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a b s t r a c t

Opinion dynamics expressed by the bounded confidence discrete-time heterogeneous Hegselmann–
Krause model is considered. A policy for the adaptation of the agents confidence thresholds based on
heterophily, maximum number of neighbors and non-influencing similarity interval is proposed. The
policy leads to the introduction of the concepts of practical clustering and practical consensus. Several
properties of the agents dynamic behaviors are proved by exploiting the roles of the agents having
at each time-step the maximum and the minimum opinions. The convergence in finite time to (a
maximum number of) practical clusters and, for sufficiently large threshold bounds, the convergence
to a practical consensus are proved. Sufficient conditions for reaching a practical consensus around a
stubborn are derived too. Numerical simulations verify the theoretical results.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Opinion dynamics has been widely used for representing the
ime evolution of agents indicators in social networks
Proskurnikov & Tempo, 2018). The agents are the nodes of a cor-
esponding graph and the opinion is the state of each agent which
s interpreted as a measure of the intensity of his will toward a
articular action or goal. In the Hegselmann–Krause (HK) model,
n particular, the nodes interacting with each agent are selected
s his neighbors, i.e. those agents who have an opinion close to
is own one up to some confidence thresholds (Hegselmann &
rause, 2002; Tangredi et al., 2017).
Different types of HK models can be defined according to the

haracteristics of the confidence thresholds. When each agent
elects the neighbors with lower and upper opinions by using
he same confidence threshold, the model is said symmetric, and
asymmetric otherwise. When all agents have the same interval of
confidence, possibly asymmetric, the HK model is called homoge-
eous, see among others Blondel et al. (2009), Etesami and Başar
2015), and heterogeneous otherwise. The heterogeneity of the
confidence thresholds among the nodes allows one to represent
more general scenarios such as the presence of agents who are
open-minded or closed-minded (Chazelle & Wang, 2017). On
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the other hand, the heterogeneous HK model exhibits behaviors
much more complex than the homogeneous case and the analysis
of the former class becomes far from trivial both in continuous-
time (Altafini & Ceragioli, 2018; Frasca et al., 2019; Yang et al.,
2014) and in discrete-time (Proskurnikov & Tempo, 2018).

In this paper we consider discrete-time asymmetric hetero-
geneous HK models. Numerical studies have shown some in-
teresting phenomena induced by the heterogeneity, see among
others Han et al. (2019) and Lorenz (2010). Some theoretical
results for this class of HK models have been proposed in the
literature by introducing specific model structures. A modified
symmetric heterogeneous model is considered in Cheng and Yu
(2019) where it is shown that by adding in the opinion dy-
namics the presence of group pressure, i.e. the average of all
opinions influences the opinion of all agents, the convergence to
the consensus in finite time can be easily proved. In Chazelle and
Wang (2017) the confidence thresholds are fixed for each pair of
nodes, thus corresponding to an undirected graph representation
of the network which allows one to prove the convergence of
the opinions to static agents. The heterogeneity feature of the
model analyzed in Parasnis et al. (2018) comes from a physical
connectivity graph which underlines a symmetric homogeneous
confidence bound HK model. The type of models considered in
the papers (Chazelle & Wang, 2017; Cheng & Yu, 2019; Parasnis
et al., 2018) do not apply for our framework where the agents
connected with a node are not uniquely identified and the possi-
ble interaction of an agent with others is determined only by his
confidence intervals.

A one-sided asymmetry model, i.e. the lower (or the upper)
confidence threshold is assumed to be the same for all agents,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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s analyzed in Coulson et al. (2015) while a not side-dependent
onfidence version of the heterogeneous HK model has been
onsidered in Mirtabatabaei and Bullo (2012). Our results on
he dynamic properties of the maximum and minimum opinions
re valid also for the models analyzed in Coulson et al. (2015)
nd Mirtabatabaei and Bullo (2012), while the arguments used
n these papers for proving the finite time convergence of the
pinions to a limiting opinion vector cannot be used in our
ramework which refers to a model with adaptive confidence
ounds.
The asymmetric heterogeneous HK model considered in this

aper is characterized by an adaptation policy of the agents con-
idence thresholds. The policy takes origin from the preliminary
dea presented by the authors in Iervolino et al. (2018) where
ach agent increases his thresholds looking for someone different
o him. Indeed, heterophily, i.e. the tendency to interact with
hose who have different opinions, has been shown to play a
ey role on emergent behaviors in opinion dynamics (Motsch &
admor, 2014). In this line, the lower (upper) threshold of each
gent is varied such that he would connect with at least one
eighbor with a lower (upper) opinion; moreover it is assumed
hat each agent has a maximum number of interacting agents.
n the other hand, we introduce a (small) similarity interval
or all agents which reflects the fact that if two agents have
imilar, i.e. very close, opinions they do not interact anymore.
his feature is coherent with the classical HK model dynamics
here the intensity of the contribution of each agent’s opinion
n the opinion variation of another agent is proportional to their
istance.
A first contribution of the paper is the definition of the prac-

ical consensus concept which occurs if all opinions belong to
he same similarity interval. Our idea of practical consensus has
elevant differences with the apparently similar concept of quasi-
onsensus introduced in Su et al. (2017). The latter corresponds to
he situation when the graph is complete, i.e. all agents’ opinions
elong to the same symmetric confidence interval, instead the
ractical consensus refers to the case where all the agents do
ot interact anymore because their opinions belong to the same
imilarity interval. A further major contribution of the paper is the
erivation of sufficient conditions for the convergence in finite
ime of the opinions to a maximum number of practical clusters
nd, for sufficiently large confidence thresholds, to practical con-
ensus. The effects due to the presence of a stubborn are analyzed
oo, both formally and numerically.

The rest of the paper is organized as follows. In Section 2,
y considering the discrete-time heterogeneous HK model, the
efinitions of the similarity interval, the practical clustering and
he practical consensus are introduced. In Section 3 the pro-
osed thresholds adaptation policy is described and structured
ia algorithms which exploit the idea of the active neighbors. A
ociological interpretation of the model and the policies adopted
n the paper is presented at the end of that section. Some dynamic
roperties of the extreme opinions of the network are proved
n Section 4. The possible steady state solutions are analyzed in
ection 5 while the proof of finite time convergence to a practical
onsensus is presented in Section 6. The impact of the presence
f a stubborn on the validity of the former results is analyzed in
ection 7. Numerical experiments verifying the theoretical results
re discussed in Section 8. Section 9 concludes the paper by
racing some directions for future research.

. Opinion dynamics and practical consensus

The opinion dynamics model considered in this paper is rela-
ive to N agents whose opinions are represented through scalar
tate variables x ∈ [0, 1], i ∈ I = {1, . . . ,N}. In order to deal
i

2

ith significant cases, we will consider scenarios with N ≥ 3
ereinafter. Similarly to the bounded confidence HK model, we
efine the scalar influence function φij(xi, xj) : [0, 1]2 → {0, 1},

i, j ∈ I which is equal to 1 when xj influences the opinion
evolution of the agent i and 0 otherwise. If φij(xi, xj) = 1 we say
that the agent j is an active neighbor of the agent i. In the following
we assume φii(xi) = 1 for all i ∈ I. For the sake of notation, we
use x+i := xi(k + 1) and xi := xi(k) for all i ∈ I, where k ∈ N0 is
the discrete time variable.

The opinion dynamics model is described by

x+i = xi +
1∑N

j=1 φij(xi, xj)

N∑
j=1

φij(xi, xj)(xj − xi) (1)

for all i ∈ I, or equivalently

x+i =
1∑N

j=1 φij(xi, xj)

N∑
j=1

φij(xi, xj) xj (2)

for all i ∈ I. The model (2) has an interesting interpretation: the
agent opinion at the next time-step, i.e. x+i , is equal to the average
of the neighbors opinions, including his own one. By considering
the choice xi(0) ∈ [0, 1], from (2) it follows straightforwardly that
xi ∈ [0, 1] for all time-steps.

A typical steady state behavior of interest for the dynamic
system (2) is when all opinions become equal in finite time. This
situation can be formally defined as follows.

Definition 1 (Consensus). The system (2) is said to reach a
consensus if there exist a finite time-step k̂ and a constant c̄ such
that for all i ∈ I and for all h ∈ N0 it is

x̂+hi = c̄, (3)

with x̂+hi := xi(k̂+ h) for all i ∈ I.

Another typical steady state behavior of (2) is the clustering
where the agents reach different (constant) values of opinions,
each one corresponding to a subgroup of agents with the same
opinion.

Definition 2 (Clustering). The system (2) is said to reach a clus-
tering if there exist a finite time-step k̂, different constants c̄µ ∈
[0, 1] and constant subsets of indices Σµ ⊆ I, µ = 1, . . . ,M ,
M ≤ N , with

⋃M
µ=1 Σµ = I, Σµ1

⋂
Σµ2 = ∅ for any µ1 ̸= µ2,

such that for all h ∈ N0 it is

x̂+hi = c̄µ (4)

for all i ∈ Σµ, µ = 1, . . . ,M , with x̂+hi := xi(k̂+ h) for all i ∈ I.

We are interested to analyze scenarios which approximate
in some sense the above concepts of consensus and cluster-
ing. To this aim we generalize the notions above by introduc-
ing the definitions of practical consensus and practical clustering,
respectively.

Definition 3 (Practical Consensus). The system (2) is said to reach
a practical consensus if there exist a finite time-step k̂ and a small
ϵc ≥ 0 such that for all i, j ∈ I and for all h ∈ N0 it is

|x̂+hi − x̂+hj | ≤ ϵc, (5)

with x̂+hi := xi(k̂+ h) for all i ∈ I and for all h ∈ N0. In particular,
a constant practical consensus is a practical consensus where

x̂+hi = x̂i (6)

holds for all i ∈ I.
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Note that the practical consensus definition, which corre-
sponds to the convergence of the sequences of distances between
all pairs of opinions to the set defined by (5), does not require
the system to be at a regime with constant opinions which is the
further condition required for the constant practical consensus.

By generalizing Definition 2, the practical clustering is defined
as the situation when groups of agents have a relative distance
smaller than ϵc inside each group but larger than ϵc for all pair of
agents belonging to two different and not interacting groups.

Definition 4 (Practical Clustering). The system (2) is said to reach
a practical clustering if there exist a finite time-step k̂, a small
ϵc ≥ 0 and constant largest subsets of indices Σµ ⊆ I, µ =

1, . . . ,M , M ≤ N , with
⋃M

µ=1 Σµ = I, Σµ1

⋂
Σµ2 = ∅ for any

µ1 ̸= µ2, such that the inequalities (5) are satisfied only for all
pairs i, j ∈ Σµ, µ = 1, . . . ,M . In particular, a constant practical
clustering is a practical clustering where (6) holds for all i ∈ I
and for all h ∈ N0.

It is easy to verify that the practical clustering definition
reduces to that of practical consensus for M = 1. Moreover
for ϵc = 0 the definitions of practical consensus and practical
clustering reduce to the classical definitions of consensus and
clustering, respectively.

3. Influence function

The possible convergence of the opinions to (practical) con-
sensus or clustering depends on the definition of the influence
function φij(xi, xj) in (2). For instance, in the case of symmetric
homogeneous HK models the preserving average condition is
satisfied and there exist conditions for which the system (2)
converges to the consensus which is the average of the initial
conditions, i.e. c̄ = 1

N

∑N
i=1 xi(0), see Blondel et al. (2009).

In this section we present the definition of the influence func-
tion φij(xi, xj) for all i, j ∈ I, for our asymmetric heterogeneous HK
model in the form (2), which includes the proposed thresholds
variation policy.

3.1. Similarity interval

Let us introduce what we call the nominal form of the influ-
ence function, say φ̄ij(xi, xj) which depends on the difference xj−xi
through the following conditions

φ̄ij(xi, xj) =

⎧⎨⎩
1, if −ℓi < xj − xi < −ϵ

1, if ϵ < xj − xi < ui

0, otherwise
(7)

for all i, j ∈ I with i ̸= j. In the case i = j we assume φ̄ii(xi) = 1
for all i ∈ I and for all xi. Fig. 1 shows a picture of the nominal
function. The small parameter ϵ ≥ 0 determines the similarity
interval, i.e. xj − xi ∈ [−ϵ, ϵ] for all i, j ∈ I, for which two agents
with sufficiently close opinions do not influence each others. For
simplicity we assume ϵ to be the same for all agents. We call
ℓi and ui the lower and the upper (confidence) thresholds of
the agent i, respectively, assumed to be bounded for all agents,
i.e. ℓi ∈ [ϵ, ℓmax], ui ∈ [ϵ, umax], i ∈ I with ℓmax ∈ [ϵ, 1] and
umax ∈ [ϵ, 1]. With some abuse of notation, the first (second)
condition in (7) is intended to be excluded in the case ℓi = ϵ
(ui = ϵ), i ∈ I.

The confidence set of the i-th agent is divided in two intervals:
the lower confidence interval Li = (−ℓi,−ϵ) and the upper
confidence interval Ui = (ϵ, ui). The opinion dynamics model (2)
is said symmetric if for each i ∈ I it is ℓi = ui, asymmetric
otherwise. The agent j is said a potentially active lower neighbor

of i if xj − xi ∈ Li. Therefore the set of potentially active lower

3

Fig. 1. The nominal influence function φ̄ij(xi, xj). The thresholds adaptation
olicy determines possible variations of ℓi and/or ui at each time-step.

neighbors of i, say PLi (x) ⊆ I, is defined as PLi (x) = {j ∈ I :
xj−xi ∈ Li} where x is the vector of the opinions. Analogously, the
agent j is said a potentially active upper neighbor of i if xj−xi ∈ Ui.
herefore, the set of potentially active upper neighbors of i, say
Ui (x) ⊆ I, is defined as PUi (x) = {j ∈ I : xj − xi ∈ Ui}. Not all

potential neighbors of the agent i will contribute to x+i , as it will
be detailed below.

3.2. Maximum number of active neighbors

In the following we assume that the agents fix a maximum
number of lower and upper agents, say νL ∈ {1, . . . ,N − 1}
nd νU ∈ {1, . . . ,N − 1} respectively, which can influence

their opinions. The potentially lower (upper) agents who influ-
ence the agent i are called active lower (upper) neighbors of the
agent i. The maximum number of active lower (upper) neighbors
is assumed to be the same for all agents.

The determination of the active neighbors and the construc-
tion of the corresponding influence function φij(xi, xj) for i, j ∈ I
n (2) is synthesized by Algorithm 1. The parameters are ϵ, νL and
U . The inputs of the algorithm are the opinions xj, j ∈ I, and the
ounds ℓi and ui of the agent i. The outputs of the algorithm are
ij(xi, xj), j ∈ I, the number of active lower neighbors NLi (x) ∈
0, . . . , νL} and the number of active upper neighbors NUi (x) ∈
0, . . . , νU } at the current time-step.

For each agent i the algorithm selects the potential neighbors
f the agent i, i.e. the sets PLi (x) and PUi (x) defined above. The
lgorithm then determines the agents who are active neighbors
f i by taking into account the limitation of the maximum number
f neighbors. The numbers of such lower and upper neighbors are
Li (x) = min{νL, card(PLi (x))} and NUi (x) = min{νU , card(PUi (x))},
espectively. Clearly it will be

∑N
j=1 φij(xi, xj) = NLi (x)+NUi (x)+1.

The indices in PLi (x) (PUi (x)) are then ordered by decreasing
(increasing) values of the corresponding opinions through a sort-
ing operation on the indices. The ordering for potential neighbors
with the same opinion is arbitrary. Say P̂Li (x) and P̂Ui (x) the
corresponding ordered sets of indices. Then, the set of the indices
of the active lower (upper) neighbors of the agent i, say NLi (x)
(NUi (x)), is given by the first NLi (x) (NUi (x)) elements of P̂Li (x)
(P̂Ui (x)). The j-th element of the set P̂Li (P̂Ui ) is indicated with
P̂Li [j] (P̂Ui [j]).

3.3. Thresholds variation

Once the connections of the agent i have been determined
through Algorithm 1, we can now define a strategy for updating
the upper and lower thresholds at the next time-step, which will
depend on the current opinions. For the sake of simplicity in the
following we omit in ℓi and ui the dependence on the opinions
and therefore on time too.

The proposed policy consists in increasing the lower (upper)
threshold of the agent i by a constant amount γ ≥ 0, if the
agent has no lower (upper) active neighbors; otherwise the cor-

responding threshold is kept equal to its previous value. The
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Algorithm 1: Values of the influence function of the agent i for
ll agents j ∈ I

Parameter: ϵ, νL, νU
Input : {xj}j∈I , ℓi, ui
Output : {φij}j∈I , NLi , NUi
begin
{φij}j∈I ← 0;
φi i ← 1;
PLi ← find{j ∈ I : −ℓi < xj − xi < −ϵ};
NLi ← min{νL, card(PLi )};
if NLi ̸= 0 then

P̂Li ← indexsort{xj, j ∈ PLi , ‘descend’};
for j← 1 to NLi do

φi P̂Li [j]
← 1;

end
end
PUi ← find{j ∈ I : ϵ < xj − xi < ui};
NUi ← min{νU , card(PUi )};
if NUi ̸= 0 then

P̂Ui ← indexsort{xj, j ∈ PUi , ‘ascend’};
for j← 1 to NUi do

φi P̂Ui [j]
← 1;

end
end

nd

choice γ = 0 is left to account for the case of no thresholds
variation strategy. The idea is applied through Algorithm 2. The
parameters of the algorithm are γ , ℓmax and umax. The inputs are
the current thresholds ℓi and ui and the numbers of active lower
and upper neighbors NLi (x) and NUi (x), respectively. The outputs
of the algorithm are the lower and the upper thresholds at the
next time-step, i.e. ℓ+i and u+i . The algorithm proceeds as follows.
If the agent i has no lower neighbors then the lower threshold at
the next time-step is chosen as ℓ+i = min{ℓi+γ , ℓmax}. The upper
threshold increases in a similar way by considering the active
upper neighbors: if the agent i has no upper neighbors then his
upper threshold is updated according to u+i = min{ui + γ , umax}.

Algorithm 2: Thresholds updating for the agent i
Parameter: γ , ℓmax, umax
Input : ℓi, ui, NLi , NUi

Output : ℓ+i , u
+

i
begin

if NLi == 0 ∧ ℓi < ℓmax then
ℓ+i ← min{ℓi + γ , ℓmax};

end
if NUi == 0 ∧ ui < umax then

u+i ← min{ui + γ , umax};
end

nd

From Definition 3 (Definition 4) it is easy to verify that by
sing the influence function defined by Algorithm 1 and Algo-
ithm 2, any practical consensus (clustering) with ϵc = ϵ will be
constant practical consensus (clustering). Indeed, from (5) all

he absolute values of the differences between opinion pairs in
he same practical cluster cannot be larger than ϵ, therefore the
gents belonging to the same cluster do not influence each other
ccording to Algorithm 1 and from (2) the equality (6) directly
ollows.
4

The bounded confidence models analyzed in Coulson et al.
(2015) and Mirtabatabaei and Bullo (2012) can be obtained as
particular cases of our proposed policy, with the slight difference
that in our model the agents with the same opinion are not
considered as neighbors. In particular, by considering the policy
defined by Algorithm 1 and Algorithm 2 with ϵ = 0, γ = 0 and
νL = νU = N−1, the one-sided asymmetric HK model considered
in Coulson et al. (2015) can be obtained by selecting ui(0) = umax
for all i ∈ I and ℓmax ∈ [0, umax], while the heterogeneous
symmetric HK model in Mirtabatabaei and Bullo (2012) can be
obtained by choosing ui(0) = ℓi(0) for all i ∈ I.

The theoretical results presented below are subjected to the
following assumptions.

Assumptions 5. The initial conditions of the system (2) are such
that xi(0) ∈ [0, 1], i ∈ I; the initial lower and upper thresholds
are such that ℓi(0) ∈ [ϵ, ℓmax], ui(0) ∈ [ϵ, umax], i ∈ I, with
ℓmax ∈ [ϵ, 1], umax ∈ [ϵ, 1]; the dynamics of the system (2) are
subject to the policy defined by Algorithm 1 and Algorithm 2; the
maximum number of lower and upper neighbors are chosen such
that νL ∈ {1, . . . ,N − 1}, νU ∈ {1, . . . ,N − 1}.

3.4. A sociological interpretation

The opinion of an agent has been interpreted in opinion dy-
namics as a cognitive orientation of some intensity toward a
particular object (Friedkin, 2015). Alternatively, one could con-
sider the state of each agent as a measure of his skill in a particular
field, so as in collaboration networks (Xie et al., 2016). Let us
consider the model (1). If xj − xi ∈ Li, one could say that the
skill level xi is larger than xj. For ℓi = ϵ it is always PLi = ∅ and
the agent i can be considered as a stubborn towards less-skilled
agents. Analogously, for ui = ϵ it is always PUi = ∅ and the agent i
acts like a stubborn towards more-skilled agents. In spite of the
interpretation of the state in (1) as the skill of an agent, we prefer
to use the term opinion according to the terminology typically
adopted for the model (2) in the control systems literature.

An interpretation of our model derives from the sociological
meanings of homophily and heterophily. It is a common expe-
rience that the creation of a new edge between two nodes is
facilitated by their similarity, which is the classical homophily
principle (McPherson et al., 2001). At the same time, the impor-
tance of weak ties, i.e. edges between nodes with non similar be-
haviors, for the connectivity of a social network has been widely
recognized in the sociological literature (Granovetter, 1973). The
idea of weak ties has stimulated a deeper analysis on how ho-
mophilous and heterophilous behaviors influence the dynamics
of collaboration networks, see among others Rivera et al. (2010)
and Yokomatsu and Kotani (2020). The measure of the similarity
between two agents adopted herein is the Euclidean distance
between their states. As a result, looking at Fig. 1, our analysis can
be framed within the context of heterophilous opinion dynamics.
More specifically, the heterophilous behavior justifies the use of
the similarity interval introduced in (7). Indeed, the motivation
for assuming φij = 0 for all i, j ∈ I such that |xj − xi| ≤ ϵ,
.e. no interactions between agents in the same similarity interval,
s that in the heterophilous framework two similar agents do not
rovide contribution in changing their opinions (Yokomatsu &
otani, 2020). In the classical Hegselmann–Krause model dynam-
cs, the intensity of the contribution of each agent’s opinion on the
pinion variation of another agent is proportional to their differ-
nce. Therefore the similarity interval [−ϵ, ϵ] can be interpreted

as the interval of distance values between pairs of (heterophilous)
agents such that their mutual interaction is neglected.

The meaning of practical consensus introduced in Definition 3

follows from that of the similarity interval. In Motsch and Tadmor
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2014) it is shown that the consensus in opinion dynamics is
nhanced by heterophily, provided that sufficiently strong het-
rophilous interactions are present and nonzero interaction levels
re considered for the agents with similar opinions. In our case,
he absence of any interaction for all agents being in the same
imilarity interval leads to the practical consensus scenario with
c = ϵ, where the agents share a common interval of opinion
alues, i.e. |xj − xi| ≤ ϵ for all i, j ∈ I, rather than a unique
onsensus value.
Finally, the heterophilous behavior provides a motivation for

he policies implemented in Algorithm 1 and Algorithm 2. The
ormer allows the agent to compute the values of his influence
unction by taking into account the limitations on the maximum
umber of his neighbors (Dunbar, 2010). Algorithm 2 implements
he agent strategy of increasing his connectivity thresholds thus
earching for agents with more distant opinions. This is an in-
tinctive behavior for agents who are isolated (Lobel & Sadler,
016). In our model this corresponds to PLi , PUi and Si = {j ∈ I :
|xj − xi| ≤ ε} being empty sets. However, Algorithm 2 increases
the connectivity thresholds also if Si is not empty. This situation
corresponds to the consideration that agents with many similar
neighbors also tend to be heterophilous (Lobel & Sadler, 2016).

4. Properties of the extreme opinions

In this section we prove some properties of the opinion dy-
namics (2) with the policy defined by Algorithm 1 and Algo-
rithm 2, by focusing on those we call maximum and minimum
agents. At each time-step, the maximum (minimum) agent is
selected among the agents with maximum (minimum) opinion at
that time. More specifically, say IM ⊆ I the set of indices defined
by

IM = argmax
i∈I

xi. (8)

Then the maximum agent at the time-step k, say iM , is one of
he agents belonging to the set IM , selected among those who
ave the minimum lower confidence threshold at that time-step,
.e. iM ∈ ÎM ⊆ IM with

M = argmin
i∈IM

ℓi. (9)

n particular, if the previous maximum i−M is still an element of ÎM
hen he is selected again as the current maximum agent, i.e. iM =
−

M . Otherwise iM is arbitrarily chosen among the elements of the
et defined by (9).
Analogously, the minimum agent im is chosen belonging to the

et Îm ⊆ Im defined by

m = argmin
i∈Im

ui (10)

ith the set of indices Im ⊆ I given by

m = argmin
i∈I

xi. (11)

n particular, if i−m ∈ Îm then it is still chosen im = i−m , where i−m
s the minimum agent at the previous time-step. Otherwise im is
rbitrarily chosen as an element of the set defined by (10).
We now prove that the maximum (minimum) opinion cannot

ncrease (decrease) in time. This is a known result for the classical
symmetric heterogeneous HK model, see Motsch and Tadmor
2014), but it must be proved to be valid in our case where a
hresholds variation policy has been introduced. A direct conse-
uence of this fact is that the evolution of the measure of the
onvex hull of the opinions is non-increasing over time.
5

emma 6. Consider the system (2) with Assumptions 5. Then for
ny ϵ ≥ 0 and γ ≥ 0 the inequalities
+

i+M
≤ xiM (12a)

x+
i+m
≥ xim (12b)

nd
+

i+M
− x+

i+m
≤ xiM − xim (13)

old, where x• := x•(k), x+• := x•(k+ 1), i• := i•(k), i+• := i•(k+ 1),
he symbol • is used for any subscript, for all k ∈ N0.

roof. First assume that the maximum agent does not change for
wo consecutive time-steps, i.e. i+M = iM which implies x+

i+M
= x+iM .

Since the maximum agent can only have neighbors with lower
opinions, the inequality (12a) directly follows from (2).

Consider the case when at the next time-step the maximum
agent changes, i.e. i+M ̸= iM . In the case that xiM − xi+M > ϵ, an
upper bound of the opinion of the agent i+M at the next time-step
can be obtained by assuming that the opinion of i+M at the next
time-step, i.e. x+

i+M
, is the effect of his connection with νU agents

with maximum opinion xiM . From (2) one obtains

x+
i+M
≤

1
νU + 1

(νUxiM + xi+M )

= xiM −
1

νU + 1
(xiM − xi+M ) ≤ xiM (14)

where we used the condition xiM ≥ xi+M which is by definition of
the maximum agent at each time-step. In the case that xiM−xi+M ≤
ϵ it is NUi+M

(x) = 0 and NLi+M
(x) ≥ 0. If NLi+M

(x) = 0 it is x+
i+M
= xi+M ≤

xiM . Otherwise x+
i+M

< xi+M ≤ xiM . Then (12a) is verified.
In order to prove (12b), let us assume that the minimum agent

does not change for two consecutive time-steps, i.e. i+m = im
which implies x+

i+m
= x+im . Since the minimum agent can only

have neighbors with larger opinions, the inequality (12b) directly
follows from (2). With an analogous procedure to that presented
for the maximum agent one can prove that (12b) holds also when
the minimum changes over time, i.e. i+m ̸= im. Indeed, in the case
that xi+m − xim > ϵ a lower bound of the opinion of the agent i+m
t the next time-step can be obtained by considering x+

i+m
to be

etermined by νL agents with minimum opinion xim . From (2) one
btains

+

i+m
≥

1
νL + 1

(νLxim + xi+m )

= xim −
1

νL + 1
(xim − xi+m ) ≥ xim (15)

here we used the condition xim ≤ xi+m which is by definition
f the minimum agent at each time-step. In the case that xi+m −

im ≤ ϵ it is NLi+m
(x) = 0 and NUi+m

(x) ≥ 0. If NUi+m
(x) = 0 it is

x+
i+m
= xi+m ≥ xim . Otherwise x+

i+m
> xi+m ≥ xim . Then (12b) is verified.

From (12b) one can write −x+
i+m
≤ −xim and by adding (12a)

the validity of (13) at any time-step directly follows. □

In the following we show that if the maximum (minimum)
agent changes from one time-step to the next, then the maximum
(minimum) opinion is strictly decreasing (increasing).

Theorem 7. Consider the system (2) with Assumptions 5. Then, for
any ϵ ≥ 0 and γ ≥ 0 the following implications

i+ ̸= iM H⇒ x++ < xi (16a)
M iM
M
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+

m ̸= im H⇒ x+
i+m

> xim (16b)

hold, where x• := x•(k), x+• := x•(k+ 1), i• := i•(k), i+• := i•(k+ 1),
the symbol • is used for any subscript, for all k ∈ N0.

Proof. We first verify the implication (16a). Consider the maxi-
mum agents at two consecutive steps, i.e. iM and i+M , and suppose
that i+M ̸= iM .

Firstly, let us consider the case xiM > xi+M . If xiM − xi+M > ϵ, by

repeating the considerations used for (14), the inequality (16a)
directly follows because xiM − xi+M > 0. If xiM − xi+M ≤ ϵ, it
has been shown in the proof of Lemma 6 that x+

i+M
≤ xi+M , which

implies (16a).
We now show that each agent i ∈ IM \ {iM}, where IM is

given by (8), cannot be the maximum agent at the next time-step.
According to (9) it is ℓi ≥ ℓiM , for all agents i ∈ IM . Therefore,
since xi = xiM for all i ∈ IM , it is NUi (x) = NUiM

(x) = ∅ and
NLi (x) ⊇ NLiM

(x). Then it is NLi (x) ≥ NLiM
(x) for all i ∈ IM , i.e. the

maximum agent has the minimum number of lower neighbors
within the set IM and all lower neighbors of iM are also neighbors
of any agent i with i ∈ IM \ {iM}. For all i ∈ IM such that NLi (x) >

NLiM
(x), from (2) it will be x+i < x+iM and then any of such agents

cannot be the maximum at the next step. For all i ∈ IM \ {iM}
such that NLi (x) = NLiM

(x) > 0, it will be NLi (x) = NLiM
(x) and

from (2) it is x+i = x+iM , however any of such agents cannot be
the maximum at next step because the maximum selection rule
with (9) would choose i+M = iM . Finally for all i ∈ IM \ {iM}
such that NLi (x) = NLiM

(x) = 0 it will be ℓ+i ≥ ℓ+iM because it
was ℓi ≥ ℓiM , all such lower bounds will be increased by the
same amount γ , and the maximum selection rule with (9) would
choose i+M = iM .

The proof of (16b) can be easily obtained by applying similar
arguments to the minimum agent and the corresponding sets. □

An interesting consequence of Theorem 7 is that if i+M ̸= iM
(i+m ̸= im) and the agent iM (im) returns to be the maximum
(minimum) agent in any future time-step he will have an opinion
lower (larger) than xiM (xim ).

5. Practical clustering conditions

The system (2) with the policy defined by Algorithm 1 and
Algorithm 2 is well posed. Indeed, it can be easily verified that
the system has a unique solution for each set of initial conditions
xi(0) ∈ [0, 1], ℓi(0) ∈ [ϵ, ℓmax], ui(0) ∈ [ϵ, umax], i ∈ I, and for
any small ϵ ≥ 0, γ ≥ 0, νL ∈ {1, . . . ,N − 1}, νU ∈ {1, . . . ,N − 1},
ℓmax ∈ [ϵ, 1], umax ∈ [ϵ, 1]. In the following we exclude the trivial
case ℓmax = umax = ϵ which corresponds to all opinions being
constant for all k ∈ N0.

Agents opinions which satisfy the conditions of constant prac-
tical consensus or those of constant practical clustering are steady
state solutions of the system (2) by definition. We now show that
constant practical clusters in the sense of Definition 4 with ϵc = ϵ
are the only possible steady state solutions with constant opin-
ions.

Lemma 8. Consider the system (2) with Assumptions 5. Then
for any ϵ ≥ 0 and γ > 0, any steady state solution with
constant opinions is a constant practical clustering as in Definition 4
with ϵc = ϵ. Moreover, the distance between two practical clusters
is such that

|x̂i − x̂j| ≥ bmax (17)

with
bmax = max{ℓmax, umax}, (18)

6

for any i ∈ Σµ1 , j ∈ Σµ2 , µ1 ̸= µ2, and the number of practical
clusters M satisfies the inequality

M ≤
⌊
xiM (0)− xim (0)+ bmax

bmax

⌋
. (19)

Proof. Assume by contradiction that there exists a constant
solution of the system (2) satisfying (6) and not being a practical
clustering. Suppose bmax = ℓmax, i.e. ℓmax ≥ umax. Let us consider
the maximum opinion among all agents, say x̂îM1

, and say Σ1 ⊆ I
the set of indices such that x̂îM1

− x̂i ≤ ϵ with i ∈ I. By
efinition it is φîM1 i

(x̂îM1
, x̂i) = 0 for all i ∈ Σ1 \ {îM1}. Any agent

n Σ1 does not have upper neighbors and he cannot interact with
ny lower neighbor otherwise he would decrease his opinion
y contradicting the constant steady state assumption. Therefore
ccording to Algorithm 2 the thresholds of all agents in Σ1 will
ncrease until they will be equal to ℓmax at the finite time-step

¯1 = k̂+

⌈
ℓmax −min{ℓ̂i}i∈Σ1

γ

⌉
. (20)

s a consequence it must be

ˆj ̸∈ (min{x̂i}i∈Σ1 − ℓmax, x̂îM1
− ϵ) (21)

or all j ∈ I, i.e. there are no agents outside Σ1 with opinions
closer than ℓmax to the opinions of the agents in Σ1.

Let us indicate with îM2 the agent having the constant steady
tate opinion given by x̂îM2

= max{x̂i}i∈I\Σ1 , and say Σ2 ⊂ I the
et of indices of the agents similar to îM2, i.e. x̂îM2

− x̂i ≤ ϵ for
ll i ∈ I \ Σ1. Since ℓmax ≥ umax all agents in Σ2 do not have
pper neighbors. Therefore it must be x̂j ̸∈ (x̂îM2

, x̂îM2
+ umax) for

ll j ∈ I. By combining these expressions with (21), it follows that
ˆj ̸∈ (x̂îM2

, x̂îM1
− ϵ) for all j ∈ I, which implies

ˆj ̸∈ (min{x̂i}i∈Σ1 − bmax, x̂îM1
− ϵ) (22)

or all j ∈ I. By iterating the arguments above one obtains

ˆj ̸∈ (min{x̂i}i∈Σµ − bmax, x̂îMµ
− ϵ) (23)

or all j ∈ I, with

ˆ îMµ
= max{x̂i}i∈I\⋃µ−1

m=1 Σm
(24)

.e. any steady state solution with constant opinions must be a
ractical clustering according to Definition 4.
The inequality (17) directly follows from (23). For the case

max = umax analogous arguments can be applied by starting from
he minimum agent.

The inequality (19) comes from Definition 4 and the prop-
rty (17) which includes (5). Since from Lemma 6 it is xi ∈
xim (0), xiM (0)] for all i ∈ I and for all k ∈ N0, being M the
umber of clusters, there must be at mostM−1 intervals between
ny two practical clusters of minimum amplitude equal to bmax.
n the other hand, each practical cluster can also correspond to
ll agents of the cluster having the same opinion. Therefore, it
ust be (M − 1)bmax ≤ xiM (0)− xim (0), from which (19) directly

follows. □

It should be noticed that in Lemma 8 it is assumed that γ is
strictly positive. In the case γ = 0 by using similar arguments
of Lemma 8 it can be easily proved that the minimum distance
between pairs of clusters will be min{ℓi(0), ui(0)}i∈I .

6. Large thresholds and practical consensus

In this section we analyze the opinion dynamics when the

upper bound of the thresholds is sufficiently large. In particular,
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e consider the case that either ℓmax or umax are such that bmax
is larger or equal to the difference between the maximum and
minimum initial opinions. If the initial conditions are not known,
one can choose ℓmax or umax equal to 1, i.e. bmax = 1.

In the following we consider the not restrictive case that
among all agents’ initial opinions at least one is strictly larger
than xim (0) and strictly smaller than xiM (0). A direct consequence
of this assumption is that the system cannot exhibit practical
clustering with more than one cluster, i.e. any steady state so-
lution with constant opinions must be a practical consensus. The
result below proves the convergence to such a solution for almost
all initial conditions.

Theorem 9. Consider the system (2) with Assumptions 5, xῑ(0) ∈
(xim (0), xiM (0)) for some ῑ ∈ I and

bmax ≥ xiM (0)− xim (0) (25)

with bmax given by (18). Then, for any ϵ > 0 and γ > 0 the system
converges to a constant practical consensus with ϵc = ϵ.

Proof. From (25) and (19) in Lemma 8 it follows that any
practical clustering must have M ≤ 2. By using (17) in Lemma 8
and (12) in Lemma 6, the only possibility of having M = 2 is that
bmax = xiM (0)− xim (0) and

xi = xi(0) ∈ {xim (0), xiM (0)} (26)

for all i ∈ I and for all k ∈ N0. This situation cannot occur if there
exists at least one initial opinion xῑ(0) ∈ (xim (0), xiM (0)) for some
ι ∈ I which contradicts (26). Therefore, the practical clustering,
if any, must be a practical consensus, i.e. M = 1.

From Lemma 6 it follows that the difference xiM − xim , which
is bounded in [0, 1], is also non-increasing. From the theorem
of convergence of bounded monotone sequences, the sequence
{xiM − xim}k=0,1,... is convergent to its infimum, say σ̄ , which
depends on the initial conditions xi(0), ℓi(0), ui(0), i ∈ I. Clearly
if σ̄ ∈ [0, ϵ] the proof is complete. We now show that it is not
possible to have σ̄ > ϵ.

The convergence property implies that it must be

xiM − xim ≥ σ̄ (27)

or any time-step. The non-increasing property of the sequence
mplies that for any δ > 0 there exists a finite time-step k̂ such
hat x̂îM − x̂îm ≤ σ̄ + δ. Without loss of generality one can choose

δ < ϵ
2 . We now show that if σ̄ > ϵ there would exist a finite

h ∈ N0 such that

x̂+h
î+hM
− x̂+h

î+hm
< σ̄ (28)

thus contradicting (27). Clearly if σ̄ ∈ [0, ϵ], the condition (28)
can never be satisfied because as soon as the measure of the
convex hull of the opinions becomes less than or equal to ϵ all
opinions will remain constant for any future time-step.

The following three cases related to the maximum agent îM
at k̂ are possible: (i) he is interacting with some lower neigh-
bor and he remains the maximum at next time-step, (ii) he is
not interacting with lower neighbors and (as a consequence) he
remains the maximum agent for some future time interval, (iii)
he is interacting with some lower neighbor and at next step the
maximum agent changes.

In the case (i) the agent îM is interacting with some lower
neighbor and it will be

x̂+
îM

<
1
2

(
x̂îM + x̂îM − ϵ

)
= x̂îM −

ϵ

2
. (29)

f î+M = îM , by using (29) and (12b) it will be

ˆ
+
+ − x̂++ = x̂+ − x̂++ < x̂ˆ −

ϵ
− x̂++
îM îm îM îm iM 2 îm

7

≤ x̂îM −
ϵ

2
− x̂îm ≤ σ̄ + δ −

ϵ

2
< σ̄ (30)

which corresponds to (28) with h = 1.
In the case (ii) the agent îM is not interacting with any lower

neighbor and he remains the maximum agent for some finite time
interval, say ∆, by increasing his lower threshold until he will
eventually interact with a lower neighbor, i.e. î+hM = îM for some
h = 1, . . . , ∆ with

∆ ≤

⌈
σ̄ + δ − ℓ̂îM

γ

⌉
. (31)

f î+(∆+1)M = îM one can repeat the argument above and (28) holds
ith h = ∆+ 1. Otherwise, if î+(∆+1)M ̸= îM the scenario (iii) must

be considered.
In the case (iii) the maximum agent îM is interacting with some

lower neighbor but does not remain the maximum at the next
time-step. Then, by using Theorem 7 it is x̂+

î+M
< x̂îM . Moreover it

s

+h
îM

<
1

νU + 1

(
xîM −

ε

2
+ νUxîM

)
= xîM −

ε

2(νU + 1)
(32)

for any h ≥ 1. The number of the time-steps (not necessarily
consecutive), at which the agent îM is the maximum and his
opinion has not yet decreased by at least ϵ/2, is upper bounded
by ∆max + νU + 1 where

∆max =

⌈
σ̄ + δ −min{ℓ̂i}i∈I

γ

⌉
. (33)

ow we can apply to î+M the arguments presented above for îM .
ince the number of agents is finite, by using (32) the inequal-
ty (28) will be satisfied for some

≤ N(∆max + νU + 1). (34)

e have shown that in all cases (i), (ii) and (iii) for σ̄ > ϵ the
ondition (28) will be eventually satisfied for some finite h ≥ 1
hich contradicts (27). This means that the system eventually
eaches the practical consensus and the proof is complete. □

Note that in Theorem 9 ϵ is strictly positive. The arguments
sed in the proof above cannot be easily extended to the case
= 0, which represents a further motivation for using the

ractical consensus concept introduced in this paper. Moreover,
he hypothesis γ > 0 implies that there exists a finite time-step
uch that the heterogeneity of the model is lost, i.e. ℓi = ℓmax and
i = umax for all i ∈ I. On the other hand, the practical consensus
ay be reached before (asymmetric) homogeneity is achieved.
By using Theorem 9, an upper bound on the convergence time

o the practical consensus can be determined, so as formalized by
he following corollary.

orollary 10. Consider the system (2) with Assumptions 5, xῑ(0) ∈
xim (0), xiM (0)) for some ῑ ∈ I, and (25). Then, for any ϵ > 0 and

> 0 the convergence time, say kc ∈ N0, to a constant practical
onsensus is such that

c ≤ N(min{∆M , ∆m} +∆ϵ) (35)

here

M =

⌈
xiM (0)− xim (0)−min{ℓi(0)}i∈I

γ

⌉
, (36)

∆m =

⌈
xiM (0)− xim (0)−min{ui(0)}i∈I

γ

⌉
, (37)

∆ϵ =

⌈
xiM (0)− xim (0)− ϵ

ϵ
2(max{νL,νU }+1)

⌉
. (38)
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s

roof. By applying the considerations used in the proof of The-
rem 9 for (34) and by replacing σ̄ + δ with xiM (0) − xim (0) one
an straightforwardly obtain an upper bound ∆M for the sum of
he time intervals in which the maximum agent of each interval
oes not change his opinion, which can be expressed by (36).
nalogously, an upper bound ∆m for the sum of the time intervals
n which the minimum agent of each interval does not change
is opinion can be expressed by (37). The measure of the convex
ull of the opinions is constant when both the maximum and
he minimum agents do not change their opinions. Therefore,
n upper bound on the sum of the time intervals in which the
easure of the convex hull of the opinions remains constant is
iven by min{∆M , ∆m}.
If the maximum agent or the minimum agent change their

pinions, by using (32) in the proof of Theorem 9 the mea-
ure of the convex hull reduces at least by an amount equal
o ϵ/(2max{νL, νU } + 2). Therefore an upper bound for the to-
al time-steps in which the measure of the convex hull of the
pinions decreases up to ϵ is given by (38).
By combining (36)–(38), the convergence time to the practical

onsensus must satisfy the inequality (35). □

The way how the upper bound expressed by (35) has been
btained provides also its interpretation. In particular, the num-
er of future time-steps (not necessarily consecutive), at which
he agent iM (im) is the maximum (minimum) and his opinion
is equal to xiM (xim ), is upper bounded by ∆M (∆m). Moreover,
he number of future time-steps (not necessarily consecutive) for
he opinion of iM to decrease until the similarity interval of im
s reached is upper bounded by ∆ϵ . By repeating the arguments
bove for the N agents, an upper bound of the number of time-
teps at which the convex hull of the opinions remains constant is
iven by N min{∆M , ∆m}, while an upper bound of the number of
ime-steps at which the convex hull of the opinions is decreasing
nd such that all opinions reach the same similarity interval is
iven by N∆ϵ .

. Stubbornness

An agent identified with a generic index s ∈ I is said a
tubborn if he is anchored to his initial opinion, i.e. xs = xs(0)
for all k ∈ N0 for some s ∈ I. By definition, a stubborn is not
influenced by other opinions, i.e. in (2) it is φsj(xs, xj) = 0 for all
j ∈ I \ {s}.

A stubborn agent is characterized by ℓs = ϵ and us = ϵ for
all k ∈ N0 which implies φ̄sj(xs, xj) = 0 for all j ∈ I \ {s}, see (7).
Algorithm 1 sets for the stubborn φss = 1 and φsj = 0 for all
j ∈ I \ {s} because PLs and PUs are empty, therefore NLs and
NUs are equal to 0. The thresholds variation strategy described by
Algorithm 2 cannot be applied to the stubborn if γ > 0, otherwise
his thresholds would increase and the conditions ℓs = ϵ and us =

ϵ for all k ∈ N0 would not be valid. In other words, the system (2)
with the policy defined by Algorithm 1 and Algorithm 2 does not
include the presence of stubborn agents. To do so, Algorithm 2 has
to be applied for all agents i ∈ I \ {s}. In this section we analyze
the influence of the presence of a stubborn on the results proved
in the previous sections, and verify their validity by introducing
extra conditions if required.

For what concerns the properties of the maximum and mini-
mum agents illustrated in Section 4, it is easy to verify that the
results in Lemma 6 hold also in presence of a single stubborn
among the agents. In order to show that, we can consider two
cases. First, if iM ̸= s, where s identifies the stubborn, for all
k ∈ N0 the same considerations of the proof of Lemma 6 can
be directly applied. Otherwise, if at some time-step iM = s, since
x+s = xs, it follows x+iM = xiM and by combining this condition with
the dynamics (2), then (12a) holds. By applying similar arguments
8

to the minimum agent it follows that the inequality (12b) holds
also in presence of a stubborn. As a consequence, the result on the
non-increasing measure of the convex hull of the opinions proved
in Lemma 6 is still valid also in the presence of a stubborn.

The results on the maximum and minimum opinions proved
in Theorem 7 can be shown to hold also in the presence of a
stubborn for k > 0. In particular, if iM = s it is not possible that
i+M ̸= iM because x+s = xs by definition and the algorithm would
select the agent s as the maximum agent according to (9), since
he is characterized by the minimum lower threshold, i.e. ℓs = ϵ.
Therefore if iM = s at some time-step, the maximum agent will
remain the same in any future time-step. The conditions i+M = s,
i+M ̸= iM and xiM > xs, conversely, could occur when the agent iM
is influenced by lower neighbors that decrease his opinion such
that x+iM ≤ x+s . Since x+s = xs, it follows directly x+s < xiM ,
corresponding to (16a). By applying similar arguments to the
minimum agent it follows that the inequality (16b) holds also in
presence of a stubborn.

As regards the steady state solutions, the practical clustering
results in (17)–(19) of Lemma 8 hold, if the practical cluster
including the stubborn contains at least another agent. Otherwise,
when the stubborn is the unique agent in a cluster, the distance
from another cluster is such that

|x̂s − x̂j| ≥ βmax (39)

with

βmax = min{ℓmax, umax} (40)

for all j ∈ I \ {s}. In particular, the cluster including the stubborn
must have a distance not smaller than βmax from the closest
cluster and not smaller than bmax from the others. On the other
hand each practical cluster can also correspond to all agents of
the cluster having the same opinion. Therefore it must be

(M − 2)bmax + βmax ≤ xiM (0)− xim (0) (41)

from which the number of practical clusters when the stubborn
is the unique agent in a cluster satisfies the inequality

M ≤
⌊
xiM (0)− xim (0)+ 2bmax − βmax

bmax

⌋
. (42)

We are now ready to prove the convergence of the opinions
to the practical consensus around the stubborn provided that
sufficiently large thresholds bounds are selected.

Theorem 11. Consider the system (2) with Assumptions 5 for all
i ∈ I \ {s} where s is the index of the stubborn, xs ∈ (xim (0), xiM (0))
and

βmax > max{xiM (0)− xs, xs − xim (0)} (43)

with βmax given by (40). Then, for any ϵ ≥ 0 and γ > 0 the system
converges to a practical consensus with ϵc = ϵ around the stubborn
opinion in finite time.

Proof. We first prove that if the inequality (43) holds, any steady
state solution must be a practical cluster around the stubborn.
Assume by contradiction that there exists a steady state solution
of the system (2) at a time instant k̂ ∈ N0 such that

x̂+hi − xs > ϵ (44)

for some i ∈ I, for all h ∈ N0. Since the non-increasing property
of the measure of the convex hull of the opinions holds also in
the presence of a stubborn, it must be xim (0) ≤ x̂+hi ≤ xiM (0).
According to Algorithm 2 at least the maximum agent which
might satisfy (44) would increase his thresholds until reaching a
value equal or larger to β in a finite number of steps. Therefore
max
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uch agent would interact with the stubborn and change his
pinion by contradicting the steady state assumption.
In order to prove the convergence to the practical consensus

round the stubborn one can use similar arguments of Theorem 9.
f iM ̸= s and im ̸= s for all k ∈ N0 the same considerations used
n the proof of Theorem 9 hold. Otherwise, if at some time-step it
s iM = s (im = s) one can use the arguments of Theorem 9 with
the consideration that the maximum (minimum) agent does not
interact with other agents, but the minimum (maximum) agent is
influenced at least by an upper (lower) neighbor and the measure
of the convex hull decreases. □

Remark 12. By using arguments similar to Theorem 9, it is easy
to prove that the results in Theorem 11 hold also by relaxing
the condition (43) with a non-strict inequality, provided that
there exists at least one agent whose initial condition belongs to
the interval (xs, xiM (0)) and another agent with initial conditions
belonging to the interval (xim (0), xs).

8. Numerical experiments

In this section we provide a numerical analysis of transient and
steady state behaviors of the system (2) with the policy described
by Algorithm 1 and Algorithm 2. For simplicity, we consider the
same initial values for the thresholds of all agents, i.e. ℓi(0) = 0.10
and ui(0) = 0.10 for all i ∈ I. This choice does not affect the
heterogeneity of the network because during transient the policy
will determine different variations of the thresholds among the
agents. We consider N = 100 agents with uniformly distributed
initial opinions xi(0) ∈ [0, 1], i ∈ I. Other policy parameters
common to all simulations are ϵ = 0.01 and γ = 0.03.

Fig. 2 shows the results obtained with and without the pro-
posed policy. In the case (a) the thresholds are constant. The
structure of the example allows one to apply Lemma 8 by con-
sidering ℓmax = umax = 0.10, which implies a distance value
among the clusters not smaller than 0.10. The numerical simu-
lation confirms the results, i.e. there are three practical clusters
with a minimum distance equal to 0.20. The second and third
plots show that the thresholds variation policy determines a
reduction of the number of practical clusters. Moreover in (b) the
distance between the two practical clusters is larger than ℓmax in
agreement with the inequality (17) of Lemma 8. In the last case,
since the conditions of Theorem 9 hold, the practical consensus is
reached. The opinions of the agents in the same practical cluster
and the practical consensus do not have a unique common value
but their relative distance is less than ε. Moreover, as stated in
Lemma 6 the opinions evolution shows a non-increasing measure
of their convex hull. The distribution of the steady state constant
opinions x̂i, i ∈ I, for different numerical tests corresponding
to different values of ℓmax = umax and uniform initial opinions
is shown in Fig. 3. The color denotes the number of agents
which are included within a range of opinions of amplitude equal
to 0.05. By increasing ℓmax and umax the number of practical
clusters decreases. Moreover, the practical consensus is reached
for ℓmax = umax ≥ 0.18. The inequality (19) in Lemma 8 leads to
M ≤ 5 which is verified for all simulations.

The sensitivity to different numbers of maximum neighbors
can be analyzed through the numerical results shown in Fig. 4.
In all numerical tests, the sufficient conditions of Theorem 9 hold
and the practical consensus is always reached. The average value
of the steady state opinions is shown to be decreasing (increasing)
with respect to νL (νU ); the same trend can be observed for fixed
νL and ui(0) by choosing larger values of ℓi(0) (or, equivalently,
by choosing smaller values of ui(0), with fixed νL and ℓi(0)). For
νL = 0 (νU = 0), the maximum (minimum) agent becomes a
stubborn and the opinions of all agents converge to the similarity
9

Fig. 2. Agents opinions time evolutions in the presence of the proposed policy:
(a) only Algorithm 1 is applied, (b-c) complete policy implementation. The
parameters are: νL = νU = 15 in all tests, ℓmax = 0.5 and umax = 0.2 in (b),
ℓmax = iM (0)− im(0) and umax = min{ℓmax, 0.5} in (c).

Fig. 3. Distribution of the constant steady state agents opinions x̂i , i ∈ I, by
varying ℓmax = umax ∈ [0.05, 0.25], νL = νU = 20 and a uniform distribution of
initial opinions.

Fig. 4. Mean values of the averages of the steady state opinions corresponding
to 100 runs with νL + νU = 100, ℓmax = umax = 1 and for different values of
he initial thresholds: ℓi(0) = 0.10 (blue), ℓi(0) = 0.15 (yellow), ℓi(0) = 0.50
red), ui(0) = 0.10 (circle), ui(0) = 0.15 (cross), ui(0) = 0.50 (square). (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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Fig. 5. Mean values of the convergence times kc corresponding to 100 runs for
each value of νL = νU and for different values of the initial thresholds, with
ℓmax = umax = 1 and uniform random distributions of initial opinions.

interval of the maximum (minimum) agent. Some curves present,
for νL > Nℓi(0) and νU > Nui(0), i.e. for νL such that ℓi(0) <

L/N < 1 − ui(0), a sort of plateau corresponding to a low
ecreasing rate of the steady state opinion. A justification of this
ehavior can be provided by interpreting Nℓi(0) (Nui(0)) as the

expected number of lower (upper) neighbors, due to the uniform
initial conditions assumption. Finally, for ℓi(0) = ui(0), i ∈ I, and
νL = νU = N/2 the average opinion is equal to 0.50, which is
coherent with the well known preserving average behavior valid
for homogeneous symmetric HK models.

In Fig. 5 it is shown the variation of the convergence time kc
to the practical consensus for different values of the maximum
number of neighbors. For ℓi(0) = ui(0) ≥ 0.30 for all i ∈ I, the
onvergence time is strictly decreasing. Up to νL = νU = 15 the
convergence time is not much influenced by the initial thresholds.
For small initial thresholds the convergence time does not change
significantly after certain values of the maximum number of
neighbors. The upper bound provided by (35) is about two orders
of magnitude larger than the values obtained in the simulations.
Although not directly comparable with our results because of the
different policies adopted, the upper bound of the convergence
time to the consensus proposed in Coulson et al. (2015) is of
O(N3) which is quite larger than our bound. The tendencies in
Fig. 5 do not show the dependence on νL and νU expressed
n the upper bound (38), which is obtained by considering the
orst case scenario of νU upper (νL lower) neighbors pulling up
down) the opinion of iM (im) when he is no longer a maximum
minimum).

The theoretical results regarding the presence of a stubborn
re confirmed by the results shown in Fig. 6. In the scenario (a)
he confidence thresholds are constant and the stubborn eventu-
lly becomes an isolated practical cluster. The proposed policy is
pplied in the test (b) where the practical consensus around the
tubborn opinion is reached, in accordance with Theorem 11.

. Conclusion

The practical clustering and practical consensus concepts in-
roduced in this paper represent a promising approach for the
heoretical analysis of a quite general class of opinion dynamics
epresented by heterogeneous asymmetric HK models. The agents
re characterized by a similarity interval which reproduces the
act that two agents with very similar opinions do not influence
10
Fig. 6. Agents opinions time evolutions in the presence of a stubborn without (a)
and with (b) the proposed policy, with νL = νU = 15 and ℓmax = umax = 1.

ach other. We have proposed an adaptation policy for the con-
idence thresholds based on the interacting neighbors of each
gent. The opinion dynamics under that policy has been proved
o converge in finite time to a maximum number of practical
lusters which corresponds to a practical consensus in the case of
ufficiently large thresholds bounds. A theoretical analysis in the
resence of a stubborn has been also presented. Numerical results
ave confirmed the theoretical findings. Moreover, the theoretical
esults presented in the paper can be applied to (or can recover
he approach to) the classical (heterogeneous or homogeneous)
K model.
The analysis presented in this paper can inspire interesting

uture developments: to consider a more general heterogeneous
ramework with different thresholds bounds for the agents, to
ind sets of initial conditions such that a desired number of
lusters is achieved, to consider weighted and asynchronous con-
ections, to introduce a stubbornness for each agent. Future work
ill also focus on extending the model by allowing homophilous
r heterophilous behaviors for each agent and by applying dif-
erent behaviors along the components of vector state variables.
ll such scenarios, even though requiring major modifications
f the proposed analytical approach, can take advantage from
he similarity interval and practical clustering definitions thus
epresenting directions for future research.
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