos in the terrains with slope angles greater than
45°. The map in Fig. 2 shows the distribution of the active and prone
areas in the four test sites.

2.2. Thematic data

The investigations carried out at the four test sites (Fig. 2) allowed us
to identify the geo-environmental factors characterising the cliffs,
which we considered relevant for the probabilistic identification of the
rockfall source areas. In the preliminary phase, we selected topography,
lithology, presence of dikes, and land use/cover as the conditioning fac-
tors, with the latter excluded during the analyses because steep slopes
are primarily classified as bare soil.

The topography was derived from the Digital Elevation Model
(DEM) at a 5 m × 5 m resolution provided by the National Geographic
Institute (http://www.ign.es/ign/main/index.do). The DEM was used
to compute the morphometric information, such as slope, curvature,
and aspect.
lfo, and La Estaca harbour (Photos a and b by courtesy of JoséMedina Alejandro, Cabildo of

http://www.ign.es/ign/main/index.do


Fig. 3. Map of landforms obtained using “Geomorphon” (Jasiewicz and Stepinski, 2013). The island is divided into 10 landform types that were used to exclude flat areas, which are
meaningless for source area identification.
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To exclude flat areas, which are meaningless for source area
identification, we performed a landform classification using the
“Geomorphons” method (Jasiewicz and Stepinski, 2013). The method
classifies andmaps landforms from aDEMbased on the principle of pat-
tern recognition. The tool, based on the comparison of the elevation of
each pixel with the values of the eight surrounding pixels, classifies
the terrain into 10 landform types (Fig. 3).

The lithological information was derived from the geological map
provided by the Geological Survey of Spain at a 1:25,000 scale, which
shows 38 different geological units and is reclassified into five classes
based on their lithological characteristics. Class 1 includes soft soils
and groups the lithologies outside the source areas, such as lapilli and
sand; Class 2 represents hard soils, such as sedimentary deposits
(mainly conglomerate); Class 3 contains soft rocks, such as thepyroclas-
ticmaterial; Class 4 groupshard rocks, such as basaltflows and trachyte;
and Class 5 includes very hard rocks, such as dikes, volcanic breccia, and
massive basalts (Fig. 1 and Table 1).

Following the field observations, one relevant geological factor
influencing the location of the rockfall source areas is the presence of
dikes. In El Hierro, there is a complex dike swarm, exposed predomi-
nantly along the cliffs and the oldest ravines. Most of the dikes are
subvertical (Fig. 4), trending parallel to the axis of the rift and range in
Table 1
Lithology classes derived from the geological map of El Hierro (adapted from Hernández-
Gutierrez, 2014).

Class Lithology Type

1 Sand and Lapilli Soft soils
2 Sedimentary deposit Hard soils
3 Pyroclastic material Soft rocks
4 Basalt flows and Trachyte Hard rocks
5 Breccia and massive basalt Very hard rocks

4

thickness from 0.1 to 12.5 m (Carracedo et al., 2001). Starting from
the available geological map where dikes are well recognised and
mapped (Becerril et al., 2016), we prepared a raster layer showing the
spatial distribution of the dikes. The dike density map with a 5 m × 5
m resolution (Fig. 4) was obtained by applying a 75-m kernel
interpolation. We choose a kernel interpolator in place of a classical
Kriging approach because of its better performance in applications
where small datasets are available (Mühlenstädt and Kuhnt, 2011).

3. Probabilistic source areas modelling

For the probabilistic identification of rockfall source areas, we used a
combination of multiple supervised classification models, requiring a
map of the observed source areas (i.e. dependent/grouping variable)
and a set of independent thematic information derived from the DEM
and the geological map (i.e. explanatory variables) as inputs. The prob-
abilistic analysis was formalised and tailored for the purpose of a tool
called LAND-SUITE (LANDslide - SUsceptibility Inferential Tool Evalua-
tor), an open source software coded in R (R Core Team, 2018), originally
implemented for landslide susceptibility assessments. LAND-SUITE in-
cludes three main modules: (i) LAND-SE (LANDslide - Susceptibility
Evaluation), which performs susceptibility modelling and zonation
(Rossi and Reichenbach, 2016); (ii) LAND-SIP (LANDslide - Susceptibil-
ity Input Preparation), which is designed for the preparation of the in-
puts for LAND-SE; and (iii) LAND-SVA (LANDslide - Susceptibility
Variable Analysis), which is designed for the explorative analysis of the
training and validation datasets that are used as inputs for LAND-SE.
The software has several advantages, including the ability to: (i) use dif-
ferent cartographic units (pixel-based or polygon-based); (ii) evaluate
pairwise correlations and multicollinearity problems among explana-
tory information and to perform conditional density analysis of the
input variables; (iii) perform different types of validation analyses;



Fig. 4. Dike density map obtained applying a Kernel interpolation to the dikes shown in the geological map.
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(iv) evaluate themodel prediction skills andperformances using success
and prediction rate curves (Chung and Fabbri, 1999; Chung and Fabbri,
2003); (v) provide results in standard geographical formats (shapefiles,
geotiff); (vi) perform an optimisation and stabilisation of the modelling
algorithms; and (vii) utilise additional computational parameters to
tune the calculation procedure for the analysis of large datasets (Rossi
et al., 2010; Rossi and Reichenbach, 2016).

Probabilistic source areamaps, expressing the probability of a region
being a potential rockfall source area, were obtained by selecting the
pixel as the mapping unit. We used the logistic regression model
(LRM) integrated in the tool to analyse different training/validation sce-
narios, with the main purpose of evaluating the model sensitivity (i.e.
model output variations that can be attributed to input variable varia-
tions) to the dependent variable selection and selecting the best train-
ing configuration to model the entire island. Conversely, the final
source area zonation was performed, enabling the combination of dif-
ferent statistical modelling methods (i.e. linear discriminant analysis,
quadratic discriminant analysis, and logistic regression model),
adopting a regression-based approach. The combined model (CFM
model) was prepared by applying a logistic regression and using the
probabilistic outcomes of the single models as independent variables
and the presence or absence of source area in the pixel as grouping var-
iables (Rossi et al., 2010; Rossi and Reichenbach, 2016).

The probabilistic source area maps, resulting from the different
model applications and configurations, were evaluated considering
various outputs aimed to verify the modelling performances and to es-
timate the associated uncertainty. Specifically, to evaluate the probabi-
listic source area zonation, we accounted for the output expressing the
variation of the model sensitivity, specificity, and Cohen's kappa index
for the different values of the probability thresholds, ROC plot, and four-
fold plot (also referred to as a contingency plot). The fourfold plot
graphically summarises the number of true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN) of the contin-
gency table obtained by comparing the observed and modelled source
areas (Fawcett, 2006). The ROC curve shows the “hit rate” (y-axis) vs.
the “false alarm rate” (x-axis) values computed for different probabilis-
tic thresholds. The “hit rate”, also known as sensitivity or “true positive
5

rate”, is computed as TP/(TP + FN) and specifies the proportion of
source areas pixels correctly predicted by the model. The “false alarm
rate”, also known as “false positive rate”, is computed as FP/(FP +
TN), and specifies the proportion of pixels out of the known source
areas incorrectly predicted as source areas. The area under the ROC
curve (AUCROC) is a quantitative measure of the model performance
(Mason and Graham, 2002; Jolliffe and Stephenson, 2012; Fawcett,
2006). AUCROC varies between 0 and 1, with 1 representing a perfect
model performance and 0.5 indicating the performance of an uninfor-
mative model.

3.1. Input data preparation

All input variableswere converted to a raster formatwith a pixel res-
olution of 5 m × 5 m (i.e. the DEM resolution). In the modelling, the
presence/absence of the observed source areas in the pixel was used
as a dependent (i.e. grouping) variable, while the slope angle, curvature
derived from the DEM, and reclassified lithology and dike density maps
derived from the geological map were used as independent variables
(see §2). Different procedures were used to include continuous (avail-
able as raster layers) and categorical (available as vector and raster
layers) variables in the modelling. The continuous variables were di-
rectly used in the analysis, while the categorical variables were con-
verted to numerical dummy variables, ranking the classes of each
categorical layer based on their expected (i.e. heuristically defined) pro-
pensity to be a rockfall source area. The ranking of the categorical vari-
ableswas verified by considering the density of the source area per class
(i.e. conditional density plots produced by LAND-SVA), and in the case
ofmismatch,modified accordingly. The analysis of the variable pairwise
correlation and multicollinearity was performed using LAND-SVA to
verify the presence of collinearity problems among the independent
variables. Aspect were excluded from the modelling because of the
strong correlation with the slope. The final set of variables included
morphometric variables (slope and curvature), lithological classes, and
dike density. To verify the goodness of this set of variables, the Wald
test was performed during the LRMmodelling to evaluate the variables'
significance (R Core Team, 2018).



Table 2
Scenarios and Cases selected for the model training and validation. The table shows the selected test sites and the value assigned to the prone areas for each scenario/case.

Scenario Case Selected test sites Prone areas value

Training Validation Training Validation

A 1 El Golfo, Las Playas Sabinosa, La Estaca No data No data
2 Sabinosa, La Estaca El Golfo, Las Playas No data No data
3 El Golfo, Las Playas Sabinosa, La Estaca El Hierro island No data No data

B 1 El Golfo, Las Playas Sabinosa, La Estaca 1 1
2 Sabinosa, La Estaca El Golfo, Las Playas 1 1
3 El Golfo, Las Playas Sabinosa, La Estaca El Hierro island 1 1

C 1 El Golfo Las Playas Sabinosa, La Estaca No Data 1
D 3 El Golfo, Las Playas Sabinosa, La Estaca El Hierro island No Data 1
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All the analyses were performed using a mask to exclude the flat
areas, which are meaningless for source area identification. The mask
covering the entire island was obtained by selecting five landform
types (i.e. ridge, shoulder, spur, slope, and hollow) obtained using the
“Geomorphons” method (Fig. 3).

The probabilistic models were calibrated using an equal number of
pixels in (i.e. with value equal to 1 corresponding to source area pres-
ence) and out (i.e. with value equal to 0 corresponding to source area
absence) of the observed source areas. In the analyses, we constrained
the random selection of pixels with a value equal to 0 (i.e. source area
absence) in the vicinity of the observed source areas. This was done
by establishing a 250-m buffer outside the active and prone source
area polygons using standard GIS procedures. The dimension of
the buffer was selected considering the distance between the top of
the cliff and the maximum runout distance, which was recognised by
the lower limit of alluvial fans and debris cones at the base of the escarp-
ments. We considered the buffer areas as zones where source areas
were not identified with sufficient certainty during the mapping activi-
ties, and hence, where the geomorphological setting is unlikely to be a
source of rockfalls.

3.2. Model application

Using the dependent and independent variables, we prepared the
probabilistic source area zonation with the associated uncertainties. To
test and verify the model sensitivity to the dependent variable, we
trained the model selecting different mapped source areas (i.e. active,
prone, and buffer) as the grouping variable. The grouping variable was
set to 1 when the pixels corresponded to mapped source areas and to
zero in the opposite case. In the modelling, the source areas mapped
as active were always classified as 1, buffer areas always as 0, and
prone areas as 1 or No_Data depending on the different scenarios
(Table 2). In the calibration/training phase, we constructed a probabilis-
tic model relating the dependent and the independent variables, while
in the validation phase, we applied the resulting model for various por-
tions and for the entire island of El Hierro. For this purpose, we identi-
fied four scenarios (A, B, C, and D) considering several dependent
variable configurations for model training and validation. For each sce-
nario, we simulated different cases (Cases 1, 2, and 3) considering
Table 3
Accuracy and area under ROC for the 4 scenarios. The asterisk highlights the results of themode
performances.

Scenario Case Accuracy (ACC)

Training Validation

A 1 91.24 90.83
2 91.02 89.93
3 91.26 90.6⁎

B 1 90.28 86.14
2 86.28 90.68
3 89.47 88.61⁎

C 1 91.24 86.43
D 3 91.28 88.60⁎

6

combinations of test sites as training and validation areas (Table 2).
The different configurations (Table 2)were identifiedwith the objective
of testing and verifying the model sensitivity to (i) different training/
validation sets and (ii) different types of data (i.e. considering only ac-
tive or active and prone as source areas) used as the dependent variable
to train the model.

To evaluate the sensitivity of the training and validation models, we
performed different tests (hereafter denoted as cases) changing/inverting
the training and the validation test site selection (Table 2). For Scenarios A
and B, we considered Case 1, where two test sites (Fig. 2 and Table 2)
were selected as the training set and two as validation sites, Case 2,
where the training and validation test sites were switched, and Case 3
where the model was trained with the four test sites and applied over
the entire island. In Scenario A, themodel was trained and validated con-
sidering only active source areas (value equal to 1) and the buffer zone
(value equal to 0), whereas pixels in the prone areas were not used in
the analysis. In Scenario B, both the active and prone areas were used to
train and validate the models (Table 2). Scenario C considers only Case
1, where the training and the validation test sites are the same as in
Case 1 of Scenario A, but with a different selection of source area pixels
used to validate the model (Table 2). Scenario D considers only Case 3,
where the model was trained using the four test sites and the result
was applied to the entire island, considering the prone areas along with
the active area. Table 2 summarises the test sites and the values assigned
to the prone areas for model training and validation.

The results of the source area modelling (i.e. model training and val-
idation performances) are quantified by the values of the overall accu-
racy (ACC) and area under the ROC curve (AUCROC) (Table 3). The
asterisks in the table highlight the results of themodel applied to the en-
tire island (i.e. model validation of Case 3), which should be considered
only indicative of the realmodel performance. In fact, because the distri-
bution of source areas is known only in the four surveyed test sites, the
model performancemetrics for the entire islandmay be partially biased.
The minor differences existing for the same cases among the different
scenarios are the results of the random procedure used to select the
pixels in correspondence of the source areas (values = 1 sampled in
mapped source areas) or not (values = 0 sampled in buffer areas).

This bias is not present in Cases 1 and 2, where the models were
trained and validated in the surveyed test sites. Fig. 5 shows
ls applied to the entire island, which should be considered only indicative of the real model

Area under Roc Curve (AUCROC)

Difference Training Validation Difference

0.41 0.957 0.966 −0.009
1.09 0.969 0.956 0.013
0.66⁎ 0.961 0.966⁎ −0.005⁎

4.14 0.944 0.932 0.012
−4.40 0.933 0.943 −0.01
0.86⁎ 0.945 0.951⁎ −0.006⁎

4.81 0.957 0.932 0.025
2.68⁎ 0.961 0.954⁎ 0.007⁎



Fig. 5. Contingency and ROC plots for Cases 1 and 2 for the Scenario A and B, where the models were trained and validated in the surveyed test sites.
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contingency plots (i.e. graphical representation of the contingency ma-
trix comparing the model predictions and observations) and ROC plots
obtained for Cases 1 and 2 of Scenarios A and B. Fig. 6 shows the contin-
gency and ROC plots for Case 1 of Scenario C, where the model was
trained and validated in the surveyed test sites and the prone areas
were not used to train the model.

Fig. 7 illustrates the source areasmaps for the entire island, obtained
by training the probabilistic model with the data from the four test sites
with different prone area configurations in both the training and valida-
tion phases (Case 3 for Scenario A, B, and D). The maps show the prob-
ability of each pixel being a source area, ranging from 0 (low) to 1
(high). In the figure, the contingency and the ROC plots demonstrate
the training performances of the models.
7

4. Discussion

The identification of source areas is a key step that largely influences
the results of rockfall simulations and modelling (Agliardi and Crosta,
2003). Because the position of source areas along hillslopes does not fol-
low a completely random distribution, it cannot be predicted efficiently
and effectively using simple approaches. In many cases, more compre-
hensive models can be used to account for the varying factors control-
ling rockfall initiation and source area locations.

In El Hierro, the elevation and high slope angles of the cliffsmake the
recognition andmappingof the source areas quite complex. For this rea-
son, detailed identification and mapping of source areas have been lim-
ited to a few test sites (Fig. 2), where rock detachments are more



Fig. 6. Contingency and ROC plots for Case 1 for Scenario C, where the model was trained and validated in the surveyed test sites.
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evident and visible. The information collected at the test sites was used
to train the probabilistic models for the identification of rockfall source
areas. Several training/validation model configurations were tested
(Table 2) with a multifold objective: (i) testing the probabilistic model
sensitivity to input data, (ii) testing the model applicability to outside
the training areas, and (iii) finding an optimal training configuration
to apply the model over the entire island. In the modelling, we always
used the same set of independent variables that were selected with
the support of the procedures implemented in LAND-SVA. The signifi-
cance of the variables, computed using the Wald test, was high in all
the simulations, confirming the robustness and reliability of the envi-
ronmental data selected for the analysis. We consider this set of vari-
ables easy to acquire, making the approach applicable in similar
volcanic settings. Overall, the analysis of the variability of the LRM
model coefficients obtained for all the considered Scenarios and Cases
shows that the four thematic variables were significant and positively/
directly contributing to the source area identification.

The analysis of the accuracy (ACC) and AUCROC values (Table 3) re-
vealed the good ability of the models to discriminate pixels potentially
being/not-being a rockfall source area. In particular, the accuracy in
both the training and validation phases is always greater than 86.14,
and the AUCROC values are greater than 0.932.

In Scenario A, themodel was trained and validated considering only
active source areas (value equal to 1) and the buffer zone (value equal
to 0), whereas pixels in the prone areas were not used in the analysis
(Table 2). The results are similar for the three cases (Table 3), with
minor differences among the contingency and ROC plot values for the
training and validation sets (Fig. 5). The number of FP (i.e. pixels
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wrongly predicted as being source areas) and FN (i.e. pixels wrongly
predicted as not being source areas) is considerably small in these
cases. The performance of the model is especially high, both during
the training and validation, even though in the validation phase, the
model is only applied to active source areas and does not provide addi-
tional information on other possible critical zones (i.e. in correspon-
dence of prone source areas). The comparison of Cases 1 and 2
indicates that the model is slightly influenced (i.e. small differences be-
tween training performances) by the location of the test sites selected
for training (Table 2) and additionally highlights that themodel export-
ability outside the training areas is high (i.e. small differences between
training and validation performances). Case 3, which applies the
model trained on the four test sites to the entire island, is slightly better
compared with the other two cases.

In Scenario B, where the test site configurations are the same as in
Scenario A, both the active and prone areas were used to train and val-
idate themodels (Table 2). The analysis of the contingency plots (Fig. 5)
and accuracy values (Table 3) reveals a difference of approximately 5%
between Case 1 and Case 2 from training to validation, whereas the dif-
ference in the AUCROC values is small. Unlike Scenario A, selecting differ-
ent test sites in training may lead to appreciable differences.

The comparison of the evaluationmetrics for Scenarios A and B dem-
onstrates that the models benefit from the use of only active source
areas in both the training and validation phases (Table 3 and Fig. 5).

Scenario C tests the ability of themodel trainedusing only active areas
to predict the prone source areas in validation. As expected, the model
training performance metrics are similar to those obtained in Scenario
A with similar training, but with reduced validation performances. This



Fig. 7. Probabilistic source areas maps obtained applying different model training configurations to the entire island (Case 3). The maps show the probability of the pixels being a source
area, ranging from 0 (low) to 1 (high). Contingency and ROC plots show model training performances.
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suggests that the model is sensitive to the selection of source area types
and highlights that active and prone area features represent distinct
source area conditions. In particular, prone areas provide a less accurate
characterisation of the conditions leading to rockfall initiation. This can
be related to the methods used to map prone areas that are based on a
more heuristic inference. Nevertheless, we maintain that this type of
mapping could be applicable for preliminary modelling applications.

In Scenario D, themodelwas trained in all four test sites using only ac-
tive source areas (Table 2) and was applied to the entire island using as a
benchmark for both source area types. Inspection of the contingency plots
(Fig. 5) reveals that the training correctly predicted 91.24% of the pixels as
source areas or not. As expected, the ROC curves and relative AUCROC
values also indicate better prediction skills than in Scenario B.

Overall, the results demonstrate that the models are sensitive to the
type of source areas used in the training phase, with the best perfor-
mances obtainedwith the active areas. The performances of themodels
trained using varying test site configurations are similar. This indicates
that an accurate identification of active source areas in the field, even
if limited to a few locations, may provide representative data to train
the models. For this reason, the final model for the entire island was
trained by selecting the active source areas identified in the four test
sites. To improve the reliability of the modelling, the pixels considered
not prone to rockfall initiation were selected in the vicinity of the
9

mapped source areas (buffer zone), wherewe assumed that rockfall de-
tachments were not present.

The final source area zonation for the entire island of El Hierro was
prepared using an combination (i.e. CFM model) of various statistical
supervised multivariate classification approaches (i.e. linear discrimi-
nant analysis, quadratic discriminant analysis, and logistic regression
model). The probabilistic map and associated uncertainty are shown
in Fig. 8. As expected, the rockfall source areas are preferentially located
in areaswith high slope gradients, but this factor itself is not sufficient to
explain the spatial distribution on the entire island, with lithological in-
formation contributing significantly to their identification. Fig. 8 also
provides the contingency and ROC plot for the CFM model training,
with results that are comparable to similar configurations (Case 3 of dif-
ferent Scenarios). As already discussed for landslide susceptibility
modelling (Rossi et al., 2010; Rossi and Reichenbach, 2016), the use of
CFM, which is an ensemble of different classification approaches, has
the main advantage of reducing the final modelling uncertainties.

The use of probabilistic models for source area identification pro-
vides a reliable extent and distribution of the rockfall detachment
areas for the entire island, improving the completeness and representa-
tiveness of the inputs necessary for rockfall runoutmodelling. However,
additional analyses should compare rockfall source area maps obtained
using different approaches and evaluate their consequences on rockfall



Fig. 8. Final probabilistic source areasmap obtained by applying the LAND-SUITEmodels' ensemble/combination. Themap shows the probability of the pixels being a source area, ranging
from 0 (low) to 1 (high). Contingency and ROC plots for the CFM model training are shown in the figure.
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runout zonation. At the regional scale, the approach proposed proved to
be effective for the identification of rockfall source areas based on vari-
ous geo-environmental variables.

5. Conclusion

The analysis described in this study revealed that it is possible to
identify source areas using a supervised statistical classification ap-
proach with an optimal modelling configuration obtained using “active
source areas” as the dependent variable (i.e. the areas where recent ev-
idence of detachments are visible in the field)mapped in few but repre-
sentative test sites. Compared with other maps derived by slope angle
thresholding, the probabilistic mapsmay improve rockfall susceptibility
zonation, providing a more objective identification of source areas by
comprehensively considering the complexities of the rockfall initiation
process. Potentially, these probabilistic maps could support the identifi-
cation of an appropriate number of rockfall trajectories to be simulated
from each source area, which is a critical parameter for rockfall runout
simulation software. Future studies should evaluate and compare how
rockfall source area maps obtained using different approaches affect
rockfall runout modelling zonation. A probabilistic map of rockfall
source areas at a regional scale can support civil protection and emer-
gency authorities and decisionmakers to evaluate and assess the poten-
tial spatial distribution of rockfall impacts and can be a strategic support
for rockfall warning systems. In areas with similar rockfall process char-
acteristics, such as the other islands of the Canary archipelago, the pro-
posed probabilistic approach should be able to provide reliable regional
distributions of source areas without extensive field surveys.
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