
 

Journal Pre-proof

Optimal Spatial Sensor Design for Magnetic Tracking in a Myokinetic
Control Interface

Marta Gherardini , Andrea Mannini , Christian Cipriani

PII: S0169-2607(21)00481-8
DOI: https://doi.org/10.1016/j.cmpb.2021.106407
Reference: COMM 106407

To appear in: Computer Methods and Programs in Biomedicine

Received date: 10 December 2020
Accepted date: 3 September 2021

Please cite this article as: Marta Gherardini , Andrea Mannini , Christian Cipriani , Optimal Spatial
Sensor Design for Magnetic Tracking in a Myokinetic Control Interface, Computer Methods and Pro-
grams in Biomedicine (2021), doi: https://doi.org/10.1016/j.cmpb.2021.106407

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.cmpb.2021.106407
https://doi.org/10.1016/j.cmpb.2021.106407


 

Marta Gherardinia,b,*, Andrea Manninia,b,c, and Christian Cipriania,b    

a
The Biorobotics Institute Scuola Superiore Sant’Anna, 56127 Pisa, Italy.  

b
Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy.  

c
 IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy. 

 
 

 

 

Highlights  

 A strategy for optimizing the sensing system design for tracking multiple magnets in a 3D anatomical workspace.  

 Results hold the potential of improving the efficiency of real-time control of upper-limb prostheses.  

 The sensor selection strategy is intuitive and fast, and easily extendable to different settings and applications involving 

magnetic tracking. 

 

 

 

 

Abstract 
 
Background and Objectives Magnetic tracking involves the use of magnetic sensors to localize one or more magnetic 
objectives, in those applications in which a free line-of-sight between them and the operator is hampered. We applied 
this concept to prosthetic hands, which could be controlled by tracking permanent magnets implanted in the forearm 
muscles of amputees (the myokinetic control interface). Concerning the system design, the definition of a sensor 
distribution which maximizes the information, while minimizing the computational cost of localization, is still an open 
problem. We present a simple yet effective strategy to define an optimal sensor set for tracking multiple magnets, 
which we called the Peaks method.  
 
Methods We simulated a proximal amputation using a 3D CAD model of a human forearm, and the implantation of 11 
magnets in the residual muscles. The Peaks method was applied to select a subset of sensors from an initial grid of 
480 elements. The approach involves setting an appropriate threshold to select those sensors associated with the 
peaks in the magnetic flux density and its gradient distributions. Selected sensors were used to track the magnets 
during muscle contraction. For validating our strategy, an alternative method based on state-of-the-art solutions was 
implemented. We finally proposed a calibration phase to customize the sensor distribution on the specific patient’s 
anatomy.  
 
Results 80 sensors were selected with the Peaks method, and 101 with the alternative one. A localization accuracy 
below 0.22 mm and 1.86° for position and orientation, respectively, was always achieved. Unlike alternative methods 
from the literature, neither iterative or analytical solution, nor a-priori knowledge on the magnet positions or 
trajectories were required, and yet the outcomes achieved with the two strategies proved statistically comparable. 
The calibration phase proved useful to adapt the sensors to the patient’s stump and to increase the signal-to-noise 
ratio against intrinsic noise. 
 
Conclusions We demonstrated an efficient and general solution for solving the design optimization problem (i.e. 
identifying an optimal sensor set) and reducing the computational cost of localization. The optimal sensor distribution 
mirrors the field shape traced by the magnets on the sensing surface, being an intuitive and fast way of achieving the 
same results of more complex and application-specific methods. Several applications in the (bio)medical field 
involving magnetic tracking will benefit from the outcomes of this work. 
 
Keywords— magnetic sensors, magnetic tracking, myokinetic control interface, sensor optimization, prosthetic hand. 
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 agnetic tracking has recently drawn the attention of many 

researchers because of its potential applications in several 

fields, including medical procedures and biomedical 

equipment. Indeed, thanks to the transparency of the 

human body to low-frequency magnetic field [1], magnetic 

tracking has been devised for a number of intra-body 

applications in which a free line-of-sight between the 

operator and the end effector is hampered [2–6]. 

Generally speaking, in remote tracking a set of magnetic 

field sensors is used to retrieve the unknown pose (i.e., 

the position and orientation) of one or more magnetic 

markers, namely permanent magnets or transmitting coils. We recently proposed the use of magnetic tracking for 

controlling hand prostheses, by localizing permanent magnets implanted into the forearm muscles through external 

sensors hosted in the socket [6]. Concerning the system design, while the benefit of using more sensors for 

improving the localization accuracy has been widely demonstrated [7–10], the definition of an optimal spatial design 

for the sensing assembly remains an open problem.  

Indeed, although different solutions have been proposed in the literature [8,9,11,12], all of them considered a 

single marker tracking system, most of them were limited to a 2D grid sensor layout [8,9,12] whereas others were 

designed for specific applications [11]. As an example, Talcoth and Rylander [9] exploited the Fisher Information 

Matrix (FIM) to iteratively select an optimal sensor subset from a planar grid. Considering a single transmitting coil, 

they investigated how the optimal design varied for different poses of the transmitter. This approach had limitations: 

to compute the FIM, the knowledge of the exact pose of the considered transmitter was needed. Furthermore, the 

selection problem was solved through an optimization procedure that required computing the determinant of the FIM, 

whose dimensions increase linearly with the number of magnetic objectives. This makes the approach poorly 

scalable for multi-objectives tracking systems. More recently, Maréchal et al. [11] proposed a different approach to 

optimize the magnetic localization of catheters used in ventriculostomy procedures. They derived an optimal sensor 

arrangement using genetic algorithms (GAs) which proved better than classical grid configurations when localizing a 

permanent magnet. The selection problem was solved by exploiting a-priori knowledge on the reference trajectory 

travelled  by the magnet during such procedures, as it is quite similar across patients. However, GAs usually require 

to set multiple parameters (and possibly constraints), and this is not always trivial to address [13]. Here, we propose 

a different approach which only takes as input the magnetic flux density and its gradient to select an optimal sensor 

subset. We applied it to a 3D anatomical workspace with multiple magnets, and confirmed that it led to accurate 

localization without requiring a-priori knowledge on their positions or trajectories. 

We proved in early works [14,15] that a correlation exists between the presence of peaks in the magnetic flux 

density distribution and the localization accuracy. Indeed, a simple visual inspection of the recorded field distribution 

could provide an intuitive and rough anticipation on the accuracy of the localization [14]. Here, we assessed the 

viability of a sensor selection strategy embracing such concept for a myokinetic prosthesis controller. We called it the 

Peaks method. Starting from the anatomical setup used in [15], we simulated a representative proximal amputation 

M 

 
Fig. 1. Frontal view (upper left) and sectional view (upper right) of the 
implanted magnets and the sensor grid (blue dots, N = 480). 
𝐿𝑀𝑀−𝑠𝑒𝑛𝑠𝑜𝑟  indicate the distance from a magnet to the nearest sensor 
(an example is schematically represented below the sectional view). 
Deeper magnets (𝐿𝑀𝑀−𝑠𝑒𝑛𝑠𝑜𝑟 ≥ 15 𝑚𝑚) are in red and have a radius 
and height equal to 2 mm. More superficial magnets are in black, and 
their dimensions are halved. Acronyms in TABLE I. 

Table I 
Targeted muscles that received the implantation. 

Acronyms Muscles 

EDM Extensor digiti minimi 
FCR Flexor carpi radialis 

ECRL Extensor carpi radialis longus 

ECU Extensor carpi ulnaris 

ECRB Extensor carpi radialis brevis 

FCU Flexor carpi ulnaris 

ED-I Extensor digitorum – I compartment 
ED-II Extensor digitorum – II compartment 

ED-III Extensor digitorum – III compartment 

ED-IV 
FDS-I  

Extensor digitorum – IV compartment 
Flexor digitorum superficialis – I compartment 
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and the implantation of 11 magnets into an equal number 

of residual forearm muscles. 480 magnetic field sensors 

were arranged around the residual limb.  

First, a single case study was conducted for comparison 

of the Peaks method with results from [9], considering 

only the magnet implanted in the flexor carpi ulnaris 

(FCU). The study allowed to assess the dependence of 

the selected sensor (namely, the active sensor) positions 

on the magnet pose. Then, the Peaks method was 

compared with an alternative strategy based on state-of-

the-art approaches, which we called the FIM-GA method. 

Both methods considered all implanted magnets in their 

initial (rest) position. The former selected only those 

sensors corresponding to the peaks in the magnetic flux 

density and its spatial gradient. The latter combined and 

adapted the approaches from [9] and [11] to draw an 

optimal sensor subset, by using a multi-objective GA to 

minimize three FIM-based cost functions. Thus, we could 

exploit the ability of GAs to search a wide range of the 

solution space rapidly, while evaluating the selection 

based on the information content of each sensor. This was intuitively more in line with the concept behind the Peaks 

method, which analyses the sensor recordings, and thus allowed to perform a fairer comparison for validating our 

approach. Evidence of the comparability between the two methods emerged from the outcomes of this work, featured 

in the first place by the topological similarity of the derived active sensor distributions. Following the selection 

process, magnets were independently moved along discrete trajectories to simulate muscle contraction, accounting 

for both axial and radial deformations. The orientation of the moving magnet was also varied by applying tilting. Pose 

localization accuracies obtained with the two configurations (i.e. the two sets of active sensors) were compared. 

Accurate and comparable localizations were always achieved, with errors below 3% the total trajectory length and 

below 9% the applied tilting.  

Finally, we extended the proposed method by introducing a calibration phase which sought to boost the 

customization of the active sensors according to a patient’s specific anatomy. Simultaneous displacement of multiple 

extrinsic hand muscles was also implemented, mimicking the neural and mechanical connections coupling inter and 

intra-muscle contractions that exist in humans [16–21]. The accurate localization of magnets was confirmed, with a 

maximum error below 4% the trajectory length and below 9% the applied tilting. This study represents an important 

step forward towards the definition of an optimal sensing system design, not limited to myokinetic interfaces, but 

potentially useful for all magnetic tracking applications. 

 

2. Materials and Methods 

 

Aided by a 3D CAD model of a healthy human forearm, we simulated a representative proximal amputation (Fig. 

1). Following the procedure described in [15], 11 magnets were arranged in the bellies of 11 forearm residual 

muscles, which we will refer to by using their acronyms, specified in Table I. A grid of 480 three-axes magnetic field 

sensors was arranged around the residual limb. The distance between adjacent sensors, indicated as       −      , 
corresponded to a 12° angular step along the circumference and 10 mm distance along the axial direction. 

It has been shown that a negative correlation exists between the localization accuracy  and the distance between 

the magnets and the sensors, due to a reduced signal-to-noise ratio [7,8,10,11,14,22]. To address this aspect, we 

tuned the dimensions of the magnets based on their distance from their nearest sensor (   −      ). Specifically, 

magnets were modeled as Nd-Fe-B N45 grade cylindrical magnets (axial remanent magnetization Br = 1.27 T), with 

a 1 mm radius and height for more superficial magnets, and doubled dimensions for deeper ones (Fig. 1). We 

considered ―deeper‖ all magnets having a    −       above or equal to 15 mm, so that the saturation limit of typical 

commercial magnetometers (LIS3MDL, STMicroelectronics), with a full scale of ± 16 G, was not reached.  Once the 

magnets were arranged in the muscles (implanted) and their dimensions tuned, muscle contraction was simulated by 

displacing them along predefined discrete trajectories, described in the next section. 

 

2.1 Muscle Contraction Model 
 

 
Fig. 2.  Representative magnet trajectory. Red dots represent the 
magnet, whereas coloured arrows indicate the change in orientation 
due to the applied tilting. Since the magnet is implanted above the 
distal aponeurosis insertion (black dashed line), it moves 
proportionally to its distance from the muscle origin (see the inset on 
the left).  

                  



 

 

 

In early work [15] we considered a simplified muscle contraction model which captured axial deformations only. In 
fact, skeletal muscles operate as a near-constant volume system, thus muscle shortening during contraction is 
transversely linked to radial deformation [23]. A technique called tensiomyography was developed in the recent years 
to measure radial displacement of muscles, by exploiting a high-precision digital displacement sensor applied to the 
muscle belly [24]. Parameters extracted from typical displacement curves indicate a peak radial displacement (i.e. an 
absolute spatial transverse deformation) in the order of half a centimeter [24]. Accordingly, we simulated muscle 
contraction by considering both an axial (  ) and a radial (  ) displacement component. As in [15], the amount of 
displacement was tuned based on the magnets implantation site. Specifically, magnets implanted in the distal belly 
moved by a maximum amount equal to       = 10 mm and       = 5 mm, respectively. Magnets implanted in the 

proximal muscle section moved proportionally to their distance from the muscle origin. Thus, the following rules 
applied: 
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where x is a coordinate lying on the curve that runs along the longitudinal axis of the muscle, and   is the length of 

the muscle belly at rest (Fig. 2). As in [15], the length of the distal aponeurosis was assumed equal to    . 

The orientation of the k-th magnet was encoded with a unit vector of the form [        ]. In the magnet’s rest 

position, the magnetic moment vector was set to point radially towards the nearest sensor, to maximize the sampled 

magnetic field. However, since variability in the orientation due to both manual implantation and muscle contraction 

can be expected, tilting of the magnet during contraction was implemented. Specifically, it was simulated by applying 

an alternate ± 0.5 factor on a randomly selected component of the orientation vector, and subsequently normalizing it 

(Fig. 2).  

 

2.2 Sensing System Spatial Design 

 

 
Fig. 3. Peaks method (upper panel) and FIM-GA method (lower panel) flow-charts for a single magnet. Peaks method: the first threshold value 
(T) is set, and the sensors associated with the peaks locations (identified through thresholding) are selected and used to localize the magnets. 
As long as localization is accurate, T is increased and the processed iterated, until at least one magnet is localized outside of its target muscle 
(critical T value). The final T is defined by lowering the reached critical value by 200 mG. FIM-GA method: the initial population matrix is 
defined. Each individual encodes the weights associated with the sensors of the grid (length equal to N = 480). An evolutionary process is 
applied to find the best individual. When termination criteria are met, the final solution is identified as the first row of the Pareto front matrix. 

Sensors having w ≥ 0.5 are selected as active sensors.  

                  



 

 

 

In the following, we describe the Peaks and the FIM-GA methods, implemented to determine an optimal sensing 
system design. Two different studies were performed. First, the Peaks method was applied to a single case study, to 
inspect how varying a single magnet pose affected the derived active sensor positions. Specifically, three conditions 
were tested for the single magnet implanted in FCU: (i) magnet in its original implantation site; (ii) tilting applied to the 
x component of the magnet orientation, by inverting the component sign; (iii) magnet radially moved 10 mm further 
from its nearest sensor. Then, the Peaks and the FIM-GA methods were used to select the active sensors when 
considering all magnets in their implantation sites. The obtained active sensors were subsequently used to collect the 
magnetic flux density while the targeted muscles underwent contraction. As in [15], we simulated the magnetic field 
generated by the magnets through the analytical model for a cylindrical magnet described and validated earlier 
[25,26]. All simulations were run in Matlab (MathWorks, Natick, MA) on a desktop computer with an Intel i7-6700 
CPU running at 3.4 GHz, 32 GB of RAM and Windows 7. 

1) Peaks method: with the magnet(s) in their rest position, the generated (compound) magnetic flux density was 
acquired on the entire sensor grid (N = 480 sensors). Random Gaussian noise with a standard deviation of 4 mG 
was added on the sampled signals, to mimic the characteristics of commercial magnetometers (LIS3MDL, 
STMicroelectronics). Then, following the procedure first introduced in [15], the 2D gradient (i.e. along the axial and 
the radial direction of the forearm) of the sampled magnetic flux density was computed (Fig. 3). Peaks locations on 
the initial sensor grid were identified by applying thresholding both to the magnetic flux density and its gradient 
distributions. Concretely, the threshold corresponded to the minimum amplitude difference allowed between an 
identified peak and its neighbors. Sensors associated with the aggregated peaks, i.e. with the compound peak 
locations identified in the field and in its gradients, were selected as active sensors and used to solve the localization 
problem (Fig. 3).  

The threshold value was set empirically to ensure a trade-off between the number of selected sensors and the 
tracking accuracy. Such accuracy was evaluated by solving the localization problem (see next section) during muscle 
contraction, by considering all magnets and different active sensors derived using different threshold values. More 
precisely, starting from a threshold of 50 mG, the latter was incremented in steps of the same value until the localizer 
was no more able to retrieve the magnets poses (critical threshold value). Such critical value could be easily spotted 
when at least one of the magnets was localized outside of its workspace, i.e. outside of the corresponding targeted 
muscle belly. Indeed, we previously showed that, as long as magnets arrangement in space respects specific 
geometrical rules and the field spatial distribution is informative enough, then the localization of an indefinitely high 
number of magnets is accurate [14,15]. Here, magnets were arranged in the muscles through a placing procedure 
designed to fulfil such geometrical requirements. Thus, when the localization failed, it was most likely caused by a 
lack of information due to an oversampling of the measuring sites. When the critical threshold was reached, the 
search was stopped and its value was lowered by 200 mG to ensure a safety interval against noise. Indeed, the more 
the final threshold is set close to its critical value, the more the localization accuracy in presence of noise is likely to 
degrade, because the smoothing effect given by multiple acquisitions decreases [7,8,10,11,14,22]. 

2) FIM-GA method: GAs are a class of optimization algorithms inspired by the natural evolution [27]. They usually 
have one (or more) predefined goal in the form of a cost function, which the optimization process seeks to minimize. 
Candidate solutions are called individuals, which together form a population. Starting from an initial population, 
biologically inspired operations (namely selection, crossover and mutation) are iteratively applied to the individuals to 
derive an optimal solution, i.e. an individual with a lower value of the cost function [27]. Here, we considered the 
initial sensor grid as a nodes space where each node represented a possible sensor position. No geometrical 
constraint was imposed to the sensor arrangement, except for the physical distances imposed by the grid design. 
Individuals forming the population were numeric arrays with a length equal to the total number of nodes (i.e. N = 
480). Each array element encoded the weight w of a specific sensor and could assume a continuous value between 
0 and 1. The w values were iteratively updated by the algorithm until convergence, i.e. until an optimal weight array 
was found. At this point, only sensors associated with a w ≥ 0.5 were selected as active sensors. The process was 
individually repeated for each magnet, and the active sensors selected for each magnet were finally gathered to form 
the final sensor grid.  

A three-objective cost function was defined, which computed the FIM of the three magnetic flux density 
components (Bx, By, Bz). Let     [                 ] denote the vector of parameters describing the position and 
orientation of the k-th magnet in the Cartesian space. According to [9], the weighted FIM relative to Bx for the k-th 
magnet can be computed as: 
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where J is the number of sensors having wj ≥ 0.5. The same applies to By and Bz. Assuming that the noise terms in 

the sensor readings are independent, maximizing the FIM corresponds to minimizing the effect of noise on the 
parameters (  ) estimation. This can be achieved by exploiting the D-optimality criterion [9] which involves computing 
the FIM determinant. Thus, for the k-th magnet, a solution was found by simultaneously minimizing three (weighted) 
fitness functions defined as: 
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were | | denotes the matrix determinant. FIMs were previously normalized by the total sum of the weights (∑   
 
   ), 

which allowed reducing weights for the non-selected sensors, while favoring higher weights for the selected ones. 
This was needed because many sensors would perform better than fewer sensors, as averaging would lower the 
noise effect. On the other hand, the imposed nonlinear constraint was needed to fix a (non-rigid) upper bound to the 
number of selected sensors. The bounding value was suggested by several studies searching for an optimal sensor 
number and spatial design that agree on the need of ~8-15 sensors per magnet [6,9,11,12,15,28].  

The initial population matrix had 50 individuals on its rows, 39 of which were randomly initialized, one had all 
elements wi ≥ 0.5 (i.e. all sensors selected with random weights), whereas ten were defined through the Peaks 
method.  To do this, the magnetic flux density generated by the k-th magnet on the whole sensor grid was simulated. 
Ten equally spaced thresholds in the interval [30, 300] mG were then used to select the active sensors 
corresponding to the peaks, as described above. For each considered threshold, one individual was encoded by 
assigning a random w in [0.5, 1] to all elements (sensors) corresponding to the detected peaks, while setting the 
others to zero. As previously shown in [11], building the initial population with a mix of random and optimized 
individuals effectively maximizes its diversity, which helps to avoid local minima.   

The gamultiobj algorithm from the Matlab Optimization Toolbox was used to solve the optimization problem, and a 
trial-and-error (empiric) strategy was applied to select the best parameter set. As a result, we promoted mutation 
(with a rate of 0.08) instead of crossover (with a ratio of 0.1), and set the constraint tolerance to 1 in order to relax the 
upper-bound imposed to the sensor number. The maximum number of (stall) generations was set to (50) 250, while 
the default values were left unchanged for the other parameters. The algorithm finds the Pareto front of multiple cost 
functions, i.e. a set of individuals in the parameter space that have non-inferior cost function values [27]. As these 
individuals are equally good from the cost function perspective, after having verified that neither the number of 
sensors nor their distribution varied significantly across individuals (including the nearest individual to the Utopia 
solution [29]), we arbitrarily selected the one encoded in the first row of the final matrix to build the active sensor grid 
(Fig. 3).  

 

2.3 Localization Problem 

 

                  



 

 

 

Once the two sets of active sensors were selected, the movement of the MMs along anatomically appropriate 
trajectories (described previously) was simulated. Similarly to [15], the displacement of the MMs was approximated 
by translating them, one at a time, along 11 equidistant checkpoints (0%, 10%, 20%, …, and 100% the trajectory 
length). At each checkpoint, the simulated magnetic flux density was sampled on the two grids of active sensors and 
Gaussian noise was added. Sensor recordings at each checkpoint were stored and subsequently fed to a Matlab 
script that ran the Levenberg-Marquardt algorithm [30] to retrieve the poses of the MMs offline. The algorithm 
requires some user-defined initial conditions for the parameters to be estimated (i.e., the magnets poses). For the 
very first localization, the initial conditions were set by using the actual magnets orientation, while applying a random 
shift within 5 and 10 mm to their real spatial coordinates. Indeed, it is unknown how accurate the information about 
the magnets location following the implantation procedure would be.  For the following localizations, the poses 
retrieved at the previous step were used as starting point for the algorithm search. Akin to several previous works 
[7,15,28], the algorithm approximated the MMs as point-like dipoles for solving the localization problem. 

The localization errors, in terms of position and orientation, were assessed as:  
                                                   (7) 

                                                   (8) 

 where ep,m and eo,m account for inaccuracies in tracking the displacement of the moving magnet (i.e., model error), 
whereas ep,ct and eo,ct account for false predictions of simultaneous displacement affecting the non-moving magnets 

(i.e., crosstalk effect) [6]. Specifically,    and    respectively represent the difference between the actual and the 

estimated position and orientation displacement of the magnets, relatively to their rest poses.   
 

2.4 Statistical Analysis 

 

A statistical analysis was used to assess the comparability of the localization accuracy obtained with the active 
sensors selected with the Peaks and the FIM-GA method. To do this, the median values of     ,      ,      and       

obtained for each magnet in each configuration were computed. The derived values were stored into eight separate 
vectors with a length equal to the number of magnets. The agreement of each paired measures (i.e. same error 
vector from the two configurations) was verified by deriving the Bland-Altman plot [31]. The latter is a statistical tool 
used to quantify the agreement between two quantitative measures. Practically, a 2D scatter plot is constructed in 
which the difference of the two paired measures is plotted against their mean value. The agreement between the two 
methods is established if at least 95% of the data points lie within ± 2 standard deviations of their mean difference 
(limits of agreement).  

 

2.5 Calibration Phase and Muscles Co-Activation 

 

Given the variability across patients, the customization of the sensor arrangement for a specific person could be 
obtained by providing information on the magnets trajectories to the sensors selection algorithm. Since such 
information is not available a-priori, we extended the proposed method by implementing a calibration phase which 

 
Fig. 4.  Peaks generated by the magnet implanted in FCU when considering: the original implantation site (a), tilting of the x orientation 

component (inverted component sign) (b), and increased 𝐿𝑀𝑀−𝑠𝑒𝑛𝑠𝑜𝑟  by 10 mm, radially (c). The grids are the unfolded sensor array, where 
each vertex corresponds to a sensor.  In (a), peaks distributed in a rectangular-like shape around the nearest sensor; in (b), the peaks 
narrowed towards the new pointing direction of the orientation vector, while widening on the opposite side; in (c), the peaks spread out, 

covering a larger area around the nearest sensor (a halved threshold for peaks was considered, to account for the increased 𝐿𝑀𝑀−𝑠𝑒𝑛𝑠𝑜𝑟). 
Three insets report the 3D view of the magnetic flux density in the three configurations. On the upper-right corner, the magnet positions (grey 
dots) and orientations (black (a)(c) and red (b) lines) are shown, with the black dot indicating the nearest sensor and the blue dots the other 
sensors.                      

                  



 

 

 

involved collecting the sensors recordings while the targeted muscles underwent contraction. Thus, a different set of 
active sensors could be identified in correspondence of each checkpoint along the magnets displacement, by 
applying the Peaks method. The active sensors selected at each checkpoint were finally gathered, and a compound 
active sensor grid was defined. In a real scenario, this could be achieved by performing multiple sensor acquisitions 
at a selected frequency while the subject is asked to contract those muscles that received the implant. The threshold 
value set for the non-calibration case was used as starting point for the threshold setting procedure (the same 
described in section 2.2). Once the critical value was reached and the final threshold set, the active sensors were 
determined. The latter were subsequently used to sample the magnetic field during muscle contraction and localize 
the magnets offline, after that Gaussian noise was added.  

Rather than moving one magnet per time, we assessed the feasibility of localizing multiple magnets during muscle 
co-activations, by simultaneously displacing multiple magnets along their entire trajectories. Our goal was to evaluate 
whether we could discriminate simultaneous muscle displacements, although without affecting the localization 
accuracy. First, we co-activated muscles acting on the wrist joint in an antagonist fashion, to mimic the biological way 
in which joint stabilization is achieved [18]. Thus, the co-contraction of ECU – FCU, and that of FCR - ECRL- ECRB, 
were implemented. Secondly, the simultaneous activation of ED-I - ED-II and that of ED-II - ED-IV were considered. 
This was done in consideration of several studies which proved a limited ability in humans to independently control 
distinct digital extensor compartments [19,21], with stronger influence given by adjacent digits compared to further 
ones [21]. EDM and FDS-I were treated as independent muscles, like in previous simulations. As multiple muscles 
(compartments) contracted together, no distinction was made between model and crosstalk errors for co-contraction 
simulations. 

 

3. Results  

 

3.1 Peaks and GA Method  

 

Considering all implanted magnets, the critical threshold was identified when a value of 400 mG was reached, as 
the magnet in ED-IV was localized outside of the muscle volume. Thus, a final threshold of 200 mG was set for the 
magnetic flux density (and of 200 mG/      −       for the gradient, respectively), which was ~50 times higher than 

the typical intrinsic noise of the sensor. Notably, tuning the magnets dimensions according to    −       allowed to 
select a higher threshold compared to the one used in [15] (equal to 5 mG), thus providing the system with a 
significantly increased robustness against noise. 

First, results from the single case study are reported.  The same threshold identified when considering all magnets 
was used for this study. The magnet implanted in FCU had a    −       of 15.3 mm. The active sensors selected 
with the Peaks method in such configuration formed a compact rectangular like shape around the nearest sensor 
(Fig. 4a). When tilting was applied on the x component of the orientation (inverted from - 0.71 to + 0.71), the active 
sensors distributed asymmetrically, forming a sort of arrow shape pointing towards the new magnet orientation vector 
(Fig. 5b). When the magnet was moved 10 mm further from the nearest sensor, the active sensors also moved 

 
Fig. 5.  Implanted magnets (black dots), associated trajectories 
(coloured segments), and active sensors (blue dots) derived through 
the Peaks (on the left) and the FIM-GA (on the right) method. The 
black dashed lines indicate the amputation level. The histograms 
show how the active sensors distributed across the stump in the two 
configurations.  

                  



 

 

 

further from it (Fig. 4c). For this latter case only, a halved threshold (100 mG) was used in order to gain a better 
visualization of the results, given the increased    −      .  

When the two selection strategies where applied by considering all implanted magnets, results revealed 80 active 
sensors selected through the Peaks method and 101 identified though the FIM-GA method. This corresponded to a 
reduction of ~83% and ~79% the initial grid, and to a sensor-to-magnet ratio of 7.3 and 9.2, respectively. The active 
sensors selected by the Peaks method generally clustered around the magnets rest position (Fig. 5). Active sensors 
appeared to be roughly normally distributed across the distal and central portion of the stump, which hosted the 
implanted magnets. A sparser sensor arrangement resulted from the application of the GA method. The active 
sensors distribution appeared slightly skewed, as few sensors were selected in the more proximal part of the stump 
(Fig. 5).  Nevertheless, both strategies selected sensors mostly concentrated around the central portion of the stump 
(Fig. 5). Considering the computation time instead, notably the Peaks method could reach the final solution ~15 times 
faster than the FIM-GA method. 

Such similarity in the sensor distribution was seamlessly reflected in the achieved localization accuracy (Fig. 6). 
Indeed, the latter proved comparable in the two configurations both in terms of absolute localization error, and in 
terms of error distribution across different magnets (muscles). Concerning the position error, a maximum      of 0.18 

mm (0.17 mm) was obtained with the Peaks (FIM-GA) method, along with a maximum       of 0.22 mm (0.21 mm) 

(Fig. 6). Maximum      values were obtained for the magnet implanted in FDS-I, whereas maximum       values were 

obtained for the magnet implanted in ED-II (Fig. 6). Overall, the total distances travelled by the magnets during 
contraction ranged between a minimum of 5.3 mm (ED-IV) to a maximum of 11.4 mm (ED-II and ED-III). The 
maximum position error associated with the shortest muscle displacement (ED-IV) in the two configurations, 
respectively equal to 0.17 mm and 0.16 mm, proved below 3% its entire trajectory length. In both configurations, the 
magnets implanted in ECRB, ED-II and FDS-I showed higher median errors compared to those implanted in the 
remaining muscles, both in terms of      and       (Fig. 6).  

The conclusions derived for the position error held true for the orientation error, as their trends closely matched 

(Fig. 6). The magnets implanted in ED-II showed the highest     , equal to 1.86° and 1.69° for the Peaks and GA 

method, respectively. Concerning the maximum      , it proved equal to 1.80° in both cases and again for the magnet 

implanted in ED-II. Overall, the angular tilting applied to the magnets during contraction ranged between a minimum 

 
 

Fig. 6.  Localization error in terms of position (ep,m and ep,ct) and orientation (eo,m and eo,ct) when using the active sensors selected with the 
Peaks and the FIM-GA method. Red crosses indicate the outliers, the boxplot encloses data within the interquartile range, the red line is the 

median value, whereas the whiskers extend to the limits of the distribution. Acronyms in TABLE I. 

 
 
Fig. 7.  Bland-Altman plots used to compare the localization accuracy obtained with the Peaks and the FIM-GA method. A plot was built for 

each of 𝑒𝑝 𝑚 (a), 𝑒𝑝 𝑐𝑡 (b), 𝑒𝑜 𝑚 (c) and 𝑒𝑜 𝑐𝑡 (d) pairs. Obtained data points always lied between the lower and upper limit of agreement expect for 

one point (a). The agreement between the two methods was confirmed.  

                  



 

 

 

of 7.6° (FCR) to a maximum of 30° (FDS-I). The maximum orientation error associated with the minimum angular 
variation (FCR) in the two configurations, respectively equal to 0.62° and 0.49° mm, proved below 9% and 6% the 
applied tilting. Overall, the magnets implanted in ECRB, ED-II and FDS-I showed again higher median errors 
compared to the others, for both      and       and in both configurations. 

 

3.2 Statistical Analysis 

 
As reported above, the localization accuracy obtained with the two selection methods proved overall comparable 

(Fig. 6). The agreement between the achieved results was confirmed by inspection of the derived Bland-Altman plots 
(Fig. 7). The resulting limits of agreement for position errors went from -0.02 mm to 0.03 mm, and from -0.01 mm to 
0.01 mm for      and      , respectively. For the orientation errors, limits from -0.27° to 0.31° for     , and from -0.11° 

to 0.16° for       were obtained. Only one outlier was observed, showing 0.04 mm of difference in the two methods for 

     (Fig. 7a). 

 

3.3 Calibration Phase and Muscles Co-Activation 

 

Given that the localization failed in correspondence of a threshold value of 800 mG (magnet in ED-IV 
mislocalized), a final threshold of 600 mG (and of 600 mG/      −       for the gradient) was set. The latter was ~150 
times higher than the typical sensor noise. A total of 86 active sensors were identified, resulting in a 7.8 sensor-to-
magnet ratio (Fig. 7a). In line with results obtained in the non-calibration case, the active sensors clustered around 
the magnets implantation sites, over the distal and central area of the stump. Compared to previous results, more 
sensors were picked up around and along the magnets trajectories, while those more distant from the magnets rest 
position \ trajectory checkpoints were discarded (Fig. 7a).  

An accurate localization in terms of both position and orientation was confirmed during muscles co-contraction 
(Fig. 7b-c). Indeed, a maximum    of 0.36 mm was obtained for the magnet implanted in FDS-I, whereas the one 

implanted in ED-II showed the highest     of 2.38°. Considering the shortest muscle displacement (ED-IV), the 
highest position error obtained for the corresponding magnet (0.19 mm) proved below 4% the total trajectory length. 
Regarding the smallest angular variation (FCR), the maximum orientation error for the corresponding magnet proved 
equal to 0.66°, thus below 9% the applied tilting. Again, error trends in term of position and orientation generally 
matched, as magnets which achieved higher    values also showed higher    values and vice-versa. In particular, 

the magnets implanted in ECRB, ED-II, ED-III and ED-IV compartments, as well as FDS-I showed higher median 
(position and orientation) errors compared to the other magnets (Fig. 7b-c). 

 

4. Discussion  

 

In this work, we assessed the validity of the Peaks method for identifying an optimal sensor set for a myokinetic 
control interface. We showed that the relevant information to select an optimal sensor set could be derived from the 
sensor readings and their spatial gradient, while no exact a-priori knowledge on the magnets position or 
displacement was needed. The localization achieved using the proposed method proved always accurate and 
statistically comparable to that obtained by applying methods adapted from the literature. As we indeed observed 
such performance, we conclude that the purpose of the study was fulfilled.  In addition, we extended our approach by 
proposing a calibration phase aimed at customizing the sensor arrangement for a specific subject. To our knowledge, 
this is the first time that a sensor optimization algorithm is applied to multiple magnets while not being restricted to a 
planar configuration or specific application [8,12]. Nonetheless, these other approaches could be readily 
adapted/wrapped to the 3D case, e.g. by performing a transformation to curvilinear surfaces. 

                  



 

 

 

Outcomes from the single case study showed that the active sensor patterns changed according to the magnet 
orientation and implantation depth (Fig. 4), in a way closely resembling results from Talcoth and Rylander [9].  
Notably, the change in the sensor pattern directly reflected that of the bell-shape waveform produced by the magnet 
on the field distribution (insets in Fig. 4), as already suggested in [14]. This further supports the idea that relevant 
information, like that identified analytically by minimizing the FIM, is related to the distinguishability and the topology 
of the peaks in the magnetic field (gradient). Indeed, both the minimization of the FIM and the Peaks method exploit 
the gradient of the magnetic field for selecting the sensors. The peaks of the gradients generally distribute around the 
magnetic marker, and this likely explains why in [9] sensors were selected around the transmitter and not directly 
above it. Indeed, the magnetic field absolute value is not involved in the FIM computation, vice versa its peaks are 
exploited here.  

As the GA evolved some starting individuals through multiple iterations, the best solution reached when 
considering all magnets resembled that achieved by the Peaks method (Fig. 5). With both methods, the achieved 
position and orientation errors were always higher or comparable to the Bland-Altman plot limits of agreement, which 
proved below the tenth of a millimeter for the position and below 1° for the orientation (Fig. 6 - 7). Thus, as more than 
95% of points lied within such limits (i.e., the difference between the paired measures proved always very low), we 
can conclude that the two methods led to comparable results. Nevertheless, unlike optimization procedures, the 
Peaks method led to such solution with no need of iterations (indeed, it is ~15 faster) and no need of setting multiple 
parameters or constraints, except for the threshold value. In this regard, although defining an appropriate threshold 
required to evaluate the localizer performance, there was no need of knowing the exact magnets implantation site, 
which is instead required by the FIM-GA method. On one hand, the localizer was able to accurately retrieve the 
correct magnets poses even if we provided it with corrupted initial conditions, in line with results from related works 
[32]. At the same time, the muscle workspace (i.e. muscles belly) needed to assess the localizer performance could 
be made available by imaging techniques carried out before the implantation procedure. As an example, magnetic 
resonance examinations guarantee a ~1 mm

3 
spatial resolution, and could be useful for planning the surgical 

implantation. An accurate segmentation of muscles could be drawn from such acquisitions by applying proper post-
processing techniques [33].  

The muscle contraction model used in this study considered both axial and radial displacements, in accordance 
with actual deformations undergone by biological muscles during contraction. Interestingly, it was shown that a 
negative correlation exists between the muscle peak radial displacement and the muscle / tendon stiffness [24]. The 
latter is likely to decrease in individuals who experienced limb amputation, because of a reduced muscle activity 
which could lead to a condition known as disuse atrophy [34]. For this reason, it was of fundamental importance to 
assess the ability of the localizer in retrieving radial displacements with good accuracy, in view of the target 
application. 

We argue that the higher localization errors achieved for the magnets in ECRB, ED-II and FDS-I (Fig. 6) are due to 
their specific implantation sites, in particular to their    −      . Indeed, both the magnets in ECRB and ED-II were 

not implanted deeply enough to have their dimensions doubled, but had a    −       slightly below the required 
threshold (respectively equal to 13.9 mm and 14.8 mm). The same occurred to the magnets in ED-III and ED-IV 

Fig. 8.  Calibration phase results. (a) Actual and estimated magnet poses. Selected active sites without (blue dots) and with (empty red dots) 
calibration are displayed. The inset in the left-bottom corner reports the distribution of the active sites selected with the calibration phase over 
the stump. Localization errors in terms of position (b) and orientation (c) are shown in the boxplots. Boxes having the same colour indicate 
muscles that were contracted together. The empty dots indicate the outliers, the boxplot encloses data within the interquartile range, the dot is 
the median value, whereas the whiskers extend to the limits of the distribution. Acronyms in TABLE I. 

                  



 

 

 

(   −       equal to 14.9 mm)  which in turn showed larger localization errors, especially for the calibration phase 

results (Fig. 8). Vice versa, FDS-I had its dimensions doubled, but was implanted in the deepest site (   −       of 
25.8 mm). Notably, as extensively assessed in early works [14,15], the R value (i.e. the ratio between the minimum 
inter-magnets distance and    −      ) can be used to get a more thorough  prediction of the expected localization 
accuracy. Indeed, we previously showed that lower R values lead to lower localization accuracies, because being 
near to other magnets negatively affects the accuracy besides localization depth. In this case, the geometrical 
arrangement of magnets resulted in a lower R value for those (listed above) that achieved lower localization 
accuracies, with a mean R value equal to 1.45, against a mean value of 2.14 for the remaining ones. 

 The co-contractions simulated in the calibration phase were just representative examples of possible real 
scenarios, in which likely the activation level would not be the same in all involved muscles (here, we considered the 
maximum displacement for all units). Nevertheless, we have no reason to think these results would not extend to 
other muscles (compartments) or to different activation levels. Notably, the feasibility of achieving accurate 
localization in the worst condition, that is when magnets are implanted in adjacent compartments (thus, particularly 
near to each other) was assessed here.  

We observed that the threshold used for identifying peaks can be significantly increased by tuning the magnets 
dimensions and integrating information about muscle contraction. Increasing the threshold allows to improve the 
system robustness against the intrinsic sensor noise. Notably, the reduction of the critical value by 200 mG was 
chosen as a robust safety limit accounting for eventual electromagnetic noise sources [35]. On the other hand, the 
absolute final threshold value could vary across individuals, according to the magnets and sensors distribution in 
space allowed by specific anatomical conditions. The number of active sensors did not significantly increase 
following the calibration phase (from 80 to 86), and this supports the idea, previously suggested by Maréchal et al. 
[11], that optimizing the spatial arrangement is more important than increasing the number of sensors. This could 
possibly explain the lower sensor-to-magnet ratio obtained here (between 7.3 and 9.2) compared to results from the 
literature (between 8 and 15). Indeed, an improved spatial arrangement could allow to reduce the number of sensors 
needed for achieving the same accuracy. Not least, the calibration strategy proposed here could be easily re-applied 
to adapt to changes in muscle contractile properties following the user’s training, thus providing an adaptive, 
customizable active sensor distribution. 

The present study was indeed limited in some respects. First, although the muscle contraction model used in [15] 
was improved here by adding radial displacements and magnets tilting, it is still a simplification of the biological 
muscles complexity. Besides, assumptions made in [15] to standardize the maximum displacement and distal 
aponeurosis length across different muscles were maintained here. To make the contraction model more 
physiologically appropriate, differences across forearm muscle contractile properties, change in muscles conditions 
after the amputation surgery, and other relevant aspects should be considered. Despite this, here we proved the 
feasibility of accurately tracking position and orientation displacements during both independent and dependent 
activations. Thus, we hypothesize that localization would be accurate also in real conditions, as we can expect the 
displacement imposed by biological muscles to be a combination of those tested here. Furthermore, to our 
knowledge, no previous study investigated muscles displacement in depth, because current prostheses control 
strategies rely on electrical signals coming from the muscles and the nerves, and not on such data. Additional clinical 
investigations as well as more complex simulators would be needed to make the contraction model more realistic.  

Secondly, the choice of setting w = 0.5 as threshold value for the sensor weights to be selected was arbitrary. 
Nevertheless, when inspecting the final weight vectors, we noticed that either a sensor was selected (i.e. w ≥ 0.5) or 
its weight was equal (or really close to) zero, also because of the applied FIM normalization. Thus, no ambiguity in 
the final sensor selection was present. Notably, the choice of encoding the weights as real number instead of binary 
ones, which introduced the need of setting a threshold, allowed in turn to relax the constraint imposed to the weight 
sum, thus reducing the rigidity of the algorithm search. 

 
4.1 Conclusions 
 

We proved that the Peaks method is a viable, fast, and relatively simple approach for optimizing a sensing system 
design for multiple magnets tracking systems. It allows to achieve results comparable to those obtained with more 
complex methods and analytical models, while being based on a simple intuition: discriminable magnets will leave 
discriminable traces in the sensor recordings. Thanks to the calibration phase, it guarantees a smooth adaptation to 
different anatomical conditions, essential feature for our target application. Although only clinical trials will allow for a 
proper comparison with alternative advanced methods for prosthesis control [36–38], we advocate that the proposed 
approach would remarkably improve the effectiveness and efficiency of a myokinetic control interface. More in 
general, all systems and (bio)medical applications exploiting magnetic tracking will benefit from the outcomes of this 
study. 
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