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a b s t r a c t

When modelling the cardiovascular system, the effect of the vessel wall on the blood flow
has great relevance. Arterial vessels are complex living tissues and three-dimensional spe-
cific models have been proposed to represent their behaviour. The numerical simulation of
the 3D–3D Fluid–Structure Interaction (FSI) coupled problem has high computational costs
in terms of required time and memory storage. Even if many possible solutions have been
explored to speed up the resolution of such problem, we are far from having a 3D–3D FSI
model that can be solved quickly.

In 3D–3D FSI models two of the main sources of complexity are represented by the do-
main motion and the coupling between the fluid and the structural part. Nevertheless, in
many cases,we are interested in the blood flowdynamics in compliant vessels, whereas the
displacement of the domain is small and the structure dynamics is less relevant. In these
situations, techniques to reduce the complexity of the problem can be used. One consists in
using transpiration conditions for the fluid model as surrogate for the wall displacement,
thus allowing problem’s solution on a fixed domain. Another strategy consists inmodelling
the arterial wall as a thin membrane under specific assumptions (Figueroa et al., 2006,
Nobile and Vergara, 2008) instead of using a more realistic (but more computationally in-
tensive) 3D elastodynamic model. Using this strategy the dynamics of the vessel motion
is embedded in the equation for the blood flow. Combining the transpiration conditions
with the membrane model assumption, we obtain an attractive formulation, in fact, in-
stead of solving two different models on two moving physical domains, we solve only a
Navier–Stokes system in a fixed fluid domain where the structure model is integrated as a
generalized Robin condition. In this paper, we present a general formulation in the bound-
ary conditions which is independent of the time discretization scheme choice and on the
stress–strain constitutive relation adopted for the vessel wall structure.

Our aim is, first, to write a formulation of a reduced order model with zero order tran-
spiration conditions for a generic time discretization scheme, then to compare a 3D–3D FSI
model and a reduced FSI one in two realistic patient-specific cases: a femoropopliteal by-
pass and an aorta. In particular, we are interested in comparing the wall shear stresses, in
fact this quantity can be used as a risk factor for some pathologies such as atherosclerosis
or thrombogenesis. More in general we want to assess the accuracy and the computational
convenience to use simpler formulations based on reduced order models. In particular, we
show that, in the case of small displacements, using a 3D–3D FSI linear elastic model or the
correspondent reduced order one yields many similar results.
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1. Introduction

Cardiovascular diseases, such as atherosclerosis, thrombogenesis and heart failure, have a great relevance in the current
biomedical research since they are responsible for more than a half mortality in the developed countries [1,2]. Medical doc-
tors need to better understand the biophysical processes in order to identify the risk factors, to predict the possible scenarios,
and, hopefully, to find suitable therapies.

The cardiovascular system is composed by a network of vessels in which blood flows under the stimuli of a periodic
pump, the heart. Arterial and vein vessels are not just inert pipes that convey the blood to all the organs of the body, they
are complex living tissues that interact with the flow and adapt depending on several factors. Another source of complexity
in the cardiovascular system is the variability of geometries and physical properties of vessels in the human body.

We can observe a great variability of these features during the heart cycle and, moreover, among different individuals,
depending on the age, life-quality or genetics. In fact, the complexity of the cardiovascular system makes impossible an a
priori and generic prediction of the physical behaviour and risk factors and highlights the importance of finding a way to
simulate these phenomena using a subject-specific approach.

Blood flow in large vessels can be considered as an incompressible fluid [2,1]. Even if at low shear rate the blood shows
a non-Newtonian behaviour (for example particles tend to form aggregates), in large arteries with diameter larger than
0.3 cm, it is widely accepted to assume a Newtonian behaviour. Since we deal with large vessels such as the aorta (about
3 cm diameter) or femoral arteries (about 0.5 cm diameter), this approximation is justified [2].

When modelling the cardiovascular system we also have to account for the coupling between the solid and the fluid
part. The interactions among blood, vessels, and organs can occur at different levels, such as chemical reactions, mechan-
otransduction of signals or drug delivery. Experiments show that many risk factors are strictly linked to the mechanical
stimuli such as stress exchange between blood flow and vessel wall. The research in numerical analysis has therefore pro-
duced a great effort in the modelling of the cardiovascular dynamics. Depending on the specific application a well-suited
formulation of the equations can be written. For example, if we are interested to averaged macroscopic quantities such as
mean flows or pressures in arteries, we can rely on one-dimensional networks as the ones proposed in [3,4]. If the goal
is the distribution of the stresses inside the thickness of the wall, three-dimensional specific models are required for the
structure. Several structural models for the arterial wall have been proposed [1] but there is still no evidence on which con-
stitutive relation is better suited for the vessel wall mechanics. The numerical simulation of the coupled problem has high
computational costs in terms of required time andmemory.Many possible solutions have been explored to speed up the res-
olution of such problem [5–11], nevertheless, we are far from having a 3D–3D fluid–structure interaction model that can be
solved quickly.

Most applications are focused on modelling the effect of the structure on the blood motion or on the exchange of
mechanical stresses, as well as the localization of high shear stresses or high vorticity zones. Those factors are linked to
pathologies like atherosclerosis or thrombogenesis. In numerous situations, reduced order structural models can be used,
where the effect of the wall is reduced to a thin membrane under specific assumptions.

A Koiter linear elastic shellmodel for the vesselwall is used for example in [12–14], where the displacement is considered
non zero only in the normal direction and the model is solved on a cylindrical geometry. In particular in [13–15], suitable
explicit and kinematically coupling algorithms are used to solve the equations, the same type of algorithm is used in [16],
where a Koiter viscoelastic shell model on a cylindrical geometry with longitudinal displacement is considered. Explicit and
kinematically coupled schemes are analyzed in [17]. Implicit coupling algorithms are instead used in [12,18,19] where the
dynamics of the vessel motion is directly embedded in the equation for the blood flow. In particular, in [18,19], also realistic
applications are discussed but no direct comparison with a 3D–3D FSI model is developed. The main advantage is that a
simpler formulation is generated, where the dynamics of vessel motion is directly embedded in the equation for the blood
flow. Moreover, instead of solving two different models on different computational domains (fluid and solid, respectively),
we solve only a Navier–Stokes system in the fluid domain. This formulation is also suitable to be used in other numerical
contexts such as optimization and control analysis [20–23].

Usually FSI problems are solved on a specific portion of a vessel. The region of interest is for example the proximity of an
anastomosis, a bifurcation, or a tract of the aorta, either in physiological or pathological conditions. The aim of this work is to
compare the 3D–3D FSI model with a reduced order one in two different real cases: blood flow in a femoropopliteal bypass
and blood flow in the aorta in healthy conditions. In the first case we analyse a segment of the bypass near to the anasto-
mosis between the graft and the femoral artery. We are interested in studying the distribution of the wall shear stress after
the anastomosis in order to see if they recover the physiological range. We then consider the geometry of an aorta (from
the ascending aorta to the abdominal aorta with the principal branches) featuring physiological conditions. In the case of
the femoropopliteal bypass the wall displacement is moderate and we expect that the reduced order model is closed to the
3D–3D FSI one; while in the case of the aorta the wall displacement is much larger and we would like to measure how far
the reduced model stands from the 3D–3D FSI one. Our comparison will focus on output of interest, in particular, the wall
shear stress at the fluid–structure interface.

In the following sections we present the standard equations of an FSI model and the application of transpiration condi-
tions [6] which will allow us to make our computations on a steady domain with a fixed mesh. In Section 2 we present two
reduced structural models: an inertial–algebraic model [12] and a membrane model that, coupled with the fluid equations,
arises in the so called coupled momentummethod [18]. In Section 3 we report the results on three cases: a simple cylinder,
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a femoropopliteal bypass, and an aorta. In the first case we compare the results with those in [18]. In the second and the
third case we make a comparison between a reduced order FSI model and a truly 3D–3D FSI one.

2. 3D–3D fluid–structure interaction model

2.1. Fluid and structure equations

The domain under consideration is composed of a fluid and a compliant structure (see Fig. 1). The reference configuration
and all the variables defined on this domain are addressed with a hat·. The model is described by Navier–Stokes equations
for the fluid, that are coupled with a linear elastic St. Venant–Kirchhoff model for the structure. The physical unknowns of
the system are the fluid velocity u and the pressure p, expressed in the current configuration, and the solid displacementds,
usually computed on the reference configuration.

Some information at the boundaries are required to solve the problems and compute the unknowns of the simulations. At
the inlet and outlet boundaries, data about mean quantities, such as pressure or flows of the vessel, are given. These quanti-
ties as well as the fluid equations are referred to an Eulerian frame of reference, in fact they are measured on a specific fixed
section of the space. In contrast, the structuremodel is usuallywritten in a Lagrangian formulation, which consists in follow-
ing thematerial particle during the evolution of time. Thus, it can be useful to treat the interface between fluid and solidwith
a material frame of reference. To deal with this hybrid treatment of the boundary conditions, an Arbitrary Lagrangian Eule-
rian (ALE) formulation for the fluid equations has been proposed and analyzed [24,25]. The ALE formulation of the coupled
problem yields an artificial variable, the fluid domain displacementdf , which helps ensuring that the fluid domain follows
thematerial particles of the vessel wall at the interfaceΓ . Bymeans ofdf , it is possible to introduce the Arbitrary Lagrangian
Eulerian (ALE) map At that, at each time t , maps the reference fluid domain Ωf in the current computational domain Ωf (t):

At : Ω → Ωf (t) (1)x → At(x) =x +df (x).
Letw be the time derivative of the ALE map:

w(At(x)) =
∂At

∂t

x =
∂df

∂t

x. (2)

The Navier–Stokes equations for the fluid motion of the blood written in the ALE formulation read as follows:

ρf
∂u
∂t


x̂
− ∇x · σf (u, p) + ρf ((u − w) · ∇x)u = ff in Ωf (t) × (0, T ),

∇x · u = 0 in Ωf (t) × (0, T ),

u|t=0 = u0 in Ωf (0),

u = g in Γ
f
D × (0, T ),

σf n = h in Γ
f
N × (0, T ),

(3)

where g,h and u0 are given functions, σf (u, p) is the Cauchy stress tensor

σf (u, p) = µ(∇xu + (∇xu)T ) − pI, (4)

and, referring to Fig. 1, Γ f
N ∪ Γ

f
D = Γin(t) ∪ Γout(t). This model has to be completed by suitable coupling conditions on the

interface Γ . Before introducing these conditions, we introduce the solid equations that govern the vessel motion. The vessel
tissue is a living multi-component organ with anisotropic, non-linear properties. We consider a linear isotropic St. Venant–
Kirchhoff model, other models for the vessel wall can be founded in [1]. The equations for the solid displacement written in
a Lagrangian framework read

ρs
∂2ds

∂t2
− ∇x · 5 =fs in Ωs × (0, T ),ds = 0 on Γ s

in ∪ Γ s
out × (0, T ),ds|t=0 =d0

s in Ωs,

∂ds

∂t


t=0

=dv
s in Ωs,

(5)

where ρs is the density of the vessel wall material and
5 = λ tr(ϵ) + 2µsϵ (6)

is the first Piola–Kirchhoff stress tensor, with ϵ =
(∇xds+(∇xds)T )

2 , and λ andµs are, respectively, the first and the second Lamé
coefficients defining the characteristic of the material. In the St. Venant–Kirchhoff model, those two coefficients are related
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Fig. 1. Geometrical configuration.

with the Young modulus E and the Poisson ν ratio as follows:

λ =
Eν

(1 − 2ν)(1 + ν)
and µs =

E
2(1 + ν)

. (7)

An equation for the fluid domain displacement is also required. This quantity can be computed in an arbitrary way and a
widely adopted method is to compute the displacementdf as an harmonic extension of the interface displacementds|Γ :

△df = 0 in Ωf ,df =ds on Γ ,df = 0 on Γ f
in ∪ Γ f

out.

(8)

At the discrete level, we need to ensure that the transformation of the domain due todf is admissible. For this reason, at each
time step, the measure of finite element tetrahedra should remain positive after having moved the fluid mesh according to
the displacementdf .

2.2. Coupling conditions

Suitable coupling conditions at the fluid–structure interface Γ close the system:

• kinematic condition: the continuity of the fluid and the solid particle velocity

∂ds

∂t
= u ◦ At on Γ ; (9)

• dynamic condition: the continuity of the normal stresses

Jf σf F−T
f n = 5n on Γ , (10)

wheren is the outward normal to the fluid reference domain, Ff is the deformation gradient computed as Ff = I + ∇xdf
and Jf its determinant;

• the geometry adherenceds =df on Γ (11)

expresses a condition which ensures that the fluid domain sticks to the structure.

This coupled FSI problem is discretized by 3D finite elements in space and a geometry-convective time discretization. The
fluid convective term is treated semi-implicitly and the domain geometry is recovered from the previous time step through
suitable extrapolations [26]. At each time step a single large linear system has to be solved. Suitable parallel preconditioners,
based on domain decomposition techniques, are employed to speed up the resolution of the linear system. More details can
be found in [27].

3. Reduced order fluid–structure interaction models

Under specific assumptions, it is possible to achieve a reduced formulation for the FSI problem. We focus on two
difficulties that arise when dealing with FSI problems and we introduce some hypotheses that allow us to retrieve a simpler
formulation. First, we focus on the complexity due to the moving domain, which, in the numerical resolution, requires the
update of the mesh and the re-computation of the matrices at each time step. Assuming that the wall displacement is small,
we linearized the domainmovement using transpiration conditions [6] andwewrite the equations on a fixed geometry. The
second source of complexity is the coupling between the fluid and the solid problem. Instead of adopting a 3D elastodynamic
model for the structural part, the vessel is modelled as a membrane and embedded as a boundary condition for the fluid
equation. The resulting model is in fact a Navier–Stokes problem on a steady domain with a generalized Robin boundary
condition on the interface Γ .
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In this section we formalize the reduced models that were introduced in [12,18]. The goal is to investigate, in specific
clinical cases, how these reductions affect the result of the simulations.

3.1. Transpiration conditions

In the fully 3D–3D FSI model with linear elasticity there are two sources of non-linearity: the first one is due to the fluid
convective term (which is quadratic in the unknown velocity u), the second is due to themoving fluid geometry that adheres
to the structure. At the discrete level, themeshmovement implies the re-computation of the finite elementmatrices at each
time step. To reduce the computational time, suitable transpiration conditions can be introduced that allow to work with a
fixed fluid domain, see [6]. This hypothesis does not affect the results of the simulation if the displacement of the physical
domain is small enough.

We use Taylor series to expand the velocity field u in a neighbourhood of a point of the interfaceΓ . Eq. (3) is thenwritten
on a fixed domain, thus getting rid of one source of non-linearity and saving computational time by assembling the finite
element matrices only once for the entire simulation. The Taylor expansion for the fluid velocity reads

u(At(x)) = u(x) + ∇xu|x(At(x) −x) + O(∥(At(x) −x)∥2)

= u(x) + ∇xu|xdf + O(∥df |Γ ∥
2) on Γ . (12)

An even simpler version is a zero order extrapolation, namely:

u(At(x)) = u(x) + O(∥df |Γ ∥) on Γ . (13)

Using the geometric adherence condition, it is possible to write this relation only in function of u and ds:

u(At(x)) = u(x) + O(∥ds|Γ ∥). (14)

This equation allows us to express all the quantities on the reference configuration Ω . The coupling conditions can be re-
written with a simpler formulation:

∂ds(x)
∂t

= u(x). (15)

Similar Taylor expansion on the stresses σf (u, p) leads to:

σf (At(x)) = σf (x) + ∇xσf |xds + O(∥ds|Γ ∥
2), (16)

where, again, if we use zero order extrapolation, we obtain:

σf (At(x)) = σf (x) + O(∥ds|Γ ∥) ≈ σf (x). (17)

The coupling condition for the continuity of the stresses on the interface Γ reads:

Jf σf (x)F−T
s n = 5(ds)n. (18)

The geometric adherence is replaced by the transpiration condition (15) and the resolution of the problem for the fluid
domain displacementdf is no more required. In fact, if we perform the Taylor expansion on the ALE map itself, we obtain:

At(x) =x + ∇xAt(x)|x(At(x) −x) + O(∥ds|Γ ∥
2).

If a zero order transpiration condition is used, it holds

At(x) =x whence Ff = I.

The condition on the normal stresses (18) is then replaced by the following one
σf (x)n = 5(ds)n on Γ . (19)

The fluid domain is now fixed and all the operations are performed on the domain Ω . In what follows, to simplify the
notation, we remove the· from all the variables.

To write the weak formulation of the FSI problem with zero order transpiration condition, we introduce the following
functional spaces:

Vf = {v ∈ [H1(Ωf )]
d

: v|
Γ

f
D

= g} (20)

V0
f = {v ∈ [H1(Ωf )]

d
: v|

Γ
f
D

= 0} (21)

Vs = {vs ∈ [H1(Ωs)]
d

: vs|Γ s
in∪Γ s

out
= 0} (22)

M = L2(Ωf ) (23)

where d is the space dimension of the problem at hand. Then, the weak formulation reads:
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find (u, p, ds) ∈ L2(0, T ;Vf ) ∩ C0(0, T ; L2(Ω)) × L2(0, T ;M) × H1(0, T ;Vs)
with u|t=0 = u0 ∈ Vf and ds|t=0 = d0 ∈ Vs such that for all t ∈ (0, T ]:

Ωf

ρf


∂u
∂t

+ (u · ∇x)u


· vf dΩf +


Ωf


µ(∇xu + ∇

T
x u) : ∇xvf − p∇x · vf


dΩf

+


Ωs

ρs
∂2ds

∂t2
· vsdΩs +


Ωs

5(ds) : ∇xvsdΩs

=


Ωf

ff · vf dΩf +


ΓN

h · vf dΓ
Ωf

q∇x · udΩf = 0

∂ds

∂t
= u on Γ ∀(vf , q, vs) ∈ V0

f × M × Vs.

(24)

3.2. A first reduced structural model: inertial–algebraic model

Another source of complexity in an FSI problem is indeed the coupling between the fluid and the structural models.
When we model the vessel wall as a membrane, suitable coupling technique can be used in order to embed the structural
model in the fluid system as a boundary condition. The first reduced structural model that we are going to present is the
inertial–algebraicmodel and itwas proposed in [12]. It is based on aKoitermodel under the assumption of small deformations
and negligible bending terms. Furthermore, the vessel is considered as an isotropic–homogeneous material and a linear
constitutive stress–strain relation is used. The thickness of the wall is supposed to be constant in space.

Let us assume that the interface position Γ of the membrane can be identified by a regular mapping with a two-
dimensional plain set ω. We denote with Eαβλδ the stress tensor written in the domain ω, where we used the Greek letters
for indices taking their values in the set {1, 2}. Moreover, we introduce the symbol γαβ(ds) to address the change of metric
when passing from the domain ω to the surface Γ . The weak formulation of the Koiter’s equation reads:

Γ

ρshs
∂2ds

∂t2
· vs +


Γ

hsEαβλδγαβ(ds)γλδ(vs)dγ =


Γ

fs · vs ∀vs ∈ Vs. (25)

Using the above mentioned assumptions and adding the hypothesis that the displacement is non zero only in the normal
direction, the contribution of the stresses can be simplified as:

Eαβλδγαβ(ds)γλδ(vs) =
hsE

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2)(ds · n)(vs · n), (26)

where E is the Youngmodulus, ν the Poisson coefficient, hs the wall thickness, and ρ1 and ρ2 are the mean and the Gaussian
curvature, respectively. The corresponding strong formulation of the Eq. (25) is then reduced to an ordinary differential
scalar problem. We denote by

d = ds · n

the normal displacement of the membrane wall and, at each point x ∈ Γ ,n represents the normal unit vector on the
interface. Then, the strong formulation of the inertial–algebraic model reads:

ρshs
∂2d
∂t2

+ βd = fs on Γ × (0, T ), (27)

where fs is a given (scalar) forcing term and

β =
hsE

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2). (28)

Due to the previous normal displacement assumption, the coupling at the interface Γ takes into account only the normal
component of the velocities and of the stresses. This translates into the constraints:

u · n =
∂d
∂t

on Γ and fs = −(σf n) · n on Γ . (29)

Homogeneous Dirichlet conditions enforced in the tangent directions close the problem. This is consistent with the null
tangential displacement of the structure. We underline that in the coupling equations we drop the mapping terms from the
reference to the current configuration thanks to the use of transpiration conditions of zero order. Amore general formulation
can be found in [12]. Using the coupling conditions, Eq. (27) can be written as a boundary condition on the interface Γ for



126 C.M. Colciago et al. / Journal of Computational and Applied Mathematics 265 (2014) 120–138

Fig. 2. Geometrical configuration of the wall.

the Navier–Stokes problem, we refer to [12] for the details. This process is mainly based on a finite difference discretization
of the coupling condition on the continuity of the velocities.

Let us write down the boundary condition for the fluid problem derived from the structural equation. For the sake of
simplicity, we suppose to use an Implicit Euler scheme and zero order transpiration conditions, nevertheless the result can
be generalized to other kind of time discretization schemes. In the next sectionwewill consider the general case andwewill
perform all the steps that, starting from the solid model equation, lead to a boundary condition for the fluid problem. Intro-
ducing the notation φn to address a generic quantity φ(t) at a fixed time t = tn, using an Implicit Euler time discretization,
and denoting 1t the time step, the discretization of the continuity of the normal velocity reads

dn+1
= 1tun+1

· n + dn.

At a fixed time step tn+1, the inertial–algebraic model equation (27) can be written ad follows:

ρshs
un+1

· n − un
· n

1t
+ β(1tun+1

· n + dn) = −(σf n) · n on Γ , (30)

which is a Robin boundary condition in the normal direction for the fluid problem.
The coefficient β depends on the geometric curvature of the surface. This can represent a difficulty in a real application,

where the geometry of the domain is generated starting frommedical images. The surfacemeshes are composed by triangles
and the curvature in a vertex is defined by considering a suitable average between the orientation of the triangles sharing
that vertex. Due to the small irregularities of real vessels, the values of the curvatures can be subject to large variations that
can affect the results of the simulations. One possible solution to this problem is to refine themesh until β is smooth enough
to avoid instabilities in the solution [28]. Nevertheless, this process can lead tomesheswith a high number of tetrahedra and
very small grid step. One could end up in solving ill-conditioned and computationally expensive problems that do not im-
prove the accuracy of the solution and do not represent a real gain with respect to 3D–3D FSI problemswith coarsermeshes.

3.3. A second reduced structural model: membrane model

We discuss here another possible approach to reduce the equation of the structure to a membrane model, as proposed
in [19,18]. The resulting fluid model with embedded structure was given the name coupled momentum method. Its for-
mulation is detailed in [18] for a fluid–structure interaction problem with linear constitutive stress–strain relation for the
structure, zero order transpiration conditions and generalized-α method for the time discretization. In this work we derive
instead a general formulation which is independent of the time discretization scheme and the structural constitutive rela-
tion.

As in the inertial–algebraic model, also the coupled momentum method relies on the hypothesis of a linear elastic con-
stitutive relation between the stress and the strain of themembrane. Moreover, themodel is derived under the assumptions
of homogeneous–isotropicmaterial, thin-wall structure, and negligible bending terms. Differently form the previousmodel,
the displacement is considered non zero in all the three space directions. An homogeneous distribution of the physical quan-
tities in the radial direction inside the vessel wall is assumed. Also in this case the thickness of thewall is supposed constant.

The hypothesis of a thin-wall structure and of homogeneous radial stresses can be translated in the followingmathemat-
ical relations. With respect to the notation of Fig. 2, let denote γ the coordinate aligned to the tangential versor t and η the
coordinate aligned to the normal n. Due to the homogeneous distribution along η, all the integrals in the domain Ωs can be
written as integrals on the interface Γ according to the relation

Ωs

φ(γ , η) =

 hs

0
dη


Γ

φ(γ )dγ = hs


Γ

φ(γ )dγ , (31)

and to set to zero all the derivatives in the normal direction:

∇xφ · n = 0.

Thus on Γ :

∇xφ = (∇xφ · t)t + (∇xφ · n)n = (∇xφ · t)t, ∇γ φ := (∇xφ · t)t, (32)

where we have introduced the symbol ∇γ to denote the surface gradient on the interface Γ .
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To derive awell-posedweak formulation of the problem on the interfaceΓ , the functional spaceVs is restricted to ensure
higher regularity on the boundary.

VΓ
s = {vs ∈ Vs : vs|Γ ∈ H1(Γ )}. (33)

Neglecting volumetric forces (fs = 0), the weak formulation of the problem (8) reads
Ωs

ρs
∂2ds

∂t2
· vsdΩs +


Ωs

5(ds) : ∇xvsdΩs =


Γ

5(ds)next · vsdΓ , (34)

where next is the outward normal to the solid domain. Using (31), Eq. (34) reads

hs


Γ

ρs
∂2ds

∂t2
· vsdΓ + hs


Γ

5γ (ds) : ∇γ vsdΓ =


Γ

5γ (ds)next · vsdΓ . (35)

Accordingly with the notation of (32), 5γ (φ) is the stress tensor of the structure applied to a generic quantity φ where
just surface derivatives are involved. The expression of 5γ (φ) depends on the constitutive membranemodel chosen for the
vessel wall.

Let us introduce the notation for the discretization of the temporal derivatives. Our goal of this section is to write the
coupled momentum method as introduced in [19,18] for a generic time discretization method. Given a generic quantity φ,
we use the notation ∂tφ to address the discretization of its first order timederivative andwe split it into two terms as follows:

∂φ

∂t


t=tn+1

≈ ∂tφ =
α

1t
φn+1

− f (φn, φ̇n, φ̈n). (36)

Here f nφ = f (φn, φ̇n, φ̈n) is a function of knownquantities and its formula is given by the specific discretizationmethod that is
chosen.Moreover, we use the following notation to address the discrete first order derivative in time of a generic quantityφ:

The discretization of the velocity coupling condition (15) reads:

α

1t
dn+1
s = un+1

+ f nd . (37)

Plugging the discretization of coupling condition (37) into 5γ , the following equation holds:

5γ (dn+1
s ) =

1t
α

(5γ (un+1
+ f nd )). (38)

If the constitutive stress–strain relation is linear, it is possible to write:

5γ (dn+1
s ) =

1t
α

(5γ (un+1) + 5γ (f nd )). (39)

If a non-linear constitutive relation is chosen, the same kind of relation is achieved after linearization.
Using again the time discretization of coupling conditions (15) and (19) in (35), we obtain:

hs


Γ

ρsα
un+1

1t
· vsdΓ + hs

1t
α


Γ

5γ (un+1
+ f nd ) : ∇γ vsdΓ =


Γ

(−(σ n+1
f )n + hsρsf nu ) · vsdΓ , (40)

where σ n+1
f = σf (un+1, pn+1). Eq. (40) is directly embedded in the fluid model. This condition can be seen as a generalized

Robin boundary condition involving a stiffness interface matrix that depends on the properties of the arterial wall [29].
Nevertheless we can formally write its strong form as a boundary condition for the fluid on the interface Γ :

(σ n+1
f )n +

hsρsα

1t
un+1

− hs
1t
α

∇γ · 5γ (un+1
+ f nd ) + hs

1t
α

HΠΓ (un+1
+ f nd ) = hsρsf nu , (41)

where H = ∇Γ ·n is the mean curvature of Γ . Finally, we present the weak formulation of the reduced order fluid–structure
interaction problem. Towell define the problem on the interface, we asked for higher regular test functions for the structural
problem. Since this model is nowwritten in terms of the fluid velocity, the same degree of regularity has to be ensured now
for the test functions of the fluid problem. Choosing transpiration conditions at zero order, let us define the functional space

VΓ
f = {v ∈ Vf : v|Γ ∈ H1(Γ )}

V0,Γ
f = {v ∈ V0

f : v|Γ ∈ H1(Γ )}.
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Fig. 3. Reconstructed mean and gauss curvatures on the real geometry of a femoropopliteal bypass.

Fig. 4. Inlet and outlet sections for the post processing of the test case.

The semi-discrete weak formulation of the reduced order FSI problem reads:

for each time step tn find (un+1, pn+1) ∈ VΓ
f × M such that:

Ωf


ρf


αun+1

1t
+ (u∗

· ∇x)un+1


· v + (µ(∇xun+1
+ ∇

T
x u

n+1) − pn+1I) : ∇xv


dΩf

+


Γ


hsρsα

un+1

1t
· v + hs

1t
α

5γ (un+1
+ f nd ) : ∇γ v


dΓ

=


Ωf

(ff + ρf f nu ) · vdΩf +


ΓN

h · vdΓ +


Γ

hsρsf nu · vdΓ
Ω

∇x · uq = 0

dn+1
=

1t
α

(un+1
+ f nd ) on Γ , ∀(v, q) ∈ V0,Γ

f × M, with u0
= u0

(42)

where u∗ is chosen equal to un+1 in the case of an implicit treatment of the fluid convective term and it is equal to un in the
case of a semi-implicit treatment.

Remark. The extra regularity required on the border Γ is necessary to ensure that the following integral exists:
Γ

hs
1t
α

5γ (un+1) : ∇γ vdΓ . (43)

TheGalerkin finite element formulation of (42) requires the definition of suitable finite element spaceswhere the solution
and test functions are defined. Let us introduce a stable couple of piecewise finite element spaces for velocity and pressure

Vh ⊂ VΓ
f , Mh ⊂ M.

If we define (un+1
h , pn+1

h ) ∈ Vh × Mh, vh ∈ V0,Γ
f ∩ Vh, and qh ∈ Mh then the discrete weak formulation reads exactly as in

(42) with (un+1, pn+1) = (un+1
h , pn+1

h ) and (v, q) = (vh, qh).

Remark. A standard finite element space Vh is indeed a subset of VΓ
f without the need of any enrichment. In fact the trace

onΓ of a finite element function vh is also a finite element function on the 2D curvilinearmanifoldΓ , therefore, if we choose
zero order transpiration conditions, we directly get vh|Γ ∈ H1(Γ ).
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Fig. 5. Flow rate at the section S1 of the cylinder.

(a) Inlet mean pressure. (b) Outlet flow rate.

Fig. 6. Mean quantities computed at S1 and S2 with constant pressure at outflow. Comparison between our results and those in [18].

Fig. 7. Femoropopliteal bypass geometry. Graph of the inlet and outlet flow rates, as measured in [36].
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Fig. 8. Comparisons between the pattern of the wall shear stress (dyn/cm2) at different time steps for different models. On the left: results at time
t = 0.17 s. On the right: results at time 0.34 s. At the top: back view. At the bottom: front view.

As proposed in [19], we consider a membrane model in the plane stress configuration with an augmented shear stress in
the transversal directions. If the coefficient of the transverse shear stress is chosen equal to 1 and considering a linear elastic
isotropic constitutive law, 5γ (φ) reads:

5γ (φ) =
E

1 + ν

∇γ φ + ∇
T
γ φ

2
+

Eν

1 − ν2
∇γ · φ. (44)

The stress tensor 5γ has been written in terms of the surface gradient ∇γ (·). From a computational point of view, this
formulation is appealing because it does not require the computation of the local rotation matrix for each finite element.
In fact, the surface stiffness matrix is built using a global approach, by explicitly computing the projection operator of the
gradient onto the tangential plane, avoiding thematrix-by-matrixmultiplications required to transform the tensor from the
Cartesian frame of reference to the normal–tangential one. As it is done in [30], the surface gradient is computed as:

∇γ φ = ∇xφ(I − n ⊗ n), (45)

where the symbol ⊗ is used for the tensor product and I is the identity operator.
The inertial–algebraic model requires the computation of surface curvature, while the membrane one does not, since

the curvature is embedded in the projection operator (the curvature appears in the strong formulation (41) but not in the
weak one (40)). Computing the curvature on the surface requires the reconstruction of a P1 field for the normal vector
and its derivative. For example, on a real geometry of a femoropopliteal bypass, this process leads to the result shown in
Fig. 3 where we note the strong oscillations. Different techniques can be used to yield a smoothed curvature. In the present
work, we opted for the reduced order FSI model with the membrane structural equation, avoiding the reconstruction of the
curvature. This however requires the implementation of a non-standard boundary condition.

4. Boundary conditions: treatment of the external tissue

Both reduced structural models have been obtained by assuming a zero stress condition on the external boundary of
the vessel wall. Nevertheless, it has been shown that in particular cases the constraint of the surrounding tissues cannot
be neglected since it leads to the occurrence of non-physiological rigid motions of the vessels. This is e.g. the case of the
descending aorta, linked to the vertebral bones that bound the movement of the vessel. In a 3D–3D simulation this feature
is taken into account by imposing a Robin-like boundary condition on the external boundary of the structure [31,32]. The
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Fig. 9. Mean wall shear stress (dyn/cm2) in time on three portions of the interface (coarse mesh). In red: reduced order FSI model. In black: 3D–3D FSI
model. In blue: Navier–Stokes, rigid walls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

application of such a boundary condition in a coupled-momentum method was proposed in [31], here we recall how the
coefficients of the Robin-like condition change, taking into account the external tissue.

The vessel displacement model reads:
ρs

∂2ds

∂t2
− ∇x · 5(ds) = 0 in Ωs,

ds = 0 on Γ s
in ∪ Γ s

out,

5next + ηds + β
∂ds

∂t
= 0 on Γext,

(46)

where on the external boundary a Robin-like boundary condition is imposed as done in [31,32], and η and β depend on the
material properties of the surrounding tissue.

The weak formulation of (46) reads:

∀t ∈ (0, T ] find ds ∈ L2(0, T ;Vs) such that
Ωs

ρs
∂2ds

∂t2
· vsdΩs +


Ωs

5(ds) : ∇xvsdΩs =


Γ

5(ds)n · vsdΓ +


Γext

5(ds)next · vsdΓext

∀vs ∈ Vs, with ds|t=0 = d0 and
∂ds

∂t


t=0

= d1, (47)

being d0 and d1 given functions.
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Fig. 10. Section of the velocity profile at different time steps. In red: reduced order FSI model. In black: 3D–3D FSI model. 3D–3D FSI and 3D–3D FSI Transp
models are shown only up to 0.6 and 0.5 s, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Using the third equation of (46), the integral on Γext reads
Γext

5(ds)next · vsdΓext = −


Γext


ηds + β

∂ds

∂t


· vsdΓext. (48)

As done in the previous section, thanks to the thinwall approximation (Γext ≈ Γ ), all the integrals onΩs can be expressed as
integrals on the interface Γ (multiplied by the thickness hs). Moreover, using the continuity of the velocities at the interface
and the discretization of the temporal derivatives (dn+1

s =
1t
α

(un+1
+ f nd )), the following equation holds:

Γ

5(dn+1
s )next · vsdΓext = −


Γ


ηdn+1

s + βun+1


· vsdΓ

= −


Γ


η

1t
α

(un+1
+ f nd ) + βun+1


· vsdΓ . (49)

With this new condition, Eq. (40) is modified as follows:
Γ


hsρsα

1t
+ η

1t
α

+ β


un+1

· vsdΓ + hs
1t
α


Γ

5γ (un+1
+ f nd ) : ∇γ vsdΓ

=


Γ

(−σf (un+1, pn+1)n + hsρsf nu ) · vsdΓ −


Γ

η
1t
α

f nd · vsdΓ . (50)

With respect to (40), we are adding here two coefficients to the boundary mass integral of the Robin-like condition that
increase the constraint on the interface as the magnitude of η and β increases.
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Fig. 11. Relative perimeter in time computed for four slices (coarse mesh). In red: reduced order FSI model. In black: 3D–3D FSI model. 3D–3D FSI and
3D–3D FSI Transp models are shown only up to 0.6 and 0.5 s, respectively. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

5. Comparisons between 3D–3D FSI and reduced order models

In this section we present simulations for three different applications: the first one is a test case on a cylinder and its aim
is to validate our code with the results of [18]; the second and the third cases refer to realistic flows and for both of them
we compare the results obtained with the membrane model with the ones of a 3D–3D FSI model. For the implementation
we used the LifeV library [33] and we choose a finite element discretization P1–P1 with interior penalty stabilization in
space [34,35]. In time we use BDF2 for the validation case and implicit Euler scheme for the realistic applications. The
convective term of Navier–Stokes is treated semi-implicitly, in all the cases.

The simulations were run on the following parallel supercomputers: Antares, a cluster of 56 bi-processors Intel Xeon
Nehalem nodes of EPFL, Cray XT6 HECToR of the UK National Supercomputing Service, and Cray XE6 Rosa of the Swiss
National Supercomputing center, in Lugano.

5.1. Test case: validation on a cylindrical geometry

In the first test casewe reproduce the same configuration studied obtained in [18],with the aimof comparing thedifferent
models presented so far. We consider a cylinder of diameter 0.6 cm and length 12.6 cm. The thickness of the wall is fixed to
0.03 cm. The Poisson coefficient and the Young modulus of the structure are respectively set to 0.5 and 4.07 · 106 dyn/cm2.
The densities of the vessel wall and of the blood are taken equal to 1.0 g/cm3 and 1.06 g/cm3. We consider a Newtonian
fluid with constant viscosity equal to 0.04 dyn/cm2. We truncate the pipe at the section S1 (Fig. 4) and we impose at S1 a
Dirichlet condition for the velocity using a parabolic profile. This profile is reconstructed to match the flow rate showed in
Fig. 5, obtained by the interpolation of the data retrieved from [18]. At the outlet we impose a constant pressure condition.
We compute the inlet mean pressure and the outlet flow rate and we compare the results with those in [18].

The results obtained are close to the ones presented in [18] (see Fig. 6). We observe some differences in the final part
of the cycle, which could be related to the different choice for the time discretization. Indeed we use a BDF scheme of the
second order, whereas, in [18] they use a generalized-α method. Moreover, the inlet condition is not exactly the same, since
we retrieve the data for our simulation from a sample of the results presented in [18]. Further validation test cases are
ongoing.



134 C.M. Colciago et al. / Journal of Computational and Applied Mathematics 265 (2014) 120–138

Fig. 12. Mean wall shear stress (dyn/cm2) in time on five portions of the interface. In red: reduced order FSI model. In black: 3D–3D FSI model. In blue:
3D–3D FSImodel with transpiration conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)

5.2. Femoropopliteal bypass

In this section we present some results obtained with the membrane model (Section 3.3) applied to the realistic case of
a femoropopliteal bypass. The geometry and meshes used are the same considered in [36]. The viscosity of the blood is set
to 0.035 P and the density to 1.0 g/cm3. For the solid part, the Young modulus is 4e6 dyn/cm2, the Poisson coefficient is
0.45 and the density is 1.2 g/cm3. The thickness is constant and equal to 0.05 cm. In the case of the femoropopliteal bypass
we do not need any enhanced stiffness coming from the external wall, thus we impose a homogeneous Neumann boundary
condition. At the inlet and outlet sections we impose flow rates measured on a patient [36] (cf. Fig. 7) and we compare the
results with a 3D–3D FSI model and with a Navier–Stokes model where we consider a rigid wall. For the rigid wall case we
cannot impose different values of the flow rates at the inlet and at the outlet sections, for this reason on the outlet we impose
the pressure that we obtained from the 3D–3D FSI model. The focus is on the behaviour at the interface between the fluid
and the solid parts, which, in our case, is represented by the lateral surface of the fluid domain. We compute the wall shear
stress on the surface Γ on ameshmade of 48,177 vertices andwith 260,554 tetrahedra, themesh presents a boundary layer
on the interface Γ . The presence of the grid boundary layer is important to have an accurate resolution of what is happening
near our region of interest.

In Fig. 8 we plot the distribution of the wall shear stress at the time t = 0.17 s and t = 0.35 s for the 3D–3D FSI model,
the reduced order FSI and the rigid case. The pattern of the wall shear stress is similar for the 3D–3D FSI and the reduced
order model. Instead, the results obtained with a rigid wall differs significantly from the first two cases.

We show in Fig. 9 the distribution with respect to time of the mean in space of the wall shear stresses on three different
portions of the interface. In red we plot the results obtained with the reduced structural membranemodel, in black the ones
obtained with the 3D–3D FSI model and in blue the results of the rigid case. As we already noted, the 3D–3D FSI and the re-
duced order models are close, even if, in the reduced order case, themagnitude of the wall shear stress at the systolic peak is
lower than themagnitude computed with the fully 3Dmodel. The distribution obtained with rigid walls differs significantly
from the other results, in particular during the diastolic phase. In Fig. 10 we report the projection of the velocity profile on
two planes at different sections of the domain. The reduced order FSI model is represented in red, the 3D–3D FSI model in
black and the rigid wall case in blue. The reduced order model is close to the 3D–3D FSI one and it differs significantly from
the rigid case.

From a clinical standpoint, if the critical region of the wall are identified through the value of the wall shear stress, the
results of Fig. 8 probably leads to the same considerations for the case of the reduced ordermodel and the 3D–3D FSI one. The



C.M. Colciago et al. / Journal of Computational and Applied Mathematics 265 (2014) 120–138 135

Fig. 13. Pattern of the wall shear stress (dyn/cm2) near the systolic peak at time t = 0.2 s. At the top: back view. At the bottom: front view.

largest mismatch between these two models happens at the systolic peak both for the values of the wall shear stresses and
the perimeters (see Fig. 11). One possible way to improve the results could be the use of first order transpiration conditions.

5.3. Aorta

The second case that we address is the flow in an aorta under physiological conditions. The physical parameters for both
the blood and the solid wall are the same as for the femoropopliteal bypass case. We impose patient-specific flow rates at
each outflow boundary [37]. At the ascending aorta inlet section a Dirichlet boundary condition in the normal direction is
imposed in order to match the experimental flow rate. On the external wall of the structure we impose a Robin boundary
condition as in (46) with coefficient β = 0 and η = 9e4 for the small branches and η = 6e4 elsewhere [32]. For the fluid
domain discretization,we use ameshwith 114,660 vertices and 837,502 tetrahedra. The reduced order FSImodel discretized
with P1–P1 stabilized finite elements in space is then composed of 578,640 degrees of freedom. For the 3D–3D FSI model,
we have to add 251,485 degrees of freedom (80,495 vertices) of the solid domain. Themesh features a boundary layer at the
interface between fluid and solid and at each inlet/outlet boundary a flow extension is added in order to obtain a circular
inlet/outlet section [38].

We compare three models: 3D–3D FSI, 3D–3D FSI with transpiration conditions at the zero order and reduced order FSI
model with the membrane assumption, again with zero order transpiration conditions. In Figs. 12 and 13 we display the
mean wall shear stress on five different portions of the interface and the pattern of the wall shear stress near the systolic
peak. In Figs. 14 and 15, the velocity profiles at different time steps and the percentage of variation of the perimeters for five
different slices are showed.

We recall that we obtained the reduced order FSI model based on two levels of reduction: the application of the transpi-
ration conditions and the membrane assumption with the consequent embedding of the structure inside the Navier–Stokes
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Fig. 14. Velocity profiles at five different sections of the geometry. In red: reduced order FSI model. In black: 3D–3D FSI model. In blue: 3D–3D FSI model
with transpiration conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

system under the form a boundary condition. The difference between the 3D–3D FSI and the reduced order model can be
formally examined by looking at two contributions: we first analyse the effects of the transpiration conditions and then
those of the structural model reduction.

From Figs. 12 and 15 we notice that, during the first 0.15 s of the cardiac cycle, the three models are overlapping. Then,
near the systolic peak (0.2 s ca), there are regions (areas A1, A2 and A3 of Fig. 12) where the gap between the 3D–3D FSI and
the reduced order FSI model is mainly due to the linearization of the domain position. Indeed, the values of the mean wall
shear stress of the 3D–3D FSI model with transpiration conditions and the reduced order one are overlapped, while values
of the wall shear stress of the fully 3D–3D FSI is lower. This is visible also from Fig. 13, where the pattern of the wall shear
stresses of the 3D–3D transpiration and the reduced order model are similar. After the systolic peak, the values of the wall
shear stress measured with 3D–3D transpiration model realign with the values of the 3D–3D FSI one, while the stresses
computed with the reduced order model are lower in the case of areas A4 and A5. In Fig. 15 it is clear that, even if in the
3D–3D transpiration model the mesh is fixed, the values of the displacement computed by the model is close to the values
computed with the 3D–3D FSI one. On the contrary, the displacements of the reduced order model are lower and, even if
the curves present the same shape, the approximation of the structure to a membrane seems to produce a loss of load. The
results presented so far are obtained initializing the simulation using zero values for all the variables. The results of Fig. 15
shows the importance of a reinitialization of the membrane model with the end-diastolic pre-stressed that differs from the
end-diastolic pre-stressed of the 3D–3D FSI model.

6. Conclusions

In thisworkwe have compared a reduced order FSImodel (the coupledmomentummethod) and 3D–3D FSImodels (with
and without transpiration conditions) on two patient-specific cases: a femoropopliteal bypass and an aorta in physiological
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Fig. 15. Relative measures of the perimeters of five different slices of the domain. In red: reduced order FSI model. In black: 3D–3D FSI model. In blue:
3D–3D FSImodel with transpiration conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)

conditions. In the case of the femoropopliteal bypass the results, in terms of wall shear stresses, obtained with the reduced
order model are close to the 3D–3D FSI ones. The coupled momentummethod without a retuning of the parameters is then
worth to be used in those specific applications where the assumption of small displacement holds, as it is done in several
works [39,18,31,19,40], for other biomedical applications.

When dealing with the simulation of the flow in the aorta, the displacement and the forces in play are much larger. Here,
the differences between the reduced models and the 3D–3D FSI one is more accentuated. In terms of percentage, the vari-
ation of the radius is less than 5% for the bypass case and below 8% for the aorta one. However, in absolute value is about
0.025 cm for the bypass and 0.15 cm in the aorta. Since themodelling error related to the transpiration conditions is of order
O(∥ds|Γ ∥) (see Eq. (14)), this means that in the aorta is one order of magnitude larger than in the bypass. One possible solu-
tion to improve the resultswithout updating themesh at each time step could be to use transpiration conditions at first order.

Another important future development of this work will concern the evaluation of the distance of the numerical results
from the experimental in-vivo data and its comparisonwith the differences between the 3D–3D FSI and the reducedmodels.
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