
Towards Testing and Analysis of Systems that

Use Serialization

Giovanni Denaro and Leonardo Mariani

Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Via Bicocca degli Arcimboldi, 8
I-20126 - Milano, Italy

{denaro, mariani} @disco.unimib.it

Abstract

Object serialization facilitates the flattening of structured objects into byte streams and is therefore
important for all component-based applications that strongly rely on data-exchange among compo-
nents. Unfortunately, implementing and controlling the serialization mechanisms may expose the
software to subtle faults. This paper paves the way towards testing and analysis techniques specifi-
cally tailored to the assessment of software that uses serialization. In particular, we introduce a tax-
onomy of abstractions and terms to semantically characterize and classify the main data-exchange
cases, which serialization can be involved with. The resulting conceptual framework provides a
means to forecast how erroneous implementations of serialization would look like in different cases,
thus enabling the focusing of testing and analysis techniques to address serialization-related faults.

Keywords: object serialization, testing, software analysis, data exchange

1 Introduction

Component-based software applications are increasingly popular in several ap-
plication domains. In the general setting, these applications are made out of
a set of both independently developed and independently deployed software
components that accomplish a common goal by coordinating and exchanging
data in either distributed or local environments. High level communication

1 This work has been partially founded by the Italian Government in the context of the
QUACK project (QUACK: A Platform for the Quality of New Generation Integrated Em-
bedded Systems.)

Electronic Notes in Theoretical Computer Science 116 (2005) 171–184

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.075

mailto:denaro@disco.unimib.it
mailto:mariani@disco.unimib.it
http://www.elsevier.com/locate/entcs

mechanisms tend to facilitate the interactions among components. In partic-
ular, it is often extremely useful that the exchanged data appear as objects,
i.e., instances of abstract data types with their run-time state. For example,
in distributed component technologies, component methods can be invoked
remotely with object parameters that are passed across process and network
boundaries [1]. Similarly, in mobile code technologies, components (a.k.a. ex-
ecuting units) can migrate through the network along with sets of local data
objects [2]. As a further example, a common implementation of data persis-
tence is achieved by hibernating and resuming objects into and from the file
system. However, although objects may have complex structures, in the gen-
eral case the data-exchange takes place through low-level ducts, which support
just a byte-stream abstraction, such as, files and TCP sockets.

Object serialization allows to bridge the gap, facilitating the flattening of
objects into byte streams. When an object is serialized, both the encapsu-
lated values and types are flattened in the target byte stream with sufficient
information to insure that the equivalent typed object can be later recreated;
referenced objects (if any) are recursively serialized as well. Deserialization is
the symmetric process of recreating the object (or the graph of objects) from
the serialized representation. Programming languages such as Java and C#,
which are widely used for implementing component-based software, provide
built-in primitives for serializing (deserializing) objects and mechanisms for
controlling the serialization process to some extent [12,13]. As an example of
these latters, Java allows to explicitly specify object references that must be
ignored during serialization, thus preventing some parts of an object graph
from being serialized when the root object is serialized. An analogous facility
is available in C#. Controlling serialization is crucially useful in many prac-
tical situations. Interestingly, Ghezzi, Martena and Picco describe a method
for optimizing the performance of remote method invocations based on con-
trolling serialization: their method reduces the network overhead by pruning
off unused subgraphs of the objects passed as parameters [3].

Unfortunately, changing the default behavior of serialization exposes the
software to subtle faults. Consider for example the case in which two com-
ponents exchange an object and this involves serialization. Subtle faults and
failures may show up if the receiving component assumes that the object
structure is as defined in the sender component, but instead the structure was
modified during serialization. The first part of this paper reports a number of
sample cases of software faults that can be accounted to the use of serialization.
However, to the best of our knowledge, in the current research and industrial
practice there is lack of testing and analysis techniques that address correct-
ness of the software in presence of serialization. This motivates our research

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184172

on testing and analysis techniques specifically tailored to the assessment of
software that uses serialization.

As a first milestone towards this goal, the main contribution of this paper is
the definition of a conceptual framework for reasoning about serialization. We
introduce a taxonomy of abstractions and terms to semantically characterize
and classify the main data-exchange cases, which serialization can be involved
with. We draw the link between the identified semantic cases and the linguistic
support for serialization. Our conceptual framework provides a means to
forecast how erroneous implementations of serialization would look like in
different cases. This enables focusing of testing and analysis techniques to
address serialization-related faults. As preliminary evaluation of our research,
we sketch how the defined conceptual framework may facilitate the adaptation
of the ideas of traditional data-flow testing [6,5] for verifying serialization. We
illustrate the framework and the examples referring to Java, but we believe
that the ideas can be easily ported to other programming language.

Part of the work presented in this paper relates to the concepts presented
by Fuggetta, Picco and Vigna in [2]. Referring to mobile code systems, these
authors distinguish mobility mechanisms for three elements of a program:
code, execution state and data space. In particular, data mobility involves
transfer of structured data across computing environments and is often prac-
tically accomplished by means of serialization [10]. Our taxonomy of data-
exchange cases can be regarded to as an extension of the data mobility cases
presented in [2].

The paper is organized as follows. Section 2 illustrates some sample soft-
ware faults that can be accounted to the use of serialization. Section 3 pro-
poses a conceptual framework for reasoning on testing and analysis techniques
for serialization. Section 4 exemplifies how our framework may support the
definition of dataflow-based testing of serialization related faults. Section 5
summarizes the contributions of this paper and sketches the future agenda of
our research.

2 Serialization Faults in Java

Java provides primitives and mechanisms for using and controlling serial-
ization [4]. For objects to be serializable, they are required to implement
the interface Java.io.Serializable. This interface just works as a marker
of serializable objects, while it does not contain any further definition. A
serializable object can be flattened into a stream using the method void

writeObject(Object) of the class ObjectOutputStream and serialized ob-
jects can be recreated from their flattened representations using the method

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 173

Fig. 1. (a) represents the structure of the object O1, while (b) is the serialized version of O1

void readObject(Object) of the class ObjectInputStream. By default,
when an object is serialized, its whole object graph is serialized, i.e., all di-
rectly and indirectly referenced objects are recursively serialized as well. The
default behavior of serialization can be altered by marking object references
as transient, thus interrupting the recursion in the a branch of the object
graph, or redefining the methods readObject and writeObject for specific
classes of objects. Serialization can be the source of subtle faults in a software
system. Referring to Java, this section provides examples of faults that can
be accounted to serialization in specific cases.

2.1 Transitive Closure of the Serialization

The state of a complex object is often composed of other objects. For instance
the state of a Person object might include an Address object containing in-
formation like street, city, zip code and so forth. By default in Java the serial-
ization of a Person object would imply the serialization of the corresponding
Address object. In general, the serialization of an object o is performed by
recursively serializing all objects referenced in o.

In many cases however, serializing any referenced object is not the best
option. For example, if we send across the network an object that contains a
reference to a local service provider, in most of the cases we do not want to
serialize the service provider state along with the state of our object. Object
attributes that must not be considered during serialization can be specified
with the keyword transient. Referring to the example, if we specify the
reference to the local service provider as transient, its value is ignored during
serialization and instead a null value is flattened into the stream. Figure 1
illustrates this behavior for a generic object graph: the serialization of the
object o1 in Figure 1 (a) results in the graph in Figure 1 (b), where the
transient edges e2 and e4 have been removed.

Accessing transient attributes after deserialization may cause failures. For
example, let us consider the following piece of code:

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184174

// The SERIALIZED OBJECT

public class Person implements java.io.Serializable{

private transient Person parent;

...

public Person getParent() {return parent;}

...

}

// the FAULY DESERIALIZATION

//...opening the stream "targetStream"

Person p = (Person)targetStream.readObject(); // deserializing the object

Person p2= p.getParent();

System.out.println(p2.getName()); //Very likely this is a fault!!

//closing the stream "targetStream"...

The attribute parent of the class Person is specified as transient and
thus it is skipped when a person object is serialized. The last instruction of
the above code is doomed to fail: because of deserialization, p2 will have a null
value and the call of the method getName will result in a
NullPointerException.

2.2 Static Attributes and Replication of Constructors

Static attributes address the definition of properties that are shared among
all objects of a class. In Java the values of the static attributes are not
serialized by default. Thus, when an object is resumed from a stream, its
static attributes are inherited from the new runtime context. This however
may be a potential source of faults if all possible bindings are not considered.
For example, let us consider a class WebPage that contains a static attribute
style, which references an object of class PageStyle storing style attributes
for all pages in a given context:

public class WebPage implements java.io.Serializable{

public static PageStyle style;

...

}

When a WebPage object is serialized, the contained static reference is ig-
nored. When the object is deserialized, style is set to the PageStyle object
in the new environment. However, if the attribute is undefined in the new
environment, the attribute style of a deserialized WebPage object will inherit
the default reference value, i.e., a null reference. This can produce undesired
effects (e.g., a NullPointerException) if the value of style is not checked
before use.

In some cases, dealing with static attributes may require to modify the
default behavior of serialization. Very frequently this involves reexecuting

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 175

part of the code from constructor method(s) during deserialization. In fact,
construction and deserialization are similar operations somehow: although
deserialization does not create a new object, an object is added to the system
in both cases. For instance, let us consider the following code:

public class Son implements java.io.Serializable{

public static int numberOfSons;

Son() {numberOfSons++;}

...

}

The static attribute numberOfSons is meant to count the number of in-
stances of the class Son that are present in the system at any moment. When
an object of this class is created, the constructor increments the instance
counter whose value is shared among all objects of the class. When an ob-
ject of the class Son is resumed from a stream, deserialization should work
such that it updates the instance counter, as well. A way of dealing with this
requirement is to define a customized readObject method in the class Son,
imitating the constructor behavior, as follows:

private void readObject(ObjectInputStream ois)

throws IOException, ClassNotFoundException {

ois.defaultReadObject();

synchronized(Son.class){

numberOfSons++;

}

}

Replication of the code from constructors is often the case in practice
for customizing the deserialization process in presence of static attributes.
However, for complex programs, it can be difficult to correctly choose which
constructor and which parts must be replicated. This generates a new source
of potential faults.

2.3 Class Inheritance

Serialization of objects belonging to classes that inherit from other classes,
requires to hibernate an object state that spans among all classes in a branch
of the inheritance tree. This behavior does not cause problems as long as all
involved classes implement the java.io.Serializable interface, but unex-
pected results can be observed if some of these classes is not serializable. Let
us consider the following piece of code:

public class Person {

private String name;

private String surname;

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184176

Person() {name=""; surname="";}

Person(String n, String s){name=n; surname=s;}

}

public class Student extends Person implements java.io.Serializable{

private String universityId;

...

}

The non-serializable class Person has two string attributes, name and
surname, a constructor without parameters that initializes both attributes
to empty strings, and a further constructor to provide specific values for the
attributes. The serializable class Student inherits from Person and adds the
further attribute universityId. If we serialize and deserialize the student
instance {“Leonardo”, “Mariani”, “UMB1556445”}, we obtain as result a
student with universityId “UMB1556445”, but empty name and surname.
This is due to non-serializability of the class Person. In general, when a class
in the inheritance tree is not serializable, the default behavior of serialization
ignores its attributes and reconstruct them at deserialization time by means
of the default constructor. In the example, name and surname are set during
deserialization using the constructor without parameters of the class Person.

Non serializable classes in the inheritance tree of a serializable class require
special consideration and may induce subtle faults.

2.4 Incompatible Class Versions

In component based applications, it is likely that different components may
refer to different versions of the same class, for instance because platforms
have been updated at the different moments. It is possible that a component
receives a serialized object that does not match the held version of the class.
Deserialization would fail in this case.

The following piece of code shows two possible versions of the class Point
that use Cartesian and polar coordinates, respectively:
//Cartesian coordinates version

public class Point implements java.io.Serializable{

private double x;

private double y;

...

}

//Polar coordinates version

public class Point implements java.io.Serializable{

private double r;

private double phi;

...

}

In general, the problem of converting an object of class version C1 in an ob-
ject of class version C2 includes the conversion of three data elements: the ob-

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 177

ject state variables, the metadata and the serialVersionUID of the class. This
latter is a static attribute assigned to classes at compile-time. It represents
the class version as a long integer number. Conversion can be accomplished
during the serialization process in two ways:

• redefining the behavior of serialization, such that it writes data in the stream
according to the format of version C2 of the class.

• redefining the behavior of deserialization, such that it reads data from the
stream according to the format of the version C1 and converts it on-the-fly
in the format of version C2.

We do not show a sample code in this paper for space limitations. How-
ever, converting between class versions requires a complex management. The
need of keeping the coherence across different states, metadata and serialVer-
sionUIDs can easily induce faults in the code.

2.5 Keeping Identity

The existence of a cycle in the transitive closure of the references of a given
object could, in principle, cause the same object to be serialized multiple
times in the same stream. To avoid this situation, the default serialization
maintains memory of already serialized objects and inserts only a token into
the stream when the same object occurs again. Tokens are such that they
uniquely identify the objects. This mechanism prevents infinite recursion, but
also hinders the serialization of a new copy of an already serialized version,
which sometimes can be the desired behavior.

For example, consider a server and a client components that communicate
through a TCP socket, as in the following piece of code:
public class Client {

public static void main(String args[]) {

...

//Initializing communicazion

Socket soc =

ObjectOutputStream s = new ObjectOutputStream(soc.getOutputStream());

Counter c = new Counter();

s.writeObject(c);

c.Inc();

s.writeObject(c);

s.close();

...

}

}

public class Server {

public static void main(String args[]) {

...

// opening communication

Socket soc = ...

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184178

ObjectInputStream s = new ObjectInputStream(soc.getInputStream());

Counter c = (Counter) s.readObject();

System.out.println(c);

c = (Counter) s.readObject();

System.out.println(c);

s.close();

...

}

}

After establishing the communication, the client sends to the server two ob-
jects of the class Counter. (Although not explicitly shown, the class Counter
is supposed to provide the functionality of a simple counter that is initialized
to zero on construction and can be incremented of a unit with the method
Inc.) The client initializes a counter, serializes it and sends it to the server
through the TCP socket. The operation is repeated twice and the counter
is incremented in between. The server receives the objects and prints their
values on the screen. In the showed example, the communication results in a
failure: the server prints the number 0 twice, instead of printing 0 and 1 as
expected. The reason for such faulty behavior is that the Counter object is
not serialized the second time that the client writes it into the stream. In-
stead, a token that refers to the previous copy of the counter is inserted into
the stream.

A possible solution to this problem, can exploit the method reset() for
resetting the state of the stream between two serializations of the same ob-
ject. In this way, the Counter object is stored twice. However, let us notice
that the second object is serialized as a new object and does not replace the
previous one. This can be in turn the source of faults in other cases: for
example, because if in subsequent communications the server fails in handling
two instances of an object that is present in a single copy in the client.

3 A Reasoning Framework for Serialization

So far we showed how the use of serialization may induce subtle faults in
component-based systems. This calls for testing and analysis techniques specif-
ically targeted to reveal this type of faults. However, defining testing and
analysis techniques for this purpose, is not straightforward. In this section,
we discuss the proposal of a conceptual framework that classifies the main data
management strategies, which may occur with serialization. Goal of such clas-
sification is to facilitate the definition of techniques for assessing serialization.

Figure 2 (a) illustrates the proposed classification of data management
strategies. Every entry in this classification represents a particular way of

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 179

Fig. 2. A taxonomy of semantic categories of data-exchange

handling a graph of objects when it participates in a data-exchange between
two components. The semantics of each entry can be informally given as
follows:

Binding removal occurs when an object graph is excluded from the data-
exchange with the semantics that it will not be available to the receiving
component. Typically, binding removal is used to detach a subgraph of an
object that is not needed in the target environment.

Rebinding occurs when an object graph is excluded from the
data-exchange with the semantics that the corresponding reference will be
relinked in the target environment to an object of the same type. Rebinding
is possible in two different ways, depending on the identity of the relinked
objects. Rebinding to the original object occurs when the original subgraph
is relinked through a link that spans across the target and the original envi-
ronments. Conversely, rebinding to a different object occurs when the actual
relinked objects are different from the original object graph. For example,
rebinding to the original object is used in Java-RMI ([8]) when a remotely
accessible object is passed as parameter to a remote method (i.e., a method
of a remote component), resulting in the object remaining local and only a
remote reference being passed to the remote component: the object graph is
not transferred, while instead as a result of the invocation, it is relinked from
within the remote component. Rebinding to a different object happens for
example in the case of a software agent that migrates across the network and
links to resources in the reached hosts, after having detached the correspond-
ing resources in the original host.

By copy specifies a strategy that occurs when a copy of an object graph

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184180

is created in the target environment, i.e., the root object is copied and the
referenced objects (if any) are recursively copied as well (this is called by copy
simple). In Java-RMI, this is the default strategy for passing non-remotely
accessible objects as parameters of remote calls. A variant of this strategy does
not perform a mirror copy, but also converts the object graph format across
the original and the target environment. We refer to this strategy as copy by
cast. Copy by cast may be for example required to guarantee compatibility
between different versions of the object classes.

By move specifies a strategy that is equal to by copy, but also involve
elimination of the object graph from the original environment. Analogous
considerations apply for the strategy move by cast with respect to copy by
cast.

A set of the above strategies may coexist in the same data-exchange case.
For example, a graph of objects may be transferred by copy, but some of its
subgraphs may be either transferred by move or handled by binding removal
or rebinding.

Furthermore, we are studying the connections between the strategies clas-
sified in our conceptual framework and the implementation support for seri-
alization in Java. Figure 2 (b) preliminary illustrates this idea in some cases:
the keyword transient can be relevant to binding removals ; transient and
the body of read object can be relevant to rebinding to new objects; the
body of read object, the body of write object, the procedure Object-

StreamField and the keyword SerialVersionUID can be relevant to copy by
cast strategies. The associations represented in the figure are not meant to be
exhaustive. However we envision the possibility that refining our understand-
ing of these associations, can be useful for the implementation of tools that
support perspective testing and analysis techniques. For example, based on
these associations, a tool might be able to automatically identify specific data
management strategies in the code. Other tools could exploit the associations
to instrument the relevant code, such to address the analysis of a specific data
management strategy.

The use of this classification framework to support the definition of a test-
ing technique for serialization is exemplified in the next section.

4 Establishing Dataflow Testing of Serialization

Let us consider the definition of a testing technique for serialization, based on
extending the well-known dataflow testing criteria ([6,5]) in order to deal with
serialization faults.

Dataflow testing is based on exercising def-use pairs (i.e., the program

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 181

paths between a definition and an use of a given datum), aiming at discover-
ing flawed interactions between the way in which data are assigned values and
the way in which such values affect the computation. This idea seems to sat-
isfy with minor modifications the requirements of testing for serialization. In
fact, generalizing the examples from Section 2, (1) serialization-related prob-
lems show up on using objects (after deserialization) and (2) the faults are
made for mis-comprehension of how the objects have been modified (through
the serialization process) with respect to their initial definition (before seri-
alization). For instance, an object relinked in the target environment may
not conform to the assumptions of the original environment, thus becoming a
source of mis-uses. Test-cases that cause object definitions before serialization
and uses of the corresponding objects after deserialization, may increase the
chances to reveal such faults. However, the indiscriminate application of this
criterion would be hindered in practice by the large number of combinations
of objects definitions and uses that generally exist(considering also definition
and uses of the subparts of the objects). The number of test-cases tends to
explode further in presence of polymorfism [9].

Our classification framework provides a means for distinguishing the test-
cases that would be overkilled or redundant, thus increasing the chances of
practical feasibility of the technique.

Let us consider first object subgraphs corresponding to binding removals.
In this case, it is always an error to access such subgraphs after deserializa-
tion. The corresponding faults can be easily discovered by static checking the
existence of the erroneous uses in target environments, thus testing def-use
pairs is not needed for all binding removals. Then, let us consider the object
subgraphs corresponding to rebinding to the original object. In this case, a
single test case would suffice to assess that the pruned references have been
correctly relinked, while one can rely on unit testing of the original compo-
nents for what concerns other interactions. Thus, testing all related def-use
pairs would be redundant in this case. Next, let us object subgraphs cor-
responding to rebinding to a different object. These are cases in which it
makes sense indeed to exercise the related def-use pairs: the corresponding
test-cases have the chance to discover a fault if either some object was not
correctly relinked during deserialization or the relinked objects conflict with
the assumptions of the original environment. Finally, let us consider objects
and object subgraphs exchanged using by copy and by move strategies. These
generate interesting test-cases only when they feature also the by cast strat-
egy. As far as serialization is under concern the exchanged objects that are
exact copies of the original one cannot fail the assumptions of the original
environment. For by move objects however, when serialization occurs, it rises

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184182

requirements for specific static checks in the original environment.

Summarizing, test-cases for serialization should be defined by considering
all combinations of def-use pairs for object (sub)graphs corresponding to re-
binding to a different object, copy by cast and move by cast strategies, where
definitions take place in the original environment, uses in the target environ-
ments and serialization is used for exchanging the objects between the two
environments. Moreover, singleton test-cases would be required for rebind-
ings to the original object and static checks for binding removals and by move
strategies, in the target and original environments, respectively. The sound
and complete definition of a testing technique is not the subject of this paper.
However, this example supports the possibility that the conceptual classifica-
tion framework defined in this paper can provide a rationale to facilitate the
definition of testing and analysis technique to address serialization.

5 Final Remarks and Future Work

Serialization is a powerful way to record and retrieve graph of objects into and
from byte streams. Serialization mechanisms are frequently used in component-
based application domains, e.g., distributed and mobile systems. The use of
serialization mechanisms, however, may lead to subtle faults in the software.
Serialization faults are difficult to reveal with traditional testing techniques.

The definition of testing techniques addressing serialization is not straight-
forward since both semantics of current operation and semantics of the seri-
alization must be taken into account. To support testing of serialization, we
developed a reasoning framework based on our knowledge on the possible data
exchange strategies that may occur with serialization. We do not claim this
framework to be complete or exhaustive, but we investigated its usefulness by
showing that it allows to tune and extend dataflow testing for systems that
use serialization.

We are currently working to refine and complete our conceptual framework
for reasoning on serialization. In particular, we are currently investigating the
connection between the data-exchange cases classified in the framework and
the implementation support provided in Java for serialization. We are also
conducting further research on testing and analysis techniques that can be
defined based on our conceptual framework. We are refining the specialized
dataflow testing approach that we preliminarily described in this paper. We
are finally investigating assertion-based run time verification [7,11]. This lat-
ter could exploit our conceptual framework as a base for the definition of
specialized assertions to address serialization.

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184 183

References

[1] Emmerich, W., Software engineering and middleware, in: Proceedings of the 22th International
Conference on Software Engineering (ICSE-00) (2000), pp. 117–132.

[2] Fuggetta, A., G. Picco and G. Vigna, Understanding code mobility, IEEE Transactions on
Software Engineering 24 (1998), pp. 342–361.

[3] Ghezzi, C., V. Martena and G. Picco, Enhancing remote method invocation through type-based
static analysis, in: Proceedings of the International Conference on Fundamental Approaches to
Software Engineering (FASE 2004), Barcelona, Spain, 2004.

[4] Halloway, S. D., “Component Development for the Java Platform,” Addison-Wesley, 2001.

[5] Harrold, M. J. and G. Rothermel, Performing data flow testing on classes, in: Proceedings
of the Second ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE’94)
(1994), pp. 154–163.

[6] Laski, J. and B. Korel, A data flow oriented program testing strategy, IEEE Transactions on
Software Engineering 9 (1983), pp. 347–354.

[7] Meyer, B., “Eiffel: The Language,” Object-Oriented Series, Prentice Hall, New York, N.Y.,
1992.

[8] Microsystems, S., JavaTM remote method invocation specification, Technical report, Sun
Microsystems (2002).

[9] Orso, A., “Integration Testing of Object-Oriented Software,” Ph.D. thesis, Politecnico di
Milano, Italy (1999).

[10] Picco, G. P., µCode: A Lightweight and Flexible Mobile Code Toolkit, in: K. Rothermel and
F. Hohl, editors, Proceedings of the 2nd International Workshop on Mobile Agents, Lecture
Notes in Computer Science 1477 (1998), pp. 160–171.

[11] Rosenblum, D. S., A practical approach to programming with assertions, IEEE Transactions
on Software Engineering 21 (1995), pp. 19–31.

[12] Sun Microsystems, Inc., Java object serialization specification, rev. 1.4.4, Technical report
(2001).

[13] Wiltamuth, S. and A. Hejlsberg, C# language specification, Technical report, Microsoft
Corporation (2003).

G. Denaro, L. Mariani / Electronic Notes in Theoretical Computer Science 116 (2005) 171–184184

	Introduction
	Serialization Faults in Java
	Transitive Closure of the Serialization
	Static Attributes and Replication of Constructors
	Class Inheritance
	Incompatible Class Versions
	Keeping Identity

	A Reasoning Framework for Serialization
	Establishing Dataflow Testing of Serialization
	Final Remarks and Future Work
	References

