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1. Introduction and preliminaries

It is well-known (see, for instance, [1]) that the operator

(D" F)(x) = (cos )™ (0f (x) — SnT® f f(y) _ (V) dy,

with v”?(x) = (1 — x)*(1 + x)°,p,0 > —1,a jacobi weight and its inverse D~“% are isometric maps in the
couples of spaces (L2 1/w) and (Ll/w, 12 ) w = VI g 2, respectively. Analogous properties, but under the assumption

f_ll Fx)v~**~1(x)dx = 0, hold true for the operator

—X

—a,a—1
(D““1f)(x) = (cos mayu " (f (x) + S0 / f(y)i(y) dy.

a

a a—1 .
2°° 7, respectively.

and its inverse D* =% in the couples of spaces (L2, Lf/u) and (Ll/u, [Hu=v

By contrast, in the space of continuous functions in [—1, 1], C° := C°%([—1, 1]), equipped with the uniform norm the
previous operators are unbounded.

* This research was supported by University of Basilicata (local funds) and by GNCS project 2013 “Metodi fast per la risoluzione numerica di sistemi di
equazioni integro-differenziali”.
* Tel.: +39 0971205859.
E-mail address: mariacarmela.debonis@unibas.it.

0377-0427/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.09.063


http://dx.doi.org/10.1016/j.cam.2013.09.063
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.09.063&domain=pdf
mailto:mariacarmela.debonis@unibas.it
http://dx.doi.org/10.1016/j.cam.2013.09.063

118 M.C. De Bonis / Journal of Computational and Applied Mathematics 260 (2014) 117-134

Now, we introduce the space
Cppro = {f e Co%((-1,1): ‘lliml(fv"'”)(x) = o} , p,o >0,
X|—

equipped with the norm

Il = g}g)fl(fv"’”)(x)l = [Ifv”7 lloo,

with the obvious modifications if p e/o o are zeros (letting C 0.0 = C°).
A subspace of C».o is the Sobolev space

W, (0”%) = {f € Coro : f77 € AC(—1, 1) and [[f v ||os < 00},

where AC(—1, 1) is the set of all functions that are absolutely continuous in every compact set of (—1, 1), equipped with
the norm

I lwy ey = 107 lloo + I V"0 [loo.

Another subspace is the Zygmund space

0,0 P, Q;(fv t)u/’v"
Z (%) = Z, y(vV*°) = {f € Cyro : suptir < 400
t>0

equipped with the norm

Q(f;(fv t)v/’»”

tr

If iz ooy = If 07 oo + sUp

t>0

where r > 0is an arbitrary real number, k > r is integer,

Q5. Dpro = sup (AR HV” Nl - (1)

O<h<t

k A kh
A f0 = 3 (=1 (f)f (x+ S9@ - ihgo(x)) :
i=0

Ing :==[—1+4k*h*>, 1 — 4k’h?],0 < t < 1and ¢(x) = +/1 — x2. We remark that W, (v*°) C Z,(v”°) whenr = k.

With the above notations, in [2,3] the authors showed that D“~* is bounded and invertible in the couple
Z,(v*°), Z,(v®*)) and, moreover, D~**~! under the assumption ﬂ]f(x)v*"‘*“*](x)dx = 0, is bounded and invertible
in the couple (Z,(v%0), Z, (v*179)).

As afirst contribution of this paper, we prove that D%~ is bounded and invertible in the couple (Z, (v**7°%), Z, (v¥-**%))
and, analogously, D~%%~!, under the assumption fjlf(x)v*“*"‘*l(x)dx = 0, is bounded and invertible in the couple
Z(v"°%), Z.(v*t7-172+8)) Obviously, the parameters «,y, 8 have to satisfy suitable conditions that we will assign
explicitly.

Then, the results in [2,3] have been extended to larger functional spaces. This fact suggested us to propose two numerical
methods to approximate the solutions of the equations

(D™ + K*7)f (x) = g(x) (2)

and

1
D 4 K )f (x) = g(x), f FOv=e (dx = 0, 3)
—1

where K% ~* and K% 1~* are compact perturbations. Eqs. (2) and (3) are well-known Cauchy equations of indices x = 0 and
X = 1, respectively.

The proposed numerical methods are stable and convergent for any choice of the parameter 0 < o < 1. We would like to
emphasize that the range of « is (0, 1), taking into account that the numerical methods proposed in [4], using the properties
proved in [2,3], lead to strong restrictions: % <a < 1forEq.(2)and @ = % for Eq. (3).

The paper is organized as follows. In Section 2 we give the main results. Section 3 contains the description of the
quadrature methods we propose for Egs. (2) and (3). We show that both of them are stable and convergent and lead to
solve well-conditioned linear systems. The proofs of the main results are given in Section 4, while Appendix contains some

proofs that are more technical. Finally, in Section 5, we show the efficiency of our procedures by some numerical tests.
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2. Main results

We first give some preliminary definition and result. In the following € denotes a positive constant which may have
different values in different formulas. We will write € # C(a, b, . . .) to say that € is independent of the parametersa, b, . . ..
IfA, B > 0 are quantities depending on some parameters, we write A ~ B, if there exists a positive constant C independent
of the parameters of A and B, such that

B
— <A<GCB.
C

We denote by

k k : o : o
i (f, oo = 2°(f, t)yoo + inf — P)v” 1 + inf — P)v” _
o (s Do o (s Do panl 1 = P)v” % llcio1.—1+ak2e2) pant 1 = P)v” % llcp—aee 1

the kth ¢-modulus of continuity, where Q’qj is defined in (1) and Py, is the set of all polynomials of degree at most m, and by
En(f)pro = inf [|(f = Pn)v” [le
PmePm

the error of best approximation of a function f € C».c. The following inequality is well-known for k < m [5]:

1
Em(f)vpv” = @wg (fv E) ) e 7é @(m’f) (4)

VPO

2.1. Mapping properties of the operators D%~ and D* '~

The following theorems, that extend Theorem 3.1 in [3] and Theorem 3.3 in [2], allow to characterize the smoothness of
Dot,fotf’ Dfot,otf7 Da,lfaf and Dfu,lfaf.

Theorem 2.1. Let 0 < « < 1. If the parameters y, § satisfy

max {0 a—i-l < min a+3 1-«
[ - = < - )
2 4 4 2

4 2
(5)
max {0 a—i—] < § < min a+3 -«
7_7 - — < I 75 9
2 4 2 4 2

k
ww(f’t)v}/,o&é

then Vf € Cyy.uss such that [} .

dt < +o00 we have

1k
m @, (f7t) e
Em(D_a’af)Uo(er,é < @/ %dt
0

1 k(.0 aty.8
and Vf € Cyuty.s such that [; —2""dt < 400 we get

0 t

1k
m s (f,t) aty.s
Em(Da’iaf)vy,uM < G/ Mdt’ (7)
0

where C #£ C(m, f).

Theorem 2.2. Let 0 < « < 1 and assume that the parameters y, § satisfy

0 oc+ - a+1
max{0,——+ -t <y <——+ =
Y=7373

<

Lokt -
Then Vf € Cya+y,1-a+s such that [;" wdt < +o00 we have

1 k
m W, (f, t) a+y. 1—a+s
En(D*'7%f) s < e/ %dt
0
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K.t
Mdt < 400 we obtain

1
and Vf € C,y.s such that [;"

1k
m (f, t) )
Em(Dia’a71f)vot+y,l—a+r§ S G/ udt,

0 t
where C # C(m, f).

As a consequence of the above two theorems, we get the following two corollaries, respectively.

Corollary 2.1. Let 0 < o < 1and y, 8 satisfying (5). Then, for r > 0, D%~* : Z.(v**7%) — Z,(v¥**%) is a continuous and
invertible map and D=%% : Z,(v"**%) — Z,(v*T7-®) is its inverse. Moreover, the equivalences

1D* " f NIz, ooty ~ IIf llz, wortr-y (9)
and
||D7a'af||zr(u«!t+%5) ~ W llz, wroetsy (10)

hold. The constants in “~" are independent of f.

Corollary 2.2. Let 0 < o < 1and y, § satisfying (8). Then, for r > 0, the operators D~%*~1 : Z.(vV"%) — Z (v@F7-17+%)
and D% ¢ Z,(v*TV 1728y 5 7 (v7-%) are continuous linear maps. If f_llf(x)v“’*“‘l(x)dx = 0, D%~ s the inverse of
D~%*~1 and the following equivalences

—a,a—1
||D e f||Zr(v°‘+V-1_“+5) ~ “f”Zr(uV:‘S)

and

1=
|D* af”zr(u%ﬁ) ~ ||f||z,(va+y.1fa+6)

hold true. The constants in “~" are independent of f.

2.2. Mapping properties of the operators K% ~* and K% 1~¢

In Egs. (2) and (3) we consider compact perturbations of the following forms

1
(K> f)(x) = / k(x, y)f 1)v* ™ (n)dy
—1
and
1
@ = [ ke o,
—1

respectively. We assume that the kernel k(x, y) is smooth or can be written as
h(x,y) — h(x, x)
X—y '
The latter case, where k(x, y) can be weakly singular, has been considered in [4,6,7]. With the notations k(x, y) = ky(y) =
ky(x) and h(x, y) = hx(y), we state the following lemmas.

k(x,y) =

Lemma 2.1. Let 0 < @ < 1.If, for s > 0 and y, § satisfying (5), we have

sup v (x)||kyllz, < +00 and  sup 1kyll z, oy -ty < +00 (11)
lyl=1

Ix|<1

or
h(x,y) — h(x,x)

sup ||hxllz, < 400 whenk(x,y) = (12)
Ix|<1 X—=y

then the operator K% ~% : Z,(v*1?-%) — Z,(v¥**%) is compact for all 0 < r < s.

Lemma2.2. [et 0 < « < 1.If, for s > 0 and y, § satisfying (8), the kernel k satisfies
‘S‘ul)] V1T () |k llz, < o0 and |slupl lky ll 2, ety 1-atsy < +00 (13)
X|< yl<

or (12) then the operator K=%*~1: Z (v¥*%) — Z,(v*TV 17%+%) js compact for all0 < r < s.
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The above lemmas, where no restriction on the parameter « appears, provide the assumptions on k(x, y) and g(x)
under which Egs. (2) and (3) are unisolvent in the spaces Z. (v**"%) and Z, (v?-?), respectively. In fact, using the Fredholm
alternative theorem (see, for instance, [8]), by Corollaries 2.1 and 2.2 and Lemmas 2.1 and 2.2, we easily deduce the following
propositions.

Proposition 2.1. Assuming that the kernel k satisfies (11) or (12) with s > 0 and that Ker(D% % + K% ~%) = {0} in Z, (v**7>%)
withr < s, Eq. (2) admits a unique solution in Z, (v*+7-%) for every choice of the right-hand side g € Z,(v?-**%).

Proposition 2.2. If the kernel k satisfies (13) or (12) with s > 0 and Ker(D~®*~! 4+ K=%*~1) = {0} in Z.(v?'®) with
f_]] F)v~2*"1(x)dx = 0 and r < s, then the problem (3) is uniquely solvable in Z.(v"-®) for every choice of the right-hand side
g c Zr(UOH_y’]_a_M).

For example, the kernel k(x,y) = |x — y|*, u > 0, fulfills the assumptions (11) and (13) with s = u and the
kernel k(x,y) = d(x)w, where d is an analytic function, a is fixed in (1, 1) and . > 0, satisfies (12) with
h(x,y) =dx)|ly —a|* and s = .

Finally, we remark that in the assumptions (11)-(13), if r is an integer, the norms in the Zygmund spaces can be replaced
by the corresponding simpler norms in the Sobolev spaces.

3. Numerical methods

Bearing in mind the space Cu+y.5, for all F € Ce+y.s we denote by L% ~“F the Lagrange polynomial interpolating the
function F at the zeros t; < --- < t;, of pi;™* that is the m-th Jacobi polynomial of parameters o and —«. Moreover, we
denote by L_““F, F € C,y.«+s, the Lagrange polynomial based on the zeros x4, . .., Xy, of p,,*“.

One naturally uses the following representations:

L (F.0 = ) g OFv ) (6)
i=1

and
m
L (Fox) = Y o ““ () (Fu ) (x),
i=1
where
7 (x) 7 (x)
D) = ———, T =, i=1,...,m,
@ (X (L) @ () a3 ()
being I["* and [ “*(x), i = 1, ..., m, the fundamental Lagrange polynomials.

That being stated, with
m
fn®) =0 0, = L)1),
j=1

the unknown polynomial, we proceed to solve the equations
D™ + Ky~ Vfmn = &gn, m=1, (14)

where

gn(®) =L, %0 = Y ¢, " “(0bi, b= (" Pg)(x),

i=1
and

K™ f) () = L (K™ fon ) = > 7 )07 K ™ Fon) (%), (15)
i=1

with

1
Reaf)(x) = / L% (k. Y)fon (1) ().
-1
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Using well-known properties of the operator D*~* and standard procedures (see, for instance, [9, Chapter 9] and
[10, Lemma 1.15]), the finite dimensional equations (14) can be written in the form of linear systems as follows

m g,—a - . 1
voats iy, ) sin(e) k(xi,t)|ai=b;, i=1,...,m 16
v ( ’);v“*'%‘s(tj) | s (Xi_tj)-‘r ( iy j) Y i» ) ) ( )
or
m o,—a - .
; sin 1 h(x;, t;)) — h(x;, x; .
vy’“+5(Xi)Z : 5 @) + e §) = R l)i|aj:bi’ i=1....m (17)
e Lo (= t) Xi — t

when k(x, y) = 7“"”;:2("”‘).

Note that the systems (16) and (17) are well-defined, in fact, letting X, ; = c0S Ty ; and tjnj = c0SOpj,i,j = 1,...,m,
in [7] the authors proved that

. (6]
_.min |Tm4,i_9m,j| = —, (18)
ij=1,...m m
from which we can easily deduce that there exists a positive constant € # C(m, j, i) s.t.

py-ats (XA

v ()1 — x|

Now, we will show that, under suitable assumptions on the kernel k(x, y), the right-hand side g and the parameters
a, B, v, 8, the system (16) admits a unique solution, say a* = (a7, ..., a*m)T, and that the sequence

Fadm, fra0) =) ¢ @},
j=1

form — o0, converges in Z, (v*+7-%) to the solution f* of (2). Denoting by A, the matrix of the system (16) and by cond (A,)
its condition number in uniform norm, we establish the following theorem.

Theorem 3.1. Let 0 < o < 1and assume that y, 8 fulfill the conditions (5). If Ker(D* =% +K%~%) = {0} in Z. (v**7"%), k(x, y)
satisfies (11) and

g € Z,(w ), (19)

with 0 < r < s, then the system (16), for a sufficiently large m (say m > my), is unisolvent and

cond(A
72( m) (20)
m log®m
Moreover the following error estimate
logm
If —fnf“z,(vﬂw,é) =0 (F) (21)

holds true, where the constants in “©” are independent of m.
Analogous considerations can be done for system (17). In this case we state the following theorem.
Theorem 3.2. Let us assume that 0 < « < 1and y, 8 satisfy (5). If Ker(D*~% + K*~%) = {0} in Z,(v**""%) for r > 0 and,

with s > r, k and g fulfill (12) and (19), respectively, then the system (16), for a sufficiently large m (say m > mg), admits a
unique solution and the condition number of its matrix in uniform norm satisfies (20). Moreover the following error estimate

log? m
||f* —fﬁqkllzr(vwm) =0 ( ) (22)

ms—r
holds true, where the constants in “©"” are independent of m.
Now, we will briefly describe the numerical method we propose to solve the problem (3).

Recalling the spaces C,y.s and Ca+y,1-e+s, With the above introduced notations, let

m
Lr;a’a_l(F,X) — (pi_a’a_l(x)(FUy’s)(Ei)
i=1
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be the Lagrange polynomial of the function F € C,,.s based on the zeros t; < -+ < & of pnj"""‘*], where (pi_“’”_l(x) =
’i—tx,a—‘l(x) .

W, l:],...,m.
For functions F belonging to C,u-+y,1-«+s We introduce the polynomial
m—1
L0 = 3 g T 0o Fo™ 717 Ry,
i=1
o, 1—a
where X; < -+ < X, are the zeros of pii' '] I and ¢}" 1=y = W'Miaix;(x), 1,....m—1
Thus, with
fn(0) = Z SN 0w, g = 07 ) (@),
we solve the finite dimensional equations
D) () + K" ) (%) = g1 (0,
1 . m>1, (23)
/ fn )™ (0)dx = 0,
-1
where
g1 (0 =L (g, %) = Zw” @by, b= (0T ) (%),
and
aot ]fm (X) — Lot] a(K—aa 1fmyx)
m—1 B
— §01a 1— a(X)(Ua+y’1_a+51<,;a'a_]fm)()?i),
i=1
with
_ 1
(K ) (%) =/ L (ks Y )0~ () dy.
-1
The finite dimensional equations (23) are equivalent to the linear systems
o ' Tsin(ar) 1
Pty lmatd iz _ + kG, 8)|a=b, i=1,...,m—1,
(1); N0 [ G THED g =b
v (24)
m —o,u
A
—a;i =0
; A (G)
or
a—1 - - - -
pir - g Z sm(om) ) 1 N h(x;, ) — f_l(Xi,Xi) G =b. i=1 m—1
= W(r) & — %) Xi— 1 T o ’
o (25)
m o,
J
— 0 = 0,

when k(x, y) = w Using the same argument that we used for the systems (16) and (17), we deduce that (24) and

(25) are well-defined, too.
We state the following theorem.

Theorem 3.3. Let 0 < « < 1and assume that y, 8 fulfill the conditions (8). If Ker(D™®*~1 4+ K=%*~1) = {0} in Z, (v"®), with

f_]lf(x)v‘“""‘l(x)dx =0andr > 0,and, for 0 < r < s, k(x, y) satisfies (13) or (12) and

ge ZS(UCHﬂ/,lfokHS)7
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then, for a sufficiently large m (say m > my), the system (24) is unisolvent and for the condition number in uniform norm of its
matrix A, we have

cond(Ap)

> < 400. (26)
m log®m

Moreover, the solution f of (23) converges to the solution f* of (3) and if k(x, y) satisfies (13) we have

" logm
1 =Sl = 0 (27, 0
while if k(x, y) satisfies (12) we get
R log? m
IfF* = fullz @rsy = O ) (28)

Here the constants in “©” are independent of m.

4. Proofs

The complete proofs of Theorems 2.1 and 2.2 and Corollaries 2.1 and 2.2 can be found in [3,2], apart from some little
technical changes. Here we limit ourselves to give the main steps of the proofs of Theorem 2.1 and Corollary 2.1, omitting
the details.

We first introduce the de la Vallée Poussin sum

2m
VET (o0 =Y e (p (), (29)
j=0
where
1 ifj<m
;o= 2 1 —j
Wi { m+ J ifj > m (30)
m+1
and
1
() = / FOPE (%)v”° (0)dx (31)
-1

are the coefficients of the mth partial Fourier sum of a function f. Obviously V2’ f € Py,_; and if f € Py, then V°f = f.
Now, assuming that 0 < o < 1and the parameters y and § satisfy (5), using [11, Theorem 2.2] (see also [2, Theorem 2.1]),
we deduce

[ Ve () oo < €I f e, Vf € Cprass, (32)
and

72V P)lloe < @IV flloo,  ¥F € Cuatrs,
where C # C(m, f). Moreover, under the previous assumptions on the parameters «, y, § and for r > 0, we get

C;x,—a(D—ol.otf) — Cj_a’a(f), Vf e Zr(Uy’aH), (33)
and

GO = ¢, Y € Zw ), (34)

In order to prove (7), since (see [3, Proposition 3.1])

llm Em(D_u’af)Uy,aH»é = 0,
m

by (32), we get
Eom(D*™f) ypass < [[[D*7f — V(D" A0 ||

o0
< 3 IIVEEE ) — VS (D)
i=0

2'm
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Now, setting N = 2'm, by (29), (31) and (34), we deduce the following integral representation of vy (D™ f):

1
Ve o0 = [ Her o oy,
-1
where
2N
Hy@.y) = Y wipl ™ )p;““ (),
j=0
with j,j =0, ..., 2N, defined in (30). Then, denoting by Py € Py the polynomial of best approximation of f € Cya+y,s and
applying the Remez-type inequality (see [5])
p,0 p,0
1Qv"7llp = IRVl 1y g 1 ey VQEBm 1<p < oo, m> Ve,
with p = oo, for the generic term of the above series we have
IV (D 72F) = Vi (D" ) 10"l
= IV = B) = W 0% = Pl

<Ex(errs | max ") / W)~ i 0
X€[71+N%’17N£j|
Finally, since (see [3, Lemma 4.4])
]_7
max v ‘”‘S(X)f IHSN(x, y) = Hyx, v (y)dy < e,
xe[—H—N%,]—— 2

where € # C(N), by (4) we get
1
Eom(D*™f) praats < @Zszm(f)va+y5 <@Za) < S )
ety

W K, ) yatrs
,\,@/ ‘Piwdt
0 t

i.e., (7). The proof of (6) is similar.
Concerning Corollary 2.1, we first prove the invertibility of D% ~* and that its two-sided inverse is D~**. By (32), (29),
(34) and (33), we have

vy,a+5 (X) (Da.fana,af)(X) — hgln v)/,ot+6 (X)Vn:a,a (Da.fanoc,otf’ X)

2m
= mv" 0 Y i 0D ) (0
j=0

= hmv”“(X)Zu; (DT f)p; " (%)

j=0

= lim v () Zu] ~(Fp ()

Jj=0

= lim v” P (V% (f, x) = v P (0)f (%),
m

then D~** is the right-inverse of D*~%. Analogously it is possible to prove that D~*“ is also the left-inverse of D%~
Moreover, we note that by (4) and [5]

1 C -
2, (f, a) . =K 20(1 + ) () oo,
ve i=
where C # C(f, m), it is possible to deduce that
Iz wroy ~ 0”7 Moo + SVU(IJJ(1 +D)'Ei(f)voo, (35)
i>

where the constants in “~” are independent of f.
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Therefore, since, applying [ 12, Theorem 3.1] (with w; = v**?-% and w, = v¥"**%), we get

1 C()Z;(f, t)va+y,6 dt

o7 D o :

IA

ClF o + /
0

e”f”zr(uawﬁ)

IA

and, using (7), we obtain

. v —a 1+i\"
sup(1 4 )" Ei(D* ™*f) yyars < ClIf Il patr.8) SUP <—)
i>0 i>0 1

A

IA

ClIf Iz, wertr-),»

by (35), we deduce

||Da’7af||zr(w-a+6) < Cllfllz wa+r.3y, (36)

where C # C(f). In an analogous way, it is also possible to deduce that

ID™**fllz, we+rsy < Clf iz ratsy, € # C(f). (37)
Now, as a consequence of the invertibility and of the bounds (36)-(37), we get

If llz, ety = ||D7a'aDa’7af||zr(un+y«3) = e||Da'7af||z,(vVﬂ+5)
and

Ifllz, or-etey = ||Da’_aD_a'af||zr(v%a+8) =< @”D_a’af”z,(vaw.é)

and then the equivalences (9)-(10) follow.

Proof of Lemma 2.1. Assume that the kernel k satisfies (11).

It is easy to verify that the operator K% ¢ is continuous in the couple of spaces (Z, (v**7-%), Z.(v?-**%)). Moreover, if we
consider the sequence of the finite dimensional operators {K; =%} defined in (15), we can complete the proof by proving
that

logm

ms—r

”Ka,—oz — Kg,—a ||Zr(v°‘+V~‘3)—>Zr(vV~°‘+5) <e , C ;é C(m). (38)

The proof of (38) can be found in the Appendix.
In the case where the kernel k satisfies (12), if we prove that

”U)’v“""sKa’_af”oo = c”f”Zr(v"‘JrV*‘s) >
and

logm

ms

En(K“ ™) yrars < Clfllz wotr.s

the boundedness of K~ : Z, (v¥ %) — Z,(v**7-%) follows by (35). The proofs of the above bounds imply some technical
details that we will give in the Appendix.
Finally, using (35) together with (40), we obtain

logm

Em(Ka’_af)Zr(vy,aJra) < Csup M En(K* ™ “f) yats < Cllf llz, yertr-5) T
m

and, taking into account [13, p. 44], we deduce the compactness of the operator K%~ : Z, (v**7%) — Z, (vV**®) forr <s
also when the kernel k satisfies (12). O

Proof of Lemma 2.2. The proof is similar to the one of Lemma 2.1. O

Proof of Theorem 3.1. Taking into account that

(D" K)o = (K™ = Ki ™) + (D" 4 K™V,
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we obtain

— —ay—1
Wfimllz otr.sy < DY + KT 7z orats)y sz, v ats

X [NKS™ = Ko™l z, r-ossy + 1D + Ko™ fonll g, vt | -
Afterwards, using (38), we get
Cllfmllz, wotv.sy < ND*™ + Ky ™ Vnllz, v ectsy,

where, fors > r,

logm
e < (D%~ 4 Kk*y~1) ! @( d )

Zr (Y e+8) s 7, (vaty 8y T T

Consequently, denoting by imLﬁ“n’ﬂ the range of the operator L‘fn’ﬂ , we deduce that D* ™% 4+ K™% : im Ly, — im L %% is
invertible and, for a sufficiently large m (say m > my), (D*~* 4+ K3 ~*)f = gn has a unique solution f, € im L}, ™.
Now we prove (20). By (16) and recalling that [14, p. 353, Eq. 15.3.10]

AT~ AT, AL = G — b, (41)

we get

m )\‘?l,—ol m )\’q,—a
lAnllss < € max v"**(x) — T+ — L |k(xi, 1))
T st ' j:zlv”“(tj)mf—rn ;vawﬁ(rj) "
m Af m
< € max v | Dol T G) + ) AT T ) kG ) |-
i=1,...,m — |Xi — i i
Jj=1 Jj=1

Moreover, taking into account that, by virtue of (18), we have (see, for instance, [15, (5.16)])

m

Ag

wogt @ = e e logm, (42)
i

j=1
we obtain

1

Al < Clogm + (/

v*y**“*ﬁ(xmx) sup v " (X) [y [l o
-1

[x|<1
from which we deduce
lAmlleo < Clogm, (43)

using the assumptions on k and the parameters y, §. Now we estimate ||A;l |lso- By virtue of the equivalence of the system
(16) with the equation (D*~% 4+ K% ~%)fy = gm, for every 6 = (61, ..., 6) there exists a unique £ = (&, ..., &n) such
that A,'0 = £ if and only if (D%~ + K% ~%)~'4(x) = £ (x), where

0 =) o 00, 6= v ) )
j=1
and
Eo =) ¢ wg, &= ET)®).
j=1

Then, for all 9, we get

AR Ol = &l < 1EV* Y00 = (D™ + K& ™) 71009
D~ + K ™)k e

v

IA

—a,a
s Coriys 10105 ILn®lIC ) ois =y
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Then, recalling that, for 0 < o < 1and y, § satisfying (5), we have

07 (L) lloo < CUogm)[If v llog,  Vf € Cppass, (44)
where C # C(m, f), we obtain

Az oo < € logm. (45)
Now, combining (43) with (45), (20) follows.
It remains to prove (21). To this end we use the following identity
(f =) = O + K" (g — gn) — K™ = K ™*)fim] -
Now, by (35), (44) and the assumptions on g, we get

lo g
g — &mllz v atdy = @ ||g||z°°(uv a+sy.

Finally, using (38), (21) follows. O

Proof of Theorem 3.2. The proof is similar to the one of Theorem 3.1, taking into account that

o,—a o, —a log -
K™ = K™ fmllzy ratsy < Cllfmllz wors) — = 0

where C # C(m, fy,). The proof of (46) is given in the Appendlx. O

Proof of Theorem 3.3. The proof runs as the one of Theorem 3.1. O

5. Numerical examples

In this section we show by some examples that our theoretical results are confirmed by the numerical tests.

In particular, according to (20) and (26), the systems (16), (17), (24) and (24) are well-conditioned except for a logarithmic
factor and, by virtue of the estimates (21)—(22) and (27)-(28), the smoother are the kernels and the right-hand sides and
the higher is the convergence order of the weighted approximation errors.

We point out that the singular integral equations considered in the examples are of the form (2) or (3) with0 < « < 1.
We recall that, by contrast, the numerical methods proposed in [4] impose strong restrictions on the choice of «.

In all the tables that follow we show the values, in two different points, of the weighed approximate solutions uf;,, where
u =% if y =0andu = v"? if x = 1, for increasing values of m. When we do not know the exact solution, for each m
we bolded the digits that are exact with respect to ufs, withm > m.

Example 5.1. We first consider the equation

1237 log(x + 2)

31 1 3 AN
(p f)(X)+2f log<x+2)yf(y)<l+y> dy=1-—

of index 0 whose exact solution is the function f (x) = 1.
Since @ = 5 , taking into account (5), we choose y = § = 0. In this case both the kernel and the right hand side are very

smooth and, accordmg to the estimate (21), the convergence of the weighted approximate solutions v i 0. is very fast: it is
sufficient to take m = 4 to get approximations with 15 exact decimal digits. The condition numbers in uniform norm of the
matrices Ay, of the solved linear systems (16) are less than 8.

Example 5.2. Now we take the integral equation

7 0l
y—31F -3
=%

It has index 0 and its exact solution is unknown.

11 1 1-— 5
(Di"§f> (x)+§/. cos(x) f(y)(1+§) dy = €*sin(x).

y-31Z =112
—512 —|x—5 .
Y7217 777517 s not much

By virtue of (5), we take y = § = being « = :. In this case the kernel k(x, y) = cos(x)

20'
smooth, in fact, as announced at the end of Section 2, it satisfies (12) with h(x,y) = cos(x)|y — %|% and s = % Then,
according to the estimate (22), we need to increase m to get exact decimal digits. In particular, as shown in Table 1, at the
points x = 0.1and x = 0.4 with m = 500 we reach at least 11 significant digits. The matrices A, of the solved linear systems
(17) have condition numbers less than 30.
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Table 1

Example 5.2. Weighted approximate solutions (v %0 %fm) (X).

m o (vEEL) 0D (v if) ©4)

10 0.8909744734332579 1.223942090159346

50 0.8910113412791550 1.223946987916056
100 0.8910112522979449 1.223947380327240
200 0.8910112508804216 1.223947378443911
400 0.8910112509049636 1.223947378978747
500 0.8910112508943384 1.223947378966167
600 0.8910112508957724 1.223947378966294

Table 2

Example 5.3. Weighted approximate solutions (v%'ofm) (x).

129

m o (vE%)©5) (v%) (-0.3)

10 0.9407668784351797 0.2960189055794727

20 0.9407668955836489 0.2960188852484730

30 0.9407668955836422 0.2960188852484725
Table 3

Example 5.4. Weighted approximate solutions (vo' %fm) (x).

mo ()02 (+*4) (-0.5)

10 —0.4644119973638529 —0.7513486578874185
50 —0.4644118810678438 —0.7513490891169037
100  —0.4644118809846486 —0.7513490894543699
300 —0.4644118809806697 —0.7513490894696305
500 —0.4644118809807871 —0.7513490894698759
600 —0.4644118809809778 —0.7513490894695284

Example 5.3. Let us consider the following equation

L 1 ! 12
(0373 o+ / (x+y) sin(x + y)f v~ ()dy = cos(x)
-1

of index x = 1 whose exact solution is unknown.

Here o = % and, taking into account (8), we take y = % and § = 0. Since both the kernel and the right-hand side are
very smooth, according to the estimate (27), we need to solve a linear system of order only 20 to get approximations of the
solution with 14 exact decimal digit (see Table 2). The condition numbers of the matrices of the solved linear systems (24)
are less than 13.

Example 5.4. Finally, we take the equation

1 cos(x —y)x —y|2

31 31 o
(D 4 “f)(><)+/_1 (y—x)(3+x+y3)4f(y)v 174 (y)dy = sin(1 + x).

Its index is x = 1 and we do not know its exact solution.
Since @ = %, by (8), we take y = 0 and § = % As you can see in Table 3, taking m = 500 we get approximations

of the weighted solution v®3f at the points x = 0.2 and x = —0.5 with 12 exact decimal digits. This agrees with the
9 9
: ; ; : _ cos(x—y)lx—y|2 ; _ cos(x—y)x—y|2 _9
theoretical expectations, in fact, smje k(x,y) = TR Gy fulfills (12) with h(x, y) = Gy ands = 3, by (28),
the convergence order in C  ; is log m,
v m2

Note that k(x, y) satisfies also (13) with s = % but, the numerical results in Table 3 show that the estimate (28) is more
accurate than (27).

Also in this case the matrices of the linear systems (25) that we solve have small condition numbers, in fact, they are less
than 18.
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Appendix

Proof of (38). With P,;(x, y) a polynomial of degree m with respect to both the variables separately, we have
1

(K*™ = K™ )f (x) = / [k(x, ) — Pm(x, NI 0"~ )dy

1
1
— L (/ L™ ([ky — Pr(x, )1, y) (Fv™ ") ()dy, X) )
1
being
: 1
[ty = e ([ 57 et G2 0nn) <o
1 -1
Then, with R(x, ) = k(x, ) — Pn(X, y), Pmx(¥) = Pn(x,y) and R,(¥) = R(x, ), we get

7 PR KT = K™ Of (] <

1
07 () / R(x,y)f(y)v"‘“(y)dy’
—1

+

1

Ve ()L </ Ly~ (Re, y) (Fv* ™) (»)dy, X>
-1

=:A+B.

We have

1
A < 0 v P X)) | R Y)Y T P (y)dy

-1

1
< IF0™ 7 oo sUp VP 01k — Prallog f v () dy

x| =<1 1
and, under the assumptions (5), we get

A < ClIf ™™ |loo sup v () | ky — Pl co-
[x|<1

Assuming the infimum on Py, , and taking into account that by [5]

Em (f) wro < C

w2k , D)oo
/ (p(fft)dt, C #Ce(m,f),

0

forall f € Z;(v”?) with s > 0, we have

C
En(f)opo < %Hf”zs(vw), e #c(f,m), (A1)
we obtain

(¢
A< gllfv““"slloo sup v () [[kellz, -

[x|=<1

Now we estimate B. Using (44) and [ 16, Theorem 1], we get

B < C(logm) sup v" % (x)
Ix|<1

1
/ L™ R y) (fv“’_“)(y)dJ/‘
-1

IA

1
C(logm)[Ifv* ™ [log sup v () | ILET (Re, ) [0~ " )y
-1

x| =1

e(logm)|If vl |S\up V7 X) k= Pl co-
x|<1

IA
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Moreover, taking the infimum on Py, x and using (A.1), we have

logm

B<c ?Ilfv“”‘glloo sup v+ () [yl

[x|=<1
Summing up, under the assumption on k, we conclude that

logm
ms

S (e~ -
o7 F KT = K™ lloo < CIf liz, o0y

Finally, since taking into account the equivalence (35) we get
(K™ = Ko™ )f NIz, or-aty < Csupm’[[07“F (K™ — K2 ™) || oo,
m

the thesis follows. O
Proof of (39). We write

x 13X —
UV,(1+§(X)(I<0(,—O‘f)(X) = Uy'a+6(x) :/ 1+ +/ }h(x’y)h(X’X)(fva,_a)(Y)dy
\ I

x—y|> 7% y—X
=hL+h. (A2)
We have
xf% 1 vfy,fafé(y)
Ihl < Clfv*™ [l sup [Ihylloev” (%) / +/ —dy
lx|<1 -1 x+ 14 [y — x|
= CIU*7 o sup llloolly + 17)- (A3)
x| <1
Concerning I’, since1 —x < 1—yand |y — x| > 1%, we have
I <eq +x)"+“—1/ A+y)™?<e. (A4)
—1

In order to estimate I{ we consider two different cases: x > 1 andx < 1. Forx > 1 andx + 4* <y < 1, we have
1+x<1+yandy —x ~ 1—x, then it is easy to deduce

1

pzea-x [ a-yrase
x4+3:7%

Forx < 1, we write

1—14;" 1 vfy,fafﬁ
I = ev"*(x) + de
w14 -1 y—x

=: A+ B.

Since forx + 17* <y < 1— *onehas1—x~ 1—yandy — x > 13*, under the assumption (5), we get

1
A< e+ / (1—y)“dy < e,

x+%

while,sinceforl—% <y<1lonehasy—x~1—xand1+x < 1+ y, we obtain

1
B<cd —x)Hf (1—y)7dy < c.
Then
I<e (A5)

forx < 1, too.
Now, combining (A.3) with (A.4)-(A.5), we deduce

Ih] < ClIfv™™* oo sup Ilhylco- (A6)

x| <1
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It remains to estimate I,. We will distinguish between the two cases x < % and x > % Forx < % wehave 1 +x ~ 14 y.
Then

“E hexy) — he
aty 8y g veatd h&y) = hx Xy ams
bl < IF 7 v (")/xly e PR
5 (X, y) — hx, %)
< Clf vl f PN 7D gy,
x— 1% y—x

Forx >  we write

3 3 14+x
x—7(1=x) x+7(1-x) X—5 h X, —h X, X
N T IS Y | ’( e
xf% xf%(lfx) %(lfx) y—X
= |[fv T8 L, + 1) 4+ 15} (A7)
Concerning I and I}/, it is easy to verify that 1+ x ~ 1+ yand [x — y| > %(] — x), then
xfi(lfx) 1
1y < el sup =07 [0 [ by
Ix<1 -1 30—
< CIFV* 7o sup [Ihlloc-
|x|<1
With regard to I/, we have 1 &= x ~ 1 & y and then
309 | h(x, y) — h(x, x
< el b y) = R 9 g, (A8)
xf%(lfx) y—X
Combining (A.7)-(A.8), we deduce
3 h(x, y) —
,y) — hx, x)
L] < ClFY*"|log { sup Ayl +/ —|dy
<1 x— 1 y—x
and, proceeding as in the proof of Lemma 5.2 in [2], we get
1
N g (hy, 1)
L] < Clfv* 7o {sup Ihelloo + sup / udu}. (A9)
IxI=<1 Ixl<1Jo u

Thus, substituting (A.6) and (A.9) into (A.2) and using the assumption (11), we get (39). O

Proof of (40). With py(x, y) a polynomial of degree N = LmTHJ with respect to both the variables x and y separately, we
set q(x,y) = w. The latter is a polynomial of degree N — 1 with respect to the variable y and of degree m with
respect to the variable x and

1
Pu(x) = f 406 Y)F )V )y
1

is a polynomial of degree m. Then, we have

1
En(K*™f) pyats < sup vV"“‘S(X)/ [k(x,y) — q(x, y)](fv“"“)(y)dy‘
-1

[x|<1

= sup

[x|=<1

o7 (x) / ' @) = v x@)] = [he(X) = pux(X)
-1 y—Xx

](fv“"“)(y)dy‘ (A.10)

and, proceeding as done for (A.2), we deduce

! w(p(hx — DNxs t)oo dt}
—t .

En(K* ) yrass < ClFv™ [sup e = Pl -+ sup /
0

Ix|<1 x|<1
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Taking py « as the polynomial of best approximation of h, for every fixed x and recalling [17, Lemma 2.1]

1 1
/m 0pf —Po oo, _ @fm ol (f, Woo
0 u — Jo u

and (A.1), we get (40) by virtue of the assumption (12). O

Proof of (46). We set q(x,y) = ’W("’y;%z'“(x”‘), where py (%, y) is a polynomial of degree N = L%J with respect to both the
variables x and y separately. So, q(x, y) is a polynomial of degree N — 1 with respect to the variable y and of degree m — 1
with respect to the variable x. With R(x, y) = h(x,y) — pn(x, y), we have

' R(x,y) — R(x, -
(K = K ™) () = / wﬁmv“ “)¥)dy
-1 -

1
-1 T
being

1 _ 1 D) —
/ pn(X,y) — pn (X, X) (™) (y)dy = L= ( / o (pN(x, ) — PN (X, X),y> Eat®™ ) )y, X) '
-1

y—X -1 X
Then

VIR = K™ fn(0)] < —

1 —

T ( f o <R<>R<> ,y) (™) )y, )
-1 T

= A + B. (A.]])

Proceeding as done for the proof of (A.10), we obtain

b () f —R(X Y =R (fmv“*—“)(wdy‘

+

o gm
A < Cllfnv*™ ™l sup lIhllz = = (A.12)

IxI=<
While, using the definition of L, **, we have

/1 L;xn,fa (R(st ) - R(thxk) ’y> (fmva,a)(y)dy‘

B < C(logm) max V70 (%)
k= 1 - — Xk

.....

being, by (44),

max v?*+ (x) Z

Ix|<1

L @)

—aa < logm.
ety = M < log

Cuy.oHrB _’va,a+6

Therefore, applying the Gaussian rule and recalling (41) and (42), we get

™ |R(Xk, t;) — R(Xy, X
B < C(logm) max vV’“”(xk)Z' e
k=1,...m ‘= [t — x|
m
< edogm) [[fnv" 7 oo max vw“(xk)quan T |v—V ()
..... —
< e(log? m) [[fnv**"* o sup llhy = Py xlloo-

[x|=1

Now, taking py « as the polynomial of best approximation of the function hy for every fixed x and using the assumption (12)
and (A.1), we obtain

B < Clfuv ™ lloc sup iy I, 22 (A.13)
|x|< m’
Summing up, substituting (A.12) and (A.13) into (A.11), we get
2

o o, —a o, —a o og-m
7P EKET — K& fulloo < Cllfmv™" " [loo sup ||y ||zs—

Ix|=1

Finally, using the equivalence (35), the thesis follows. O
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