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Energy consumption prediction of buildings has drawn attention in the related literature since it is very
complex and affected by various factors. Hence, a challenging work is accurately estimating the energy
consumption of buildings and improving its efficiency. Therefore, effective energy management and
energy consumption forecasting are now becoming very important in advocating energy conservation.
Many researchers work on saving energy and increasing the utilization rate of energy. Prior works
about the energy consumption prediction combine software and hardware to provide reasonable
suggestions for users based on the analyzed results. In this paper, an innovative energy consumption
prediction model is established to simulate and predict the electrical energy consumption of buildings.
In the proposed model, the energy consumption data is more accurately predicted by using the
gradient boosting regression tree algorithm. By comparing the performance index Root Mean Square
Error of different prediction models through experiments it is shown that the proposed model
obtains lower values on different testing data. More detailed comparison with other existing models
through experiments show that the proposed prediction model is superior to other models in energy
consumption prediction.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development of society and industry, the consump-
ion of energy is increasing. In 2008, Yang et al. (2008) reported
hat the offices consumed about 70–300 kWh/m2 every year in
hina. It is estimated that buildings in Europe consume 40% of
he total energy each year (Rosa et al., 2014). In Hong Kong,
he energy consumption of buildings represents around over
0% of the total energy consumption (Hong Kong energy end-
se data 2012, 2012). The above data shows that the energy
onsumed by the building is very huge, and the large amount
f energy consumption will also affect the surrounding environ-
ent. Therefore, using different technologies to reduce energy
onsumption in buildings has become one of the topics of many
esearchers. Effective prediction of building energy consump-
ion demand is one of the ways to avoid energy waste. In fact,
t is difficult to predict the energy consumption of the build-
ng due to the different materials and complicated structure
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of the buildings. To overcome the influencing factors of tra-
ditional energy modeling, prior researchers tried to translate
these problems by using sensor-based machine learning method
to statistically model energy consumption. Accurate prediction
models can improve buildings energy performance and optimize
buildings’ heating, ventilation and air conditioning (HVAC) sys-
tems (Kusiak and Xu, 2012). In the past, people used energy
management system to analyze the information of energy con-
sumption (Fanti et al., 2014, 2015). In this process, many sensors
will be used to collect data and build management system and
the management system uses its own network system to analyze
the collected data and provide users with scientific suggestions
based on the analysis results (Eder and Nemov, 2017).

Subsequently, in order to predict energy consumption more
accurately, some other predictive models of energy consumption
have been used by other researchers. Support Vector Machine
(SVM) is one of the algorithms in data mining. SVM is also catego-
rized as a new machine learning algorithm for forecasting (Dong
et al., 2005). It is used in research and industry due to its highly
effective model in solving non-linear problems. Besides that, since
it can be used to solve nonlinear regression estimation problems,
SVM can be used to forecast time series. SVM so far has been
widely used in various analyses such as regression, classifica-

tion and nonlinear function approximation. The higher accuracy
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redictive results will be obtained with the advantages of the
VM algorithm. Hou and Lian (2009), in 2009, applied SVM to
rediction cooling load for HVAC system. In addition, Paudel et al.
2017) use the SVM model to predict the energy consumption of
he low energy buildings (LEBs). The researchers apply the SVM
odel to obtain better prediction results by selecting the relevant
ata and all the data of the energy consumption. Therefore, the
VM model is still widely used in energy consumption research
nd its predictive performance is still quite good. Edwards et al.
2012) use a Least Squares Support Vector Machine approach to
redict energy consumption. This prediction model had the best
erformance compared with other machine learning models.
Recurrent neural network (RNN) is another widely applied to

redict energy consumption of buildings. Rahman et al. (2018)
se RNN to predict energy consumption in commercial and res-
dential buildings. The predictive model had lower error when
ompared with the conventional multi-layered perceptron neural
etwork. Ugurlu et al. (2018) propose a method to estimate and
nalysis the electrical prices using RNN. Zagrebina et al. (2019)
se RNN model to forecast the Russian energy market and had
good performance. Subsequently, more research results are
resented in (Fan et al., 2019; Kim and Cho, 2019; Kong et al.,
019). Hybrid models are that combining advantages of different
redictive models, and sometimes it can obtain better prediction
esults than a single predictive model. Ullah et al. (2020) pro-
ose a hybrid model to forecast energy consumption. The results
howed that the hybrid model that combines a convolutional
eural network with a multi-layer bi-directional long–short term
emory had improved comparing with other predictive models.
he autoregressive integrated moving average (ARIMA) is estab-
ished on the basis of a stationary time series and it is often used
n time series forecasting (Zhang, 2003). Some researchers try to
se some machine learning models or neural network models
ombined with ARIMA models to build new hybrid models for
ime series forecasting. Kumar et al. (2018) propose two hybrid
odels ARIMA-SVR and ARIMA-RNN to predict wind and the
ybrid models had better performance.
In recent years, the application of ensemble learning mod-

ls in prediction has attracted the attention of researchers and
btains great success. Gradient Boosting (GB) (Friedman, 2001)
s a machine learning technique for regression and classification
roblems, which produces a prediction model in the form of an
nsemble of weak prediction models. Touzani et al. (2018) ap-
lied gradient boosting model to energy consumption forecasting
nd achieved good results. More research results are presented in
Zhang and Haghani, 2015; Ayaru et al., 2015; Chen et al., 2013)
y using the gradient boosting model. Gradient boosting decision
rees (GBDT) models is another prediction model composed of
radient boosting model and decision trees that used in different
ields. It also can be named gradient boosting regression trees
GBRT) when using the models for regression prediction. From
ome current literature (Xie and Coggeshall, 2010; Wang et al.,
016; Ma et al., 2017; Friedman and Meulman, 2003; Ding et al.,
016a), we can find that this model is very helpful for improving
he prediction performance.

In this study, we propose a hybrid ARIMA-GBRT model and
GBRT model to predict energy consumption. The GBRT builds

he model in a stage-wise fashion and updates it by minimizing
he loss function. It may reduce training errors and improve the
ccuracy by fitting the trees and residuals. The ARIMA-GBRT is a
ybrid model that is a combination of ARIMA (Ediger and Akar,
007; Calheiros et al., 2015; Lee and Ko, 2011) and GBRT model.
oth models here are presented and applied for the first time to
he prediction of energy consumption.

This paper is organized as follows. In Section 2, we introduce

he building energy consumption simulation system that we build
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Fig. 1. The energy simulation and control architecture (Simulink).

and use for accurate data generation. A detailed description of
the GBRT model and hybrid model is provided in Section 3. Some
experiments are done to compare the proposed models with
existing predictive models in Section 4. In addition, conclusions
and future perspectives are drawn in Section 5.

2. Energy consumption modeling and simulation

In this section, we recall the models to simulate home and
building electrical energy consumption presented in Fanti et al.
(2018). Such a simulation model is used to generate data set
and energy consumption in order to set up the use case for
showing the effectiveness of the methodologies developed in
the following Section 3. The energy models are implemented by
Matlab/Simulink software to simulate and control the electrical
energy consumption of the most common domestic appliances
such as, HVAC system, water heater, washing machine, dishwash-
ers, computer, TV, refrigerator, oven and lights. Moreover, wind
and solar renewable sources are also modeled and integrated in
the system.

In Fig. 1, the high-level architecture of the energy simulation
and control models is depicted. Here, different models can be dis-
tinguished: the domestic loads models; the power consumption
model; the available power model that integrates the power from
the grid, the wind and solar sources; the energy cost model; the
set-point model and the control system model.

Each appliance is modeled based on the technical datasheets
to accurately simulate the power consumption. For instance, the
HVAC system is modeled to simulate both the heating and cooling
functioning modes.

By selecting the HVAC system, it is evident that it includes
the heating and cooling models as well as the building ther-
modynamics and energy cost models (see Fig. 2). Furthermore,
the washing machine and dishwasher are modeled to simulate
different working programs with different time duration and
consumption. For more details on the appliance models and on
the other components of the architecture refer to Fanti et al.
(2018).

In this paper, the architecture of Fig. 1 is recalled in order
to generate datasets of energy consumption. In the proposed
architecture, there is a GUI Panel where it is possible to set the
available power and to schedule the functioning of each appliance
during 24 h by setting all the parameters and the on–off intervals,
as it is shown in Fig. 3. After the settings are done, the 24 h sim-
ulation can be run and energy data can be plotted and recorded
in Matlab. In particular, the aggregated energy consumption by
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Fig. 2. The Simulink model of the HVAC system.
I
c

he appliances is needed. Moreover, several daily scenarios can
e reproduced in order to generate the requested datasets to be
sed for energy profile prediction.

. Methodology

In this section, the proposed methodology to efficiently pre-
ict electrical energy consumption is presented. The proposed
radient boosting regression tree (GBRT) is a modification of the
radient boosting method by using a regression tree of fixed
ize as the weak learners. The modified version improves the
uality of the model. It is an additive regression model consisting
f an ensemble of regression trees. In this section, we mainly
ntroduce the GBRT model and ARIMA-GBRT model that we use to
orecast energy consumption. The GBRT algorithm is an iterative
egression tree algorithm composed of multiple regression trees.
he conclusions of all trees are accumulated as the final output.
n the following, we first recall the gradient boosting algorithm
nd then provide the definition of the GBRT and ARIMA-GBRT
lgorithms.

.1. Gradient boosting algorithm

Boosting methods combine weak learners by iteratively focus-
ng in the errors resulting at each step until a suitable strong
earner is obtained as a sum of the successive weak ones.

Let us consider a response variable y and a set of random input
ariables x = {x1, x2, . . ., x3}. Using a training data in the form of

{(xi, yi)} for i = 1, 2, . . .,N with xi ∈ Rn and yi ∈ R, the goal
is finding an approximation F̃ (x) of the function F (x) mapping
x to y, to minimize loss function L(y, F (x)). Errors are inevitable
when we expect to seek function F̃ (x). In the process, the gradient
boosting algorithm fits weak learners to loss function and each
weak learner model aims to correct errors made by previous weak
learner models. This can strengthen the prediction performance
and reduce the prediction error of the model.

F (x) = argmin
F (x)

Ly,x(y, F (x)) (1)

The squared error function is applied as the loss function to
estimate the approximation function as L(y, F (x)) = (y − F (x))2.
The gradient boosting algorithm starts by setting an initial base
learner F0(x) that usually is a constant function (step 1), and then
applies a steepest descent step for the minimization of the loss
function. The steepest descent takes steps proportional to the
negative gradient of the loss function in order to find the local
minimum.

In particular, the gradient of loss function L(y, F (x)) can be
calculated by using the following equation (step 3):

yi = −

[
∂L(yi, F (xi))

]
, i = 1, . . . ,N. (2)
∂F (xi) F (x)=Fm−1(x)

1248
It can generalize the calculation range of the gradient when we
use regression trees h(xi; a) with parameter a as weak learners.
t is usually a parameterized function of the input variables x,
haracterized by parameters a (Friedman, 2001). The tree can be
obtained by solving the following equation (step 4):

am = argmin
a,β

N∑
i=1

[̃yi − βh(xi; a)]2 (3)

where am is the parameters obtained at iteration m, β is the
weight value, also called expansion coefficient, of each weak
learner. Each regression tree is fitted to the current negative gra-
dient. Subsequently, the optimal length ρm is determined at step 5
and the model Fm(x) is updated at step 6, at each iteration m, with
m = 1, . . .,M . The Gradient boosting algorithm is formalized by
Algorithm 1 proposed in Friedman (2001).

3.2. Gradient boosting regression tree algorithm

Classification and regression trees (CARTs) are proposed by
Breiman et al. in 1984 (Breiman et al., 1984). CARTs can be used
for both classification and regression models (Prasad et al., 2006;
Ding et al., 2016b; Li et al., 2010). The trees used in these two
models are called decision trees and decision trees generation is
the use of recursive methods to generate binary trees. Since we
are studying energy consumption forecasting, we mainly review
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Fig. 3. The GUI panel of the Simulink model.

he algorithm that uses the square error minimization criterion
o generate regression trees.

The GBRT algorithm that is the combination of the CART
lgorithm and the GB algorithm proposed by He et al. (2013) is
ecalled. It is remarked that, the CART has better performance in
rediction compared with most artificial intelligence model (He
t al., 2013) because it can model nonlinear relationships without
equiring prior information about the probability distribution of
ariables. As we previously stated, the gradient boosting algo-
ithm integrates weak learners into strong learners. In this study,
e use regression trees as weak learners that are generated by
ART algorithm. The weak learners are added to the model to
orrect the prediction errors made by previous models in order
o further reduce the prediction error and improve the accuracy
f the model.
The GBRT Algorithm 2 is formalized as follows.

The GBRT algorithm starts by setting the initial value of F0(x)
ccording to the following equation (step 1):

0(x) = argmin
c

N∑
i=1

L(yi, c) (4)

here L(.) is a loss function. To calculate the value of the negative
radient of the loss function in the current model as the residual
1249
approximation at iteration m, with m = 1, . . .,M , the following
equation is introduced (step 3):

rm,i = −

[
∂L(yi, F (xi))

∂F (x)

]
F (x)=Fm−1(x)

, i = 1, . . . ,N. (5)

The number of splits is assumed to be Jm for each regression tree
and, therefore, each tree partitions the input space into Jm disjoint
regions Rm,1, . . ., Rm,Jm and predicts a value cm,j for region Rm,j.
The value of cm,j can be obtained by minimizing the following
equation (step 4):

cm,j = argmin
c

∑
xi∈Rm,j

L(yi, Fm−1(x) + c). (6)

The mth regression tree Fm(x), i.e, the updated model, whose
corresponding leaf node area is Rm,j, j = 1, 2, . . ., Jm, can be
obtained as follows (step 5):

Fm(x) = Fm−1(x) +

Jm∑
j=1

cm,jI(x ∈ Rm,j). (7)

Where I = 1 if x ∈ Rm,j and I = 0 otherwise (Bevilacqua et al.,
2003). Moreover, Jm represents the number of leaf nodes of the
mth regression tree. Finally, the model is updated at step 6.

3.3. The hybrid model ARIMA-GBRT

In this section, the proposed hybrid ARIMA-GBRT algorithm
model is introduced, which is mainly compared with the hybrid
ARIMA-RNN algorithm model presented in Madan and Mangipudi
(2018) to verify the performance. Auto regressive (AR) is a model
that describes the relationship between the current value and
the historical value proposed by Yule (1926), and it can be rep-
resented by Eq. (8). Moving average (MA) model focuses on
the accumulation of error terms in the autoregressive model
which proposed by Slutzky (1937) and it can effectively eliminate
random fluctuations in prediction and express in Eq. (9). Subse-
quently Box and Jenkins combined the AR model and MA model
and introduced integrated method to propose ARIMA in Box and
Jenkins (1976), where the letter ‘I’, between AR and MA, stood for
the ‘Integrated’ and reflected the need for differencing to make
the series stationary. The model is described by the following
equations:

yt = µ +

p∑
i=1

γiyt−i + ωi (8)

yt = µ + ωt +

q∑
j=1

θjωt−j (9)

yt = µ +

p∑
i=1

γiyt−i + ωt +

q∑
j=1

θjωt−j (10)

The meaning of the variables is specified as follows:
yt current value
ωt random error term
µ constant
γi auto regressive parameters for i = 1, 2, . . ., p
θj moving average parameters for j = 1, 2, . . ., q
p order for the differenced series
q order for the white noise series.
The ARIMA model is a linear regression, which uses its own

historical data to perform regression. It is suitable for the internal
and stable correlation between the data itself. It is widely used in
time series forecasting problems and has achieved good forecast
results. In the data processing, some data may have a certain
linear relationship, and some may have a nonlinear relationship.
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t may obtain better results to analyze the data by using a hybrid
lgorithm. Hybrid algorithms mainly combine the advantages of
ifferent algorithms to process corresponding data.
When performing hybrid model to predict the task, first it

s necessary to divide the data into two parts: linear data and
onlinear data. Using the ARIMA model to predict linear data and
or the nonlinear data can be predicted by GBRT model. Moreover,
he prediction results of the two models are extracted as the
rediction result. We mainly use the following three indicators,
amely Root Mean Square Error (RMSE), Mean Absolute Error
MAE) and Mean Absolute Percentage Error (MAPE), to compare
he performance of the models:

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(11)

MAE =

∑n
i=1 |Yi − Ŷi|

n
(12)

APE =
1
n

∑n
i=1(Yi − Ŷi)2

Yi
(13)

here Yi is the actual measurement, Ŷi is the predicted value; n
s the number of measurements.

. Experimental study

In this section the proposed prediction model is simulated and
alidated for electrical energy consumption. From the literature
nalysis it is known that some researchers use the SVM algo-
ithm model to predict electrical energy consumption and have
chieved good prediction results. In other contributions, some
esearchers use a hybrid algorithm model to predict electrical
nergy consumption. As we introduce previous, the researchers
ainly want to combine the advantages of different algorithms to
chieve good prediction results. To this purpose, we first compare
he prediction performance between the GBRT model used with
he SVM model that are presented in Dong et al. (2005). Then, we
ompare the prediction performance of the ARIMA-GBRT hybrid
odel and the ARIMA-RNN hybrid model. The data set of energy
onsumption is generated by simulating the use of HVAC, water
eater, iron, electric oven, PC, dishwasher, washing machine, hair
ryer, TV, dimmable and fluorescent lamps. The technical param-
ters of the appliances are described in Appendix. In addition, 20
aily operating schedules are applied to each day of the week in
rder to get the average aggregate consumption per day.

.1. Validation for energy consumption prediction

Before conducting the experiment, we normalize the exper-
mental data. First, electrical energy consumption data are se-
ected for one day every 15 s for experimental verification. Fig. 4
hows the results of the electrical energy consumption predicted
y the SVM algorithm model and Fig. 5 shows the electrical en-
rgy consumption results predicted by the GBRT algorithmmodel.
e can intuitively find that the model prediction effect of the
BRT algorithm is better than the model prediction performance
f the SVM algorithm. Through the specific prediction numerical
alculation, the performance index RMSE predicted by the GBRT
lgorithm model is 45.58% lower than that of the SVM algorithm
odel.
Then, the prediction performance of the hybrid algorithm

odel ARIMA-GBRT is compared with ARIMA-RNN. Figs. 6 and
are the electrical energy consumption prediction results of the
RIMA-GBRT algorithm model and the ARIMA-RNN algorithm
odel, respectively. We clearly see that the ARIMA-GBRT algo-
ithm model has better electrical energy consumption prediction

1250
Fig. 4. The electrical energy consumption prediction with the SVM algorithm.

Fig. 5. The electrical energy consumption prediction with the GBRT algorithm.

Fig. 6. The electrical energy consumption prediction with the ARIMA-GBRT
algorithm.

performance than the ARIMA-RNN algorithm model. The per-
formance index RMSE predicted by the ARIMA-GBRT algorithm
model is 12.22% lower than that of the ARIMA-RNN algorithm
model.



P. Nie, M. Roccotelli, M.P. Fanti et al. Energy Reports 7 (2021) 1246–1255

a
e
i
a
t
m
v
c
r
o
T
o
A
h
R
s

G
t
e
e
t
W
a
p
u
d
p
s

Fig. 7. The electrical energy consumption prediction with the ARIMA-RNN
algorithm.

4.2. Comparison with prediction models

In order to further illustrate the performance of the proposed
algorithm, we perform a comparison with other prediction mod-
els. We use the electrical energy consumption data for the first
20 h as the training set, and the data for the next 4 h as the test
set to verify the prediction performance of different algorithm
models. Fig. 8 shows the electrical energy consumption prediction
results of different algorithm models. To use more data to com-
pare the performance of different algorithm models, then use the
same experimental method for the electrical energy consumption
data from the first day to the seventh day. We mainly selected
three performance indexes of RMSE, MAE and MAPE to compare
the performance of different algorithm models. Fig. 9 shows the
comparison results of three performance indicators RMSE, MAE
nd MAPE on the training dataset by different algorithm mod-
ls. Fig. 10 shows the comparison results of three performance
ndicators RMSE, MAE and MAPE on the testing set by different
lgorithm models. From Fig. 9 and Fig. 10, we can find that the
hree performance indicators achieved by the GBRT algorithm
odel are the best. Table 1 shows that the percentage of the RMSE
alues obtained by the GBRT prediction model are lower than the
orresponding values obtained by other prediction models in the
ange of 1.45% to 94.60% on the training data and in the range
f 1.42% to 96.30% on the testing data, respectively. In addition,
able 2 reports the MAE values showing that the performance
f the GBRT prediction model is worse than the hybrid model
RIMA-GBRT model on few training data and testing data. The
ybrid model ARIMA-GBRT has better performance than ARIMA-
NN. On some data sets, the hybrid model ARIMA-GBRT has a
lightly worse performance than the SVM model.
Through a set of experimental verifications, we find that the

BRT algorithm model and the ARIMA-GBRT model are better
han the other commonly used algorithm models in the electrical
nergy consumption prediction. Next, we study to predict the
lectrical energy consumption data of the seventh day based on
he electrical energy consumption data of the previous six days.
e also use the data from the first six days as the training set

nd the data on the seventh day as the test set. Fig. 11 shows the
erformance index values of RMSE, MAE and MAPE obtained by
sing different algorithm models on the training data and testing
ata. The experimental results show that the performance index
arameters RMSE obtained by the GBRT algorithm model lower is
maller than those of other prediction models. The RNN algorithm
1251
Fig. 8. Electrical energy consumption prediction results of different algorithm
models.

Table 1
The percentages (%) of RMSE obtained by the GBRT prediction model are lower
than ones obtained by other prediction models on the training data and testing
data.

RNN SVM ARIMA ARIMA-GBRT ARIMA-RNN
Training data

day1 91.76 39.76 84.51 28.47 88.28
day2 23.29 33.73 83.16 25.33 81.76
day3 93.05 33.43 83.08 24.75 94.09
day4 59.26 45.58 39.80 1.01 11.25
day5 94.36 41.06 75.17 50.00 93.98
day6 94.60 42.61 58.08 49.57 94.14
day7 79.48 6.77 1.45 1.56 68.81

Testing Data

day1 91.67 37.57 85.42 31.27 90.56
day2 5.74 18.42 80.72 65.43 79.78
day3 91.33 16.96 87.36 78.27 92.97
day4 57.76 44.66 96.30 67.53 71.28
day5 94.12 38.91 93.55 83.26 94.61
day6 94.49 44.36 64.49 69.40 93.95
day7 79.73 7.01 1.75 1.42 84.71

Table 2
The percentages (%) of MAE obtained by the GBRT prediction model are lower
than ones obtained by prediction models on the training data and testing data.

RNN SVM ARIMA ARIMA-GBRT ARIMA-RNN
Training data

day1 88.24 10.58 5.76 −32.44 83.42
day2 6.01 10.88 38.12 4.97 81.02
day3 93.85 3.68 34.17 −1.10 95.06
day4 80.39 69.52 −63.75 25.23 36.25
day5 98.18 79.21 76.49 71.58 98.03
day6 97.97 74.11 82.30 64.76 97.86
day7 83.75 35.34 20.39 7.69 72.62

Testing Data

day1 88.74 −26.07 45.78 62.26 82.92
day2 9.73 12.11 82.85 75.48 83.88
day3 93.51 −1.53 81.75 71.22 94.27
day4 78.68 67.59 81.62 69.88 75.46
day5 98.20 79.53 95.60 91.24 98.18
day6 97.79 72.76 80.53 76.05 97.46
day7 83.28 32.48 30.26 −38.87 68.79

has lower value of MAE than that of GBRT algorithm. Experi-
mental results also show that the prediction performance of the
ARIMA-GBRT hybrid model is better compared with the ARIMA-
RNN hybrid model. Finally, Table 3 shows that the percentage of
the RMSE and MAE values obtained by the GBRT model are lower
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Fig. 9. Performance indexes obtained by different algorithm models on the training set, (a) RMSE, (b) MAE, (c) MAPE.
Table 3
The percentage (%) of the RMSE and MAE values of the GBRT prediction model
are lower than ones of other prediction models on the training data and testing
data.

Training data Testing data

RMSE MAE RMSE MAE

RNN 1.51 −27.33 1.48 −29.47
SVM 71.18 89.27 70.54 89.49
ARIMA 92.72 86.57 92.90 87.40
ARIMA-GBRT 35.56 50.75 91.41 96.18
ARIMA-RNN 40.58 69.19 92.12 96.51

than ones obtained by other prediction models, after 20 repeated
experiments.

5. Conclusions

This paper simulates and predicts the electrical energy con-
umption of buildings and analyzes the electrical energy con-
umption data by using new algorithm models. Moreover, the
roposed hybrid ARIMA-GBRT model and GBRT model are com-
ared with other prediction models presented in the related
iterature. The experimental results show that the prediction
odel we use has a better performance than others. Indeed, the
nalysis of the results shows the lower values of the indices
MSE and MAE, by indicating that the forecasting performance of
he proposed models is more accurate. Moreover, the presented
rediction model has higher accuracy and computational speed.
1252
The proposed models to forecast the electrical energy con-
sumption is useful for designing the building HVAC systems by
accurately estimating the electric energy consumption and suit-
ably allocating energy in an optimal way. In addition, the predict-
ing models can be applied to optimize the cost of electrical energy
consumption in the buildings.

Further research study will deal with a long-term forecasting
strategy by using the GBRT algorithm.
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ppendix

The parameters of the building appliances set up for the ex-
erimentations of Section 4 are reported in the following list

1. HVAC

• Cooling power: 7000W
• Heating power: 8000W
• Energy Efficiency Ratio: 3.6
• Coefficient of performance: 3.2
• Set-point temperature: 22 ◦C
• Outdoor mean temperature: 10 ◦C

2. Water heater

• Electric power: 1500W
• Set-point temperature: 50 ◦C
• Cold water temperature: 20 ◦C
• Thermostat tolerance: 2 ◦C
1253
3. Iron

• Electric power: 1300W
• Set-point temperature: 140 ◦C
• Thermostat tolerance: 10 ◦C

4. Electric oven

• Electric power: 2000W
• Set-point temperature: 180 ◦C
• Thermostat tolerance: 10 ◦C

5. PC

• Electric power: 100W

6. Dishwasher

• Electric power: 1950W
• Working programs: eco, light, classic, intense (max

consumption)

7. Washing machine

• Electric power: 1950W
• Working programs: white, eco, synthetics, delicates,

wool, centrifuge

8. Hair dryer
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• Electric power: 1950W
• Air velocity: 0, 1, 2 (max)
• Hot intensity: 0, 1, 2 (max)

9. Dimmable lamps

• Source voltage: 0-220V (220V default)

10. Fluorescent lamps

• Number of lamps: 3
• Mean electric power: 30.6W
• Mean electric current: 0.39A

11. TV

• Electric power: 120W
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