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PARABOLIC EQUATIONS AND THE BOUNDED SLOPE

CONDITION

VERENA BÖGELEIN, FRANK DUZAAR, PAOLO MARCELLINI,

AND STEFANO SIGNORIELLO

Abstract. In this paper we establish the existence of Lipschitz-continuous

solutions to the Cauchy Dirichlet problem of evolutionary partial differential

equations {
∂tu− divDf(Du) = 0 in ΩT ,

u = uo on ∂PΩT .

The only assumptions needed are the convexity of the generating function

f : Rn → R, and the classical bounded slope condition on the initial and

the lateral boundary datum uo ∈ W 1,∞(Ω). We emphasize that no growth

conditions are assumed on f and that – an example which does not enter in the

elliptic case – uo could be any Lipschitz initial and boundary datum, vanishing

at the boundary ∂Ω, and the boundary may contain flat parts, for instance Ω

could be a rectangle in R
n.

1. Introduction

Throughout the paper let Ω ⊂ R
n be a bounded, open and convex set and

f : Rn → R a convex integrand. We define the energy functional F : W 1,∞(Ω) → R

by means of

(1.1) F (v) :=

ˆ
Ω

f(Dv)dx.

A by now classical result, following the pioneering paper by Haar [14] and then
Hartman-Nirenberg [15], Stampacchia [31], Miranda [26], Hartman-Stampacchia
[16], which can nowadays be retrieved from textbooks (cf. [13, Chapter 1]), ensures
to given boundary values Uo : ∂Ω → R satisfying the bounded slope condition the
existence of a Lipschitz continuous minimizer u to the variational functional F with
boundary values Uo. We refer to [7, 8, 9, 10, 21, 22, 23, 24] for more recent research
in the context of existence of Lipschitz solutions – bounded slope condition – clas-
sical Calculus of Variations. Surprisingly enough, a time dependent counterpart
to this semi-classical theory is to our knowledge not known so far. Instead, many
sophisticated techniques (such as Galerkin methods, monotone operators, nonlin-
ear semigroup theory, etc.) lead to a huge variety of different existence results.
However, the construction of Lipschitz continuous solutions to evolutionary equa-
tions related to general convex integrands f (without any further assumption on
the growth of the integrand) does not fall into the range of these theories, and
remained an open problem.

The aim of the present paper is to close this gap in the existence theory for
parabolic equations. We present the corresponding parabolic analogue of the above
mentioned elliptic existence result, i.e. the existence of a unique classical solution
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u ∈ L∞(ΩT ) ∩ C0([0, T ];L2(Ω)) with Lipschitz continuous spatial gradient Du ∈
L∞(ΩT ,R

n) to the following Cauchy-Dirichlet problem

(1.2)

{
∂tu− divDf(Du) = 0, in ΩT ,

u = uo ∂PΩT ,

will be established for any given Lipschitz continuous initial datum uo on Ω, whose
restriction to the boundary ∂Ω satisfies the bounded slope condition. Here, and in
the following, the parabolic boundary of the space-time cylinder ΩT := Ω× (0, T )
is defined by

∂PΩT :=
(
Ω× {0}) ∪ (∂Ω× (0, T )) .

Prominent examples of variational integrands which are included in this framework
are the area integrand

f(ξ) =
√

1 + |ξ|2,
integrands with exponential growth, such as

f(ξ) = exp |ξ|2,
or Orlicz type functionals like

f(ξ) := |ξ| log(1 + |ξ|).
Any other convex function f(ξ) not necessarily depending on the modulus of ξ,
without any growth assumption, enters in our theory.

1.1. The class of parabolic Lipschitz solutions. In the parabolic case the for-
mulation of Lipschitz continuous variational solutions accesses certain classes of
functions, which can be interpreted as the parabolic analogue of the Lipschitz func-
tions from the stationary case. In this circumstance we use the identification be-
tween the space of Lipschitz continuous functions C0,1(Ω) and the Sobolev space
W 1,∞(Ω); see Proposition 2.1. Firstly, we define the class

K(ΩT ) :=
{
v ∈ L∞(ΩT ) ∩ C0([0, T ];L2(Ω)) : Dv ∈ L∞(ΩT ,R

n)
}
.

Next, for given L ∈ (0,∞) the class K(L)(ΩT ) is defined by

K(L)(ΩT ) :=
{
v ∈ K(ΩT ) : ‖Dv‖L∞(ΩT ,Rn) ≤ L

}
.

In the sequel we write K(L) for L in the whole range (0,∞], with the meaning
that K(∞) := K. Now, given uo ∈ W 1,∞(Ω) and L such that ‖Duo‖L∞(Ω,Rn) ≤ L,

the subclasses K
(L)
uo (ΩT ) then consist of those v ∈ K(L)(ΩT ) coinciding with uo on

the lateral boundary ∂Ω × (0, T ). Observe that for a.e. t ∈ (0, T ) the restriction
v(t) := v(·, t) of v ∈ K(ΩT ) to the time slice Ω×{t} is of classW 1,∞(Ω). This allows
to define the trace in the classical sense on these good times slices. Following an idea
by Lichnewsky & Temam [19], that was first used in the context of the evolutionary
parametric minimal surface equation, the natural formulation of (1.2) can be given
in terms of variational solutions.

Definition 1.1 (Variational Solutions). Assume that uo ∈ W 1,∞(Ω). A map
u ∈ Kuo(ΩT ), with T ∈ (0,∞), is called a variational solution on ΩT to the
Cauchy-Dirichlet problem (1.2) if and only if the variational inequality¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tv(v − u) + f(Dv)

]
dxdt

+ 1
2‖v(0)− uo‖2L2(Ω) − 1

2‖(v − u)(T )‖2L2(Ω)(1.3)

holds true for any v ∈ Kuo(ΩT ) with ∂tv ∈ L2(ΩT ). Finally, a map u ∈ Kuo(Ω∞)
is termed a global variational solution (or variational solution on Ω∞) if u is a
variational solution on ΩT for all T > 0. �
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1.2. The main results. Our main result concerning the existence of Lipschitz
(with respect to the spatial variable) solutions to the Cauchy-Dirichlet problem is
the following:

Theorem 1.2 (Existence of Lipschitz solutions). Let Ω ⊂ R
n be a bounded, open

and convex set and suppose that f : Ω → R is a convex function, that uo ∈ W 1,∞(Ω)
and that Uo := uo

∣∣
∂Ω

satisfies the bounded slope condition (see Definition 2.2 below)
for some constant Q. Then, there exists a unique global variational solution u on
Ω∞ in the sense of Definition 1.1, satisfying the following gradient bound:

‖Du‖L∞(Ω∞,Rn) ≤ max
{
Q, ‖Duo‖L∞(Ω,Rn)

}
.

Moreover, if f is of class C1, then u is the weak solution to the Cauchy Dirichlet
problem (1.2).

We emphasize that the variational solution is unique even if the integrand f is
convex, but not strictly convex. This includes the case of the total variation, i.e. the
integrand f(ξ) = |ξ| is included in the theorem (apart form the final assertion
concerning the weak form of the parabolic equation).

The existence result is completed by the following assertions on regularity prop-
erties of variational solutions.

Theorem 1.3 (Regularity of variational solutions). Suppose that f : Ω → R is
convex and that uo ∈ W 1,∞(Ω). Then, the variational solution in the sense of
Definition 1.1 on ΩT , T ∈ (0,∞], satisfies

∂tu ∈ L2(ΩT ) and u ∈ C0, 12
(
[0, τ ];L2(Ω)

) ∀ τ ∈ R ∩ (0, T ].

Further, for the time derivative ∂tu there holds the quantitative L2-bound¨
ΩT

|∂tu|2 dxdt ≤ 2|Ω| sup
BL(0)

|f |,

where L ≥ ‖Du‖L∞(ΩT ,Rn). If f is of class C1, then u ∈ C0;1,1/2(ΩT ).

Finally, if the integrand f is more regular, then also variational solutions are
more regular. For a short discussion on this subject we refer to §8.

We note that in general it is not possible to treat functionals depending on x
and u within this context, because u(x) and u(x + h) must be at the same time
parabolic minimizers of the same functional; also u(x) + const, for different values
of the constant, must have this property. This rules out general assumptions on
the integrand. However in the elliptic case the treatment of some special cases has
been possible; cf. [16, 21]. We could then expect that similar results hold in the
parabolic setting too.

1.3. The method of proof. The proof of the classical elliptic result (see for ex-
ample [13]) is divided into three steps. The first step consists in minimizing the
functional F in classes of Lipschitz functions coinciding with the given boundary val-
ues on ∂Ω and possessing a Lipschitz constant below a given fixed number L. This
can be viewed as the solution of an obstacle problem, where the obstacle is given
by a gradient constraint. In general the solutions u(L) of this gradient constrained
obstacle problem are not minimizing among all Lipschitz functions (without the
constraint). However, if Lipu(L) < L, then u(L) minimizes F . The proof of this
fact is the content of the second step. In the third step, the bounded slope condition
with a constant Q is used to ensure that the unique minimizers u(L), i.e. the mini-
mizers to the gradient constrained obstacle problems with threshold L > Q, satisfy
the gradient bound Lipu(L) ≤ Q and therefore are the unique minimizers among
all Lipschitz functions satisfying the prescribed Dirichlet boundary condition.
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Maybe, the purely nature of this variational approach was the reason why a
corresponding parabolic analogue was not derived. This is quite surprising, since a
variational formulation of parabolic problems as variational solutions, an idea going
back to the work of Lichnewsky & Temam [19], was known in the literature since
1978. However, even with the notion of variational solutions at hands, the theories
(time independent versus time dependent) do not seem to have common features.
The missing link (connecting the theories) can be found in the formulation of a
conjecture going back to De Giorgi [12] on the existence of global weak solutions
to the Cauchy problem for nonlinear hyperbolic wave equations, and of Ilmanen’s
proof of Brakke’s existence theorem for motion by mean curvature via elliptic regu-
larization; see [17]. In the latter case solutions to Brakke’s mean curvature flow are
constructed as limits of translative solutions of a variational problem involving the
time variable as a further independent variable. De Giorgi suggested to establish the
existence of solutions to nonlinear wave equations by means of limits of minimizers
of convex variational integrals on R

n × (0,∞). That this conjecture holds true for
wave equations with super-critical nonlinearity of the type utt −Δu = |u|q−2u at
least up to subsequences was proved by Serra and Tilli in [29]. A related approach
has been used in [4] to treat evolutionary problems with variational structure. Sim-
ilar results form a more abstract point of view have been obtained in [1, 2, 25]; see
also the references therein.

In this paper we present a purely variational approach that utilizes the method
of elliptic regularization. More precisely we consider variational functionals

Fε(v) :=

¨
ΩT

e−t/ε
[
1
2 |∂tv|2 + 1

εf(Dv)
]
dxdt

on classes of functions v : ΩT → R defined on the whole space-time cylinder ΩT

satisfying the boundary condition v = uo on the parabolic boundary ∂PΩT , while
on Ω× {T} no boundary values are prescribed. Note, that Fε(v) is strictly convex
on the class of functions satisfying the initial condition v(0) = uo. As can easily
be seen, there are close ties between our functional Fε and the functionals defined
in the works of De Giorgi and Ilmanen. The heuristics behind the approximation
of solutions via elliptic regularization can most easily be explained by formally
computing the Euler-Lagrange equation associated to Fε. The computation shows
that minimizers uε of Fε formally fulfill the elliptic equation

−ε∂ttuε + ∂tuε − divDf(Duε) = 0 in ΩT .

Therefore it is natural to expect, that minimizers uε converge (possible after pass-
ing to a subsequence) to a solution of the Cauchy-Dirichlet problem (1.2). This
indicates a possible strategy for a proof of Theorem 1.2. Since we are interested in
Lipschitz solutions, the method has to be adjusted. In a first step, one would like
to construct variational solutions satisfying a gradient constraint. Here we use the

method of elliptic regularization. We minimize Fε in the class K
(L)
uo (ΩT ), provided

this class is non-empty. This is for example fulfilled if L is chosen large enough,
i.e. L ≥ ‖Duo‖L∞(Ω), in which case the time independent extension of uo to the
whole cylinder ΩT is admissible. Since solutions to obstacle problems in general
will not solve the Euler-Lagrange equation, the heuristics from above has to be car-
ried out on the level of minimizers. This can be achieved by proving certain energy
bounds ensuring the sub-convergence of the sequence of minimizers uε to some limit
function u(L). Using the minimality of uε by direct comparison arguments allows
to establish that u(L) is a solution of the gradient constrained problem.

The second step consists – as in the elliptic case – in the observation that a
variational solution u(L) whose L∞-norm of the spatial gradient is strictly less
than the threshold L, actually solves the unconstrained problem in the sense of
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Definition 1.1. This follows by a direct comparison argument. With this respect,
it is natural to seek for geometric conditions guaranteeing an a priori gradient
bound. It is exactly this point where the classical bounded slope condition enters
the theory. Utilizing a comparison principle for variational solutions it is possible

to show that the constrained minimizers u(L) in K
(L)
uo (ΩT ) with L > Q, where

Q is the constant from the bounded slope condition, satisfy the gradient bound
‖Du(L)‖L∞(ΩT ,Rn) ≤ Q. Together with the previous observation, this proves that

u(L) is the desired variational solution. In case of a differentiable integrand f one
can pass to the Euler-Lagrange equation. Suitable Poincaré type inequalities (in the
interior, the lateral boundary, the initial time, and the intersection of the latter two)
which can be retrieved for instance from [5, 6], imply that the variational solution
belongs to a certain parabolic Morrey-space. A classical result of Da Prato then
yields that u ∈ C0;1, 12 (ΩT ), i.e. the solution is Lipschitz-continuous with respect to
the parabolic metric. Higher regularity can be shown by standard arguments (the
parabolic De Giorgi-Nash-Moser theory and bootstrap arguments), provided f is
higher regular.

Acknowledgments. V. Bögelein was supported by the DFG-Project BO3598/1-1
“Evolutionsgleichungen mit p, q-Wachstum” and P. Marcellini is a member of the
Gruppo Nazionale per l’Analisi Matematica, la Probalità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Notations and Preliminaries

2.1. Notations. For p ∈ [1,∞], n ∈ N and an open set Ω ⊂ R
n, the spaces

Lp (Ω), W 1,p (Ω) and W 1,p
0 (Ω) denote the usual Lebesgue and Sobolev spaces,

respectively. Moreover, for T ∈ (0,∞] , by ΩT we denote the space-time cylinder
Ω× (0, T ). Further, for a set A the characteristic function of A shall be denoted by
χA. Throughout the paper we often use the identification of the class of Lipschitz
continuous functions C0,1(Ω) with the space W 1,∞(Ω). For later usage we recall
the definition of the Lipschitz constant of a continuous function u on Ω:

[u]0,1;Ω := sup
x �=y,x,y∈Ω

|u(x)− u(y)|
|x− y| < ∞.

The connection between the spaces C0,1(Ω) and W 1,∞(Ω) is given in the following
result:

Proposition 2.1. Let Ω ⊂ R
n be a domain. A map u ∈ L∞

loc(Ω) admits a weak
derivative Du ∈ L∞(Ω,Rn) if and only if u is Lipschitz continuous on Ω with respect
to the inner metric dΩ. In this case the (optimal) Lipschitz constant [u]0,1;Ω is given
by ‖Du‖L∞(Ω,Rn). �

In the case of a convex domain Ω the inner metric is the Euclidean distance,
i.e. in this case we have dΩ(x, y) ≡ |x − y| for any x, y ∈ Ω. For a nonconvex set
dΩ is the minimal distance inside the set.

2.2. Bounded slope condition. As in the case of stationary minimization prob-
lems the bounded slope condition plays a fundamental role, since its validity guar-
antees suitable affine comparison functions. These affine functions can be used in
the comparison principle, yielding pointwise estimates from above and below. The
precise definition is as follows:

Definition 2.2. We say that a function U : ∂Ω → R satisfies the bounded slope
condition with constant Q > 0 if for any xo ∈ ∂Ω there exist two affine functions
w−

xo
and w+

xo
with [w−

xo
]0,1 ≤ Q and [w+

xo
]0,1 ≤ Q such that

w−
xo
(x) ≤ U(x) ≤ w+

xo
(x), for any x ∈ ∂Ω
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and w−
xo
(xo) = U(xo) = w+

xo
(xo) holds true. �

If Ω is a uniformly convex, bounded C2-domain and v ∈ C2(Rn), then v
∣∣
∂Ω

satisfies the bounded slope condition; for more details see [13, 26]. A completely
different example, which has no correspondence in the elliptic case and which is
covered in this context, is a Lipschitz initial boundary datum uo defined on a
rectangle in R

n vanishing at the boundary; i.e. the boundary of our set can contain
flat pieces.

The following Lemma shows that, given a Lipschitz continuous function whose
restriction to the boundary satisfies the bounded slope condition, we can tilt the
affine functions from the bounded slope condition in such a way that, on the one
hand the bounded slope condition holds true with a larger constant, and on the
other hand the function itself is squeezed on the whole domain between two affine
functions.

Lemma 2.3. Let uo : Ω → R with [uo]0,1 ≤ Q1 such that U := uo

∣∣
∂Ω

satisfies the
bounded slope condition with constant Qo. Then for any boundary point xo ∈ ∂Ω
there exist two affine functions w−

xo
and w+

xo
with [w−

xo
]0,1 ≤ max{Qo, Q1} and

[w+
xo
]0,1 ≤ max{Qo, Q1} such that

w−
xo
(x) ≤ uo(x) ≤ w+

xo
(x), for any x ∈ Ω

and w−
xo
(xo) = U(xo) = w+

xo
(xo) holds true.

Proof. Consider u : Ω → R with [u]0,1 ≤ Q1 such that U := u
∣∣
∂Ω

satisfies the

bounded slope condition with constant Qo. Let w+
xo

denote an affine function –
which exists since U satisfies the bounded slope condition – coinciding with U at
xo with [w+

xo
]0,1 ≤ Q and U(x) ≤ w+

xo
(x), for any x ∈ ∂Ω. Without loss of generality

we can assume xo = 0 and U(xo) = 0. Further, we can assume Ω ⊂ R
n−1 × R+

and that w+
xo

takes the form w+
xo
(x) = Qxn for some |Q| ≤ Qo. Now, consider

x ≡ (x′, xn) ∈ Ω and denote by (x′, yn) ∈ ∂Ω the unique point in the boundary ∂Ω
with 0 ≤ yn < xn. Then, we have

u(x) ≤ u(x′, xn)− U(x′, yn) + w+
xo
(x′, yn)

≤ Q1(xn − yn) +Qyn

≤ Q1(xn − yn) +Qoyn

≤ max{Qo, Q1}xn.

We now define the affine function w̃+
xo
(x) := max{Qo, Q1}xn. The previous estimate

implies that u(x) ≤ w̃+
xo
(x) for any x ∈ Ω. Moreover, we have U(xo) = 0 = w̃+

xo
(xo)

and u ≤ w+
xo

≤ w̃+
xo

on ∂Ω, i.e. U satisfies the bounded slope condition for the
larger constant max{Qo, Q1}. �

2.3. Mollification in time. In the definition of variational solutions we are not
going to assume any condition on their derivative with respect to time. Therefore,
in general we are not allowed to use them as comparison maps in the variational
inequality (1.3) and a suitable mollification procedure in time is thus needed. To
this end, for X a separable Banach space, an initial datum vo ∈ X and 1 ≤ r ≤ ∞,
let v ∈ Lr(0, T ;X) and define the mollification in time of v for h ∈ (0, T ] and
t ∈ [0, T ] by means of

(2.1) [v]h(t) := e−
t
h vo +

1
h

ˆ t

0

e
s−t
h v(s) ds.

In the applications we are going to use for instance X = Lr(Ω,RN ) and the related
parabolic space Lr(0, T ;Lr(Ω,RN )). One of the features of the mollification in time
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is that [v]h solves the ordinary differential equation

(2.2) ∂t[v]h = 1
h

(
v − [v]h

)
with initial condition [v]h(0) = vo. Note that, since [v]h solves the ordinary differ-
ential equation (2.2) above, then clearly any common membership of both v and its
regularization [v]h to a Banach space is passed also to the time derivative of [v]h.
This fact will be exploited in §5.3 in deriving the uniform a priori bounds for the
sequence of Fε-minimizers uε which later on imply in particular that the variational
solution u possesses a time derivative in L2(ΩT ).

The basic properties of the mollification in time are summarized in the following
lemma (cf. [18, Lemma 2.2] and [3, Appendix B] for the proofs).

Lemma 2.4. Suppose X is a separable Banach space and vo ∈ X. If v ∈ Lr(0, T ;X)
for some r ≥ 1, then also [v]h ∈ Lr(0, T ;X), and [v]h → v in Lr (0, T ;X) as h ↓ 0
if r < ∞. Further, for any to ∈ (0, T ] there holds

‖[v]h‖Lr(0,to;X) ≤ ‖v‖Lr(0,to;X) +
[
h
r

(
1− e−

tor
h

)] 1
r ‖vo‖X .

In the case r = ∞, the bracket [. . .]
1/r

in the preceding inequality has to be inter-
preted as 1. Moreover, ∂t[v]h ∈ Lr (0, T ;X) with

∂t[v]h = 1
h

(
v − [v]h

)
.

If additionally also ∂tv ∈ Lr(0, T ;X), then

∂t[v]h = 1
h

ˆ t

0

e
s−t
h ∂sv(s)ds

and
‖∂t[v]h‖Lp(0,T ;X) ≤ ‖∂tv‖Lp(0,T ;X) .

Finally, if v ∈ C0([0, T ];X), then also [v]h ∈ C0([0, T ];X), [v]h(0) = vo and [v]h →
v in L∞([0, T ];X) as h ↓ 0. �

In the following we want to show that the time mollification of the f -energy
satisfies f([v]h) ≤ [f(v)]h on [0, T ] and [f(v)]h → f(v) in L1(0, T ) as h ↓ 0 if v and
vo are chosen properly. The first estimate will be used frequently throughout the
paper, while the convergence is only needed to show that the variational solution
u is also a variational solution on any subcylinder Ωτ ⊂ ΩT .

Lemma 2.5. Let T > 0 and f : Rn → R be convex. Suppose further that v ∈ K(ΩT )
and vo ∈ W 1,∞(Ω). Then, [v]h ∈ K(ΩT ) with

‖D[v]h‖L∞ ≤ max
{‖Dvo‖L∞ , ‖Dv‖L∞

}
,

f(D[v]h) ∈ L1(ΩT ) and

f(D[v]h) ≤ [f(Dv)]h on ΩT .

Moreover, in the limit h ↓ 0 we have

f(D[v]h) → f(Dv) in L1(ΩT ).

Here, [v]h and [f(Dv)]h are defined according to (2.1) with vo and f(Dvo) as initial
datum.

Proof. The first assertion is a direct consequence of the definition of the mollifi-
cation, since for t ∈ (0, T ) we have

‖D[v]h(t)‖L∞ ≤ e−
t
h ‖Dvo‖L∞ + 1

h

ˆ t

0

e
s−t
h ‖Dv(s)‖L∞ds

≤ max
{‖Dvo‖L∞ , ‖Dv‖L∞

}
=: R.
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In turn, this implies f(D[v]h) ∈ L1(ΩT ). Observing that

1

h
(
1−e−

t
h

)
ˆ t

0

e
s−t
h ds ≡ 1,

usage of the convexity of f gives the estimate

f
(
D[v]h

) ≤ e−
t
h f(Dvo) +

(
1 + e−

t
h

)
f

(
1

h(1+e−
t
h )

ˆ t

0

e
s−t
h Dv(s) ds

)
≤ e−

t
h f(Dvo) +

1
h

ˆ t

0

e
s−t
h f(Dv(s)) ds

=
[
f(Dv)

]
h
.

Since D[v]h is strongly convergent in Lq(ΩT ,R
N ) for any q ∈ [1,∞) to Dv as h ↓ 0,

we can extract a not relabelled subsequence such thatD[v]h → Dv pointwise almost
everywhere on ΩT . Therefore, the continuity of f implies the pointwise almost
everywhere convergence f(D[v]h) → f(Dv). Taking into account that |f(D[v]h)| ≤
supBR(0) |f |, the dominated convergence theorem implies the strong convergence

f(D[v]h) → f(Dv) in L1(ΩT ) for the chosen subsequence. Note that the limit does
not depend on the subsequence. Therefore, we can repeat the argument starting
with an arbitrary subsequence, proving that the convergence holds for the whole
sequence. �

3. Gradient constrained obstacle problems

In this section we consider variational solutions satisfying a gradient constraint
of the type |Du| ≤ L on ΩT for some constant L > 0. This can be achieved in a
fairly general setting, in particular without assuming the bounded slope condition.
Therefore, we will work with weaker assumptions throughout this section. We
consider a bounded open set Ω ⊂ R

n, a convex integrand f : Rn → R and some
initial datum uo satisfying uo ∈ W 1,∞(Ω).

Definition 3.1 (Variational solutions, gradient constraint). Let L > 0 and uo ∈
W 1,∞(Ω) such that L ≥ ‖Duo‖L∞(Ω,Rn). A map u ∈ K

(L)
uo (ΩT ) with T ∈ (0,∞) is

called variational solution (of the gradient constrained obstacle problem) in K
(L)
uo (ΩT )

if and only if the variational inequality¨
ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tv(v − u) + f(Dv)

]
dxdt

+ 1
2‖v(0)− uo‖2L2(Ω) − 1

2‖(v − u)(T )‖2L2(Ω)(3.1)

holds true for any v ∈ K
(L)
uo (ΩT ) with ∂tv ∈ L2(ΩT ). Furthermore, if T = ∞, a

measurable map u : Ω∞ → R is termed global variational solution of the gradient
constrained obstacle problem if and only if its restriction to any finite cylinder ΩT

with T ∈ (0,∞) is a variational solution in K
(L)
uo (ΩT ). �

Observe that the time independent extension of uo to ΩT , i.e. the map ūo(x, t) :=

uo(x) for (x, t) ∈ ΩT , belongs to the class K
(L)
uo (ΩT ) and satisfies ∂tūo ≡ 0. Hence,

the class of admissible testing functions in (3.1) is non-empty. In the sequel we
establish in a first step, that variational solutions of the gradient constrained prob-
lem in the sense of the preceding definition on the cylinder ΩT with T ∈ (0,∞),
also solve the variational inequality (3.1) on any smaller subcylinder Ωτ ⊂ ΩT with
τ ∈ (0, T ). Note that the following lemmata also apply to variational solutions of
the unconstrained problem in the sense of Definition 1.1. The precise statement is
as follows:
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Lemma 3.2 (Localization in time). Let L ∈ (0,∞], Ω ⊂ R
n be a bounded, open

set, f : Rn → R a convex integrand and uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L, if

L ∈ R, or ‖Duo‖L∞(Ω,Rn) < ∞, if L = ∞, respectively. Suppose that u ∈ K
(L)
uo (ΩT )

is a variational solution in K
(L)
uo (ΩT ) in the sense of Definition 3.1 (respectively

Definition 1.1 in the case L = ∞) on some cylinder ΩT with T ∈ (0,∞). Then, u is

also a variational solution in K
(L)
uo (Ωτ ) on any smaller cylinder Ωτ with τ ∈ (0, T ).

Proof. For θ ∈ (0, τ) we consider the cut-off function

ξθ(t) := χ[0,τ−θ](t) +
τ−t
θ χ(τ−θ,τ ](t).

For v ∈ K
(L)
uo (Ωτ ) satisfying ∂tv ∈ L2(Ωτ ) we define a function vθ : ΩT → R by

vθ := ξθv + (1− ξθ) [u]h ,

where [u]h is defined according to (2.1) with uo and u instead of vo and v, respec-

tively and ξθv has been extended from Ωτ to ΩT by 0. Since vθ ∈ K
(L)
uo (ΩT ) and

∂tvθ ∈ L2(ΩT ) we are allowed to choose vθ as comparison map in (3.1). This yields¨
ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tvθ(vθ − u) + f(Dvθ)

]
dxdt

+ 1
2‖v(0)− uo‖2L2 − 1

2‖([u]h − u)(T )‖2L2 .(3.2)

In the following we want to pass to the limit θ ↓ 0. Therefore, we have a look at
the first two terms on the right-hand side of the previous inequality. The first one
can be rewritten to¨

ΩT

∂tvθ(vθ − u)dxdt

=

¨
Ω×(0,τ−θ)

∂tv(v − u)dxdt+

¨
Ω×(τ,T )

∂t[u]h([u]h − u)dxdt

+

¨
Ω×(τ−θ,τ)

ξ′θξθ
∣∣v − [u]h

∣∣2dxdt+¨
Ω×(τ−θ,τ)

ξ′θ([u]h − u)(v − [u]h)dxdt

+

¨
Ω×(τ−θ,τ)

[
ξθ∂tv + (1− ξθ)∂t[u]h

][
ξθ(v − u) + (1− ξθ)([u]h − u)

]
dxdt

=: Iθ + IIθ + IIIθ + IVθ +Vθ,

where the meaning of the terms Iθ - Vθ is obvious in this context. Note that the
properties of the appearing functions imply

lim
θ↓0

Iθ =

¨
Ω×(0,τ)

∂tv(v − u)dxdt, lim
θ↓0

IIIθ = − 1
2‖(v − [u]h) (τ) ‖2L2 ,

and
lim
θ↓0

Vθ = 0, lim sup
θ↓0

IVθ ≤ ∥∥([u]h − u
)(
v − [u]h

)
(τ)

∥∥
L1 ,

so that

lim sup
θ↓0

¨
ΩT

∂tvθ(vθ − u)dxdt

≤
¨

Ω×(0,τ)

∂tv(v − u)dxdt+

¨
Ω×(τ,T )

∂t[u]h
(
[u]h − u

)
dxdt

− 1
2‖(v − [u]h) (τ) ‖2L2 +

∥∥([u]h − u
)(
v − [u]h

)
(τ)

∥∥
L1 .

The second term appearing on the the right-hand side of the minimality condition
(3.2) is given by¨

ΩT

f(Dvθ)dxdt =

¨
Ω×(τ−θ,τ)

f
(
ξθDv + (1− ξθ)D[u]h

)
dxdt
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+

¨
Ω×(0,τ−θ)

f(Dv)dxdt+

¨
Ω×(τ,T )

f
(
D[u]h

)
dxdt.

Using the convexity of f , it is clear that the second term of the previous equality
tends to 0 as θ ↓ 0, so that

lim
θ↓0

¨
ΩT

f(Dvθ)dxdt =

¨
Ω×(0,τ)

f(Dv)dxdt+

¨
Ω×(τ,T )

f
(
D[u]h

)
dxdt.

Therefore, after passing to the limit θ ↓ 0, the variational inequality (3.2) implies¨
Ωτ

f(Du)dxdt ≤
¨

Ωτ

[
∂tv(v − u) + f(Dv)

]
dxdt

+ 1
2‖v(0)− uo‖2L2 − 1

2

∥∥(v − [u]h)(τ)
∥∥2

L2

+

¨
Ω×(τ,T )

[
∂t[u]h

(
[u]h − u

)
dx+ f(D[u]h)− f(Du)

]
dxdt

− 1
2

∥∥([u]h − u
)
(T )

∥∥2

L2 +
∥∥([u]h − u

)(
v − [u]h

)
(τ)

∥∥
L1 .

From Lemmas 2.4 and 2.5 we know that ∂t[u]h([u]h − u) ≤ 0 and the convergences
[u]h → u in L∞(0, T ;L2(Ω,RN )) and f(D[u]h) → f(Du) in L1(ΩT ) as h ↓ 0.
Therefore, passing to the limit h ↓ 0 in the last inequality, we conclude that u sat-
isfies the variational inequality (1.3) on the subcylinder Ωτ . Since v was arbitrary,
u is therefore a variational solution on the subcylinder Ωτ . �

As application of the localization in time principle from Lemma 3.2 we establish
that variational solutions fulfill the initial condition u (0) = uo in the strong L2(Ω)-
sense. The precise statement is as follows:

Lemma 3.3. Let L ∈ (0,∞], Ω ⊂ R
n a bounded open set, f : Rn → R a convex

integrand and an initial datum uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L, if L ∈ R,
or ‖Duo‖L∞(Ω,Rn) < ∞, if L = ∞, respectively. Then, any variational solution u

in K
(L)
uo (ΩT ) in the sense of Definition 3.1 (respectively Definition 1.1 if L = ∞) on

some cylinder ΩT with T ∈ (0,∞] satisfies

lim
t↓0

‖u (t)− uo‖2L2(Ω) = 0.

Proof. From Lemma 3.2 we know that u fulfills the variational inequality (3.1) on
any subcylinder Ωτ for τ ∈ (0, T ). Moreover, for the time-independent extension

ūo(x, t) := uo(x) of uo we have that ūo ∈ K
(L)
uo (Ωτ ) and ∂tūo ∈ L2(Ωτ ). Therefore,

choosing v = ūo as comparison function in (3.1) yields¨
Ωτ

f(Du)dxdt+ 1
2‖u (τ)− uo‖2L2(Ω) ≤

¨
Ωτ

f(Duo)dxdt = τ

ˆ
Ω

f(Duo)dx < ∞.

Since M := max{‖Du‖L∞(Ωτ ), ‖Duo‖L∞(Ω)} < ∞ (note in the case L < ∞ we have
M ≤ L), this implies

‖u(τ)− uo‖2L2(Ω ≤ 4τ |Ω| sup
BM (0)

|f | ∀ τ ∈ (0, T ).

This proves the claim of the lemma. �
Next, we will establish that any variational solution u to the constrained problem

admits a time derivative ∂tu in a weak sense and that it belongs to L2(ΩT ). Note,
since the case L = ∞ is included in Lemma 3.4, the first assertion in Theorem 1.3
follows as a byproduct.

Lemma 3.4. Let L ∈ (0,∞], Ω a bounded open subset of Rn, f : Rn → R a convex
integrand and an initial datum uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L, if L ∈ R,
or ‖Duo‖L∞(Ω,Rn) < ∞, if L = ∞, respectively. Suppose that u is a variational
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solution in K
(L)
uo (ΩT ) in the sense of Definition 3.1 or Definition 1.1 in the case

L = ∞ on some cylinder ΩT with T ∈ (0,∞]. Then, we have ∂tu ∈ L2(ΩT ) together
with the estimate ¨

ΩT

|∂tu|2dxdt ≤ 2|Ω| sup
BM (0)

f,

where M ≥ max{‖Du‖L∞(ΩT ), ‖Duo‖L∞(Ω)}. In particular, if L < ∞ the previous
estimate holds with M = L.

Proof. From Lemma 3.2 we know that u is also a variational solution on any
subcylinder Ωτ for τ ∈ R ∩ (0, T ]. We define [u]h according to (2.1) with (vo, v)

replaced by (uo, u). Then, [u]h ∈ K
(L)
uo (Ωτ ) and ∂t[u]h ∈ L2(Ωτ ). Therefore, we

are allowed to test the variational inequality (3.1) on Ωτ with the comparison map
v = [u]h. Using also Lemma 2.5 and the fact that 1

2‖([u]h − u)(τ)‖2L2(Ω) ≥ 0, this

implies

−
¨

Ωτ

∂t[u]h
(
[u]h − u

)
dxdt ≤

¨
Ωτ

[
f
(
D[u]h

)− f(Du)
]
dxdt

≤
¨

Ωτ

[
[f(Du)]h − f(Du)

]
dxdt

= −h

¨
Ωτ

∂t[f(Du)]hdxdt

= h

[ ˆ
Ω

f(Duo)dx−
ˆ
Ω×{τ}

[f(Du)]hdx

]
,

where [f(Du)]h is defined according to (2.1) with vo and v replaced by f(Duo)
and f(Du), respectively. We now choose M ≥ max{‖Du‖L∞(ΩT ), ‖Duo‖L∞(Ω)}.
Observe that in the case L < ∞, the choice M = L is possible. Exploiting the fact
that [u]h − u = −h∂t[u]h by Lemma 2.4, this yields the uniform bound¨

Ωτ

∣∣∂t[u]h∣∣2dxdt ≤ 2|Ω| sup
BM (0)

|f | ∀h ∈ (0, τ ],

such that the time derivative ∂tu exists with ∂tu ∈ L2(Ωτ ) for all τ ∈ (0, T ] together
with the quantitative estimate¨

Ωτ

|∂tu|2dxdt ≤ 2|Ω| sup
BM (0)

|f | ∀ τ ∈ (0, T ].

Therefore, if T < ∞, setting τ = T , or otherwise, if T = ∞, letting τ → ∞, shows
the claim that ∂tu ∈ L2(ΩT ) together with the asserted estimate. �

4. Parabolic minimizers and the comparison principle

Observe, that the assertion of Lemma 3.4, i.e. the fact that variational solutions
admit a time derivative ∂tu ∈ L2(ΩT ), allows an integration by parts in the first
term on the right-hand side of the variational inequality (3.1). The integration by
parts shows that¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tu(v − u) + f(Dv)

]
dxdt

holds true for any v ∈ K
(L)
uo (ΩT ) with ∂tv ∈ L2(ΩT ). This motivates the following

definition:

Definition 4.1 (Parabolic minimizer). Let L ∈ (0,∞]. A map u ∈ K(L)(ΩT )
with T ∈ (0,∞) and ∂tu ∈ L2(ΩT ) is called parabolic minimizer (of the gradient
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constrained obstacle problem in the case L < ∞) in K(L)(ΩT ) if and only if the
variational inequality¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tu(v − u) + f(Dv)

]
dxdt(4.1)

holds true for any v ∈ K
(L)
u (ΩT ). Further, if T = ∞, a measurable map u : Ω∞ → R

is termed global parabolic minimizer (of the gradient constraint obstacle problem) if
and only if its restriction to any finite cylinder ΩT with T ∈ (0,∞) is a parabolic
minimizer in K(L)(ΩT ). �

We note that the notion of parabolic minimizers to vector valued integrands with
quadratic growth has its origin in a paper by Wieser [32].

Remark 4.2 (Localization in space). In the proof of the main Theorem 1.2 it is
crucial, that a localization principle with respect to space holds true. By this we
mean that any parabolic minimizer of the gradient constrained obstacle problem in
ΩT , with Ω convex, in the sense of Definition 4.1 is also a parabolic minimizer of
the gradient constrained problem on any smaller subcylinder Ω′ × (0, T ), with Ω′

a convex, open subset of Ω. The proof of this basic fact is elementary and could
be skipped. For completeness reasons we however include the argument, which
is based on the identification of the spaces W 1,∞(Ω) and C0,1(Ω) as explained in
Proposition 2.1. Recall that w ∈ W 1,∞(Ω) with ‖Dw‖L∞(Ω,Rn) ≤ L has a Lipschitz
continuous representative, still denoted by w, with [w]0,1;Ω ≤ L.

Suppose, L ∈ (0,∞) and u ∈ K(L)(ΩT ) with ∂tu ∈ L2(ΩT ) is a parabolic

minimizer in the sense of Definition 4.1. Consider v ∈ K
(L)
u (Ω′

T ). Observe that
v = u on the lateral boundary ∂Ω′× (0, T ). Define the comparison map ṽ : ΩT → R

by

ṽ :=

{
v on Ω′ × (0, T )

u on (Ω \ Ω′)× (0, T )

Clearly, this construction provides us with a map ṽ ∈ L∞(ΩT ) ∩ C0([0, T ];L2(Ω))
such that ∂tṽ ∈ L2(ΩT ). Further, for a.e. t ∈ (0, T ) we have

|ṽ(x, t)− ṽ(y, t)| ≤ L|x− y|
whenever x, y ∈ Ω′ or x, y ∈ Ω \ Ω′. In the case that x ∈ Ω′ and y ∈ Ω \Ω′ we find
z ∈ ∂Ω′ ∩ [x, y], which allows for the estimate (note that v(z, t) = ṽ(z, t) = u(z, t))

|ṽ(x, t)− ṽ(y, t)| ≤ |ṽ(x, t)− ṽ(z, t)|+ |ṽ(z, t)− ṽ(y, t)|
= |v(x, t)− v(z, t)|+ |u(z, t)− u(y, t)|
≤ L|x− z|+ L|z − y| = L|x− y|,

establishing [ṽ(t)]0,1;Ω ≤ L. Observing that ṽ = u on ∂Ω × (0, T ), we have shown

that ṽ ∈ K
(L)
u (ΩT ) and therefore ṽ is admissible in the minimality condition (4.1).

Since ṽ = u on (Ω \ Ω′)× (0, T ), the minimality condition can be re-written as¨
Ω′

T

f(Du)dxdt ≤
¨

Ω′
T

[
∂tu(v − u) + f(Dv)

]
dxdt,

proving that u is a parabolic minimizer in the sense of Definition 4.1 on the sub-
cylinder Ω′

T .
The localization principle in space will be applied to parabolic minimizers u on

ΩT with a bounded, convex open set Ω and its translate uy(x, t) := u(x + y, t) on
Ωy × (0, T ) with Ωy :=

{
x− y ∈ R

n : x ∈ Ω
}
on the intersection

(
Ω∩Ωy

)× (0, T ).
Observe, that the convexity assumptions are clearly fulfilled in this special case. �
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In the next lemma we are concerned with the comparison principle for parabolic
minimizers.

Lemma 4.3 (Comparison principle). Let L ∈ (0,∞] and suppose that Ω ⊂ R
n

is a bounded open set, f : Rn → R a convex integrand and u, ũ ∈ K(L)(ΩT ) with
∂tu, ∂tũ ∈ L2(ΩT ) parabolic minimizers in the sense of Definition 4.1 on ΩT for
some T ∈ (0,∞]. Suppose further that u ≤ ũ on ∂PΩT . Then, we have

u ≤ ũ a.e. in ΩT .

Proof. Let τ ∈ R∩(0, T ]. We define v := min{u, ũ} and w := max{u, ũ} on Ωτ and

v := u, w := ũ on Ω× (τ, T ). We note that v ∈ K
(L)
u (ΩT ) and w ∈ K

(L)
ũ (ΩT ). This

ensures that v is admissible as comparison function in the variational inequality
(3.1) on Ωτ for u and w is admissible in the variational inequality for ũ. Adding
the two resulting inequalities and using that v(0) = uo and w(0) = ũo, we obtain¨

Ωτ

[
f(Du) + f(Dũ)

]
dxdt

≤
¨

Ωτ

[
f(Dv) + f(Dw) + ∂tu(v − u) + ∂tũ(w − ũ)

]
dxdt.(4.2)

We now consider the terms on the right-hand side of (4.2). From the definition of
v and w we have¨

Ωτ

[
f(Dv) + f(Dw)

]
dxdt =

¨
Ωτ

[
f(Du) + f(Dũ)

]
dxdt.

Again, from the definition of v and w, we observe that v − u = −(u − ũ)+ and
w − ũ = (u− ũ)+, so that

∂tu(v − u) + ∂tũ(w − ũ) = −∂t(u− ũ)(u− ũ)+

= −∂t(u− ũ)+(u− ũ)+ = − 1
2∂t(u− ũ)2+,

implying that¨
Ωτ

[
∂tu(v − u) + ∂tũ(w − ũ)

]
dxdt = − 1

2

¨
Ωτ

∂t(u− ũ)2+dxdt

= − 1
2

ˆ
Ω×{τ}

(u− ũ)2+dx.

Joining the preceding estimates with (4.2), we find thatˆ
Ω×{τ}

(u− ũ)2+dx ≤ 0.

Since τ ∈ R∩ (0, T ] was arbitrary, this proves the claim that u ≤ ũ a.e. in ΩT . �
The preceding comparison principle can be used to establish the following max-

imum principle.

Lemma 4.4 (Maximum principle). Let L ∈ (0,∞] and suppose that Ω ⊂ R
n is open

and bounded, f : Rn → R convex and let u, ũ ∈ K(L)(ΩT ) with ∂tu, ∂tũ ∈ L2(ΩT )
be parabolic minimizers in the sense of Definition 4.1 on ΩT for some T ∈ (0,∞].
Then, we have

sup
ΩT

(u− ũ) = sup
∂PΩT

(u− ũ).

Proof. For (x, t) ∈ ∂PΩT we have

u(x, t) = ũ(x, t) + u(x, t)− ũ(x, t) ≤ ũ(x, t) + sup
∂PΩT

(u− ũ).
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Moreover, both u and ũ+sup∂PΩT
(u−ũ) are parabolic minimizers on ΩT . Therefore,

Lemma 4.3 yields that

u ≤ ũ+ sup
∂PΩT

(u− ũ) on ΩT ,

which is the same as

sup
ΩT

(u− ũ) ≤ sup
∂PΩT

(u− ũ).

Since the reversed inequality holds trivially, this proves the claim. �

5. Elliptic regularization

In this section we show, how the method of elliptic regularization can be used to
establish the existence of a variational solution to the gradient constrained obstacle
problem in the sense of Definition 3.1. Let T ∈ (0,∞). For ε ∈ (0, 1] we consider
convex variational integrals of the form

Fε(v) :=

¨
ΩT

e−
t
ε

[
1
2 |∂tv|2 + 1

εf(Dv)
]
dxdt.

In the following, for given uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L we look for a
minimizer of the functional Fε within the function space

K̂(L)
uo

(ΩT ) :=
{
v ∈ K(L)

uo
(ΩT ) : ∂tv ∈ L2(ΩT ), v(0) = uo

}
.

Keep in mind, that functions v ∈ K̂
(L)
uo (ΩT ) belong to the space C0, 12 ([0, T ];L2(Ω)),

due to the L2-bound ‖∂tv‖L2(ΩT ) < ∞, and therefore the initial condition v(0) = uo

holds in the strong L2(Ω)-sense. Observe that the time independent extension of
uo to the cylinder ΩT , i.e. the map ūo(x, t) := uo(x) for (x, t) ∈ ΩT , belongs to the

class K̂
(L)
uo (ΩT ), so that this class is non-empty. Moreover, observe that

Fε(ūo) =

ˆ
Ω

f(Duo)dx

ˆ T

0

1
εe

− t
ε dt

=
(
1− e−

T
ε

) ˆ
Ω

f(Duo)dx ≤ (
1− e−

T
ε

)|Ω| sup
BL(0)

|f |.

Furthermore, mappings v ∈ K̂
(L)
uo (ΩT ) admit the following bound on the time

derivative (note that ‖Dv‖L∞(ΩT ,Rn) ≤ L):

e−
T
ε

¨
ΩT

1
2 |∂tv|2dxdt ≤ Fε(v)− 1

ε

¨
ΩT

e−
t
ε f(Dv)dxdt

≤ Fε(v) +
(
1− e−

T
ε

)|Ω| sup
BL(0)

|f |.(5.1)

Taking an arbitrary point xo ∈ ∂Ω, we have for a.e. t ∈ (0, T ) and x ∈ Ω that

|v(x, t)| ≤ |v(x, t)− v(xo, t)|+ |uo(xo)| ≤ ‖uo‖L∞(Ω) + L diam(Ω),

so that

‖v‖L∞(ΩT ) + ‖Dv‖L∞(ΩT ,Rn) ≤ ‖uo‖L∞(Ω) + L
(
1 + diam(Ω)

)
(5.2)

holds true for any v ∈ K̂
(L)
uo (ΩT ). Finally, for any 0 ≤ t1 < t2 ≤ T we have

(5.3) ‖v(t2)− v(t1)‖2L2(Ω) ≤ (t2 − t1)‖∂tv‖2L2(ΩT ),

which together with (5.2) yields that v is a 1
2 -Hölder-continuous map from [0, T ] to

L2(Ω), i.e. v ∈ C0, 12 ([0, T ];L2(Ω)) holds true for any v ∈ K̂
(L)
uo (ΩT ).
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5.1. Existence of approximations. In this section we establish the existence of
minimizers to the energy functionals Fε.

Lemma 5.1. For any ε ∈ (0, 1], the functional Fε admits a unique minimizer uε

in the class K̂
(L)
uo (ΩT ).

Proof. From (5.1) we obtain the lower bound

Fε(v) ≥ −(
1− e−

T
ε

)|Ω| sup
BL(0)

|f |,

for the Fε-energy of maps v ∈ K̂
(L)
uo (ΩT ). We now consider a minimizing sequence

uj ∈ K̂
(L)
uo (ΩT ), j ∈ N, i.e.

lim
j→∞

Fε(uj) = inf
v∈K̂

(L)
uo (ΩT )

Fε(v) ≤ Fε(ūo) ≤
(
1− e−

T
ε

)|Ω| sup
BL(0)

|f |.

Hence, we can assume without loss of generality that Fε(uj) ≤ |Ω| supBL(0) |f | for
any j ∈ N. Applying (5.1) to the minimizing sequence uj we find that

e−
T
ε

¨
ΩT

1
2 |∂tuj |2dxdt ≤

(
2− e−

T
ε

)|Ω| sup
BL(0)

|f |

holds true for any j ∈ N. The preceding inequality immediately implies the follow-
ing uniform bound for the time derivative:

(5.4) sup
j∈N

¨
ΩT

|∂tuj |2dxdt ≤ 4e
T
ε |Ω| sup

BL(0)

|f |.

From (5.2) we derive the uniform L∞−W 1,∞ bound

(5.5) sup
j∈N

[
‖uj‖L∞(ΩT ) + ‖Duj‖L∞(ΩT )

]
≤ ‖uo‖L∞(Ω) + L

(
1 + diam(Ω)

)
.

Thus, there exist a map uε, which we will denote for simplicity by u throughout
the proof, satisfying

u ∈
⋂
q≥1

Lq(0, T ;W 1,p(Ω)) with ∂tu ∈ L2(ΩT )

and a subsequence of (uj)j∈N
(still denoted this way) such that⎧⎪⎨⎪⎩

uj ⇀ u weakly in Lq(ΩT ) for any q ≥ 1,

Duj ⇀ Du weakly in Lq(ΩT ,R
n) for any q ≥ 1,

∂tuj ⇀ ∂tu weakly in L2(ΩT ).

Observe that by lower-semicontinuity we have that for any q ≥ 1 there holds(
−−
¨

ΩT

|Du|qdxdt
) 1

q

≤ lim inf
j→∞

(
−−
¨

ΩT

|Duj |qdxdt
) 1

q

≤ L,(5.6)

so that ‖Du‖L∞(ΩT ,Rn) ≤ L. Turning our attention to the initial condition, we first
observe from (5.3) and (5.4) that

‖uj(t2)− uj(t1)‖2L2(Ω) ≤ 4e
T
ε |Ω| sup

BL(0)

|f |(t2 − t1)

holds true for any 0 ≤ t1 < t2 ≤ T . Recalling that uj(0) = uo, the last estimate
with t1 = 0 and the weak convergence uj ⇀ u in L2(ΩT ) imply

1
h

ˆ h

0

‖u(t)− uo‖2L2(Ω) dt ≤ lim inf
j→∞

1
h

ˆ h

0

‖uj(t)− uo‖2L2(Ω) dt ≤ 4e
T
ε |Ω| sup

BL(0)

|f |h.
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This, however, yields

lim
h↓0

1
h

ˆ h

0

‖u(t)− uo‖2L2(Ω) dt = 0,

so that u(0) = uo in the usual L2-sense. Finally, the limit map u fulfills on the lateral
boundary ∂PΩT the condition that u(t) = uo for almost every t ∈ (0, T ) in the sense
of traces in W 1,q(Ω), for any q ≥ 1. On the other hand, since u(t) ∈ W 1,∞(Ω) for
a.e. t ∈ (0, T ), for those good time slices u(t) can be uniquely extended to Ω, which
means that u(t) admits a trace in the usual sense. This trace has of course to
coincide with the trace of uo, proving that u(t) = uo on ∂Ω for a.e. t. All together

we conclude that u ∈ K̂
(L)
uo (ΩT ), and it remains to prove that u is indeed the unique

minimizer of Fε in the class K̂
(L)
uo (ΩT ). This, however, follows by means of lower

semicontinuity arguments for the functional Fε with respect to the convergences
above, i.e. by establishing

(5.7) Fε(u) ≤ lim inf
j→∞

Fε(uj) = lim
j→∞

Fε(uj) = inf
v∈K̂

(L)
uo (ΩT )

Fε(v).

Using the weak convergence ∂tuj ⇀ ∂tu in L2(ΩT ) we conclude that¨
ΩT

e−
t
ε |∂tu|2dxdt ≤ lim inf

j→∞

¨
ΩT

e−
t
ε |∂tuj |2dxdt.

Here, we used [13, Thm. 4.3]. The argument concerning the integral involving the
spatial gradient Dv is more involved, however. Since f is convex on R

n, there exists
a Borel-vectorfield λ : Rn → R

n, bounded on compact subsets of Rn, such that

f(w) ≥ f(ξ) + λ(ξ) · (w − ξ) ∀w, ξ ∈ R
n.

Therefore, we have¨
ΩT

e−
t
ε f

(
Duj

)
dxdt ≥

¨
ΩT

e−
t
ε

[
f
(
Du

)
+ λ(Du) · (Duj −Du

)]
dxdt.

Turning to the second term on the right-hand side of the preceding inequality,
we observe that ΩT � (x, t) �→ e−

t
ελ(Du(x, t)) ∈ R

n is bounded and measurable.
Therefore, by the weak convergence Duj ⇀ Du in Lq(ΩT ,R

n) for any q ≥ 1 we
infer

lim
j→∞

¨
ΩT

e−
t
ελ(Du) · (Duj −Du

)
dxdt = 0.

But this implies

lim inf
j→∞

¨
ΩT

e−
t
ε f

(
Duj

)
dxdt ≥

¨
ΩT

e−
t
ε f

(
Du

)
dxdt,

eventually proving the first inequality in (5.7). This proves that u is a minimizer of

Fε in the class K̂
(L)
uo (ΩT ). The uniqueness of u follows, because the term involving

the time derivative ensures the strict convexity of the functional Fε. �

5.2. The minimality condition revisited. In this section we rewrite the min-
imality condition of the approximations uε in a form, which is more useful in the
derivation of uniform bounds for the time derivative and in the limit procedure ε ↓ 0.
For fixed ε ∈ (0, 1] consider testing functions ϕ ∈ L∞(ΩT ) with Dϕ ∈ L∞(ΩT ,R

n)
and ∂tϕ ∈ L2(ΩT ), vanishing on the lateral boundary ∂Ω× (0, T ), and satisfying

(5.8) sup
ΩT

∣∣Duε +Dϕ
∣∣ ≤ L.
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Moreover, let ξ ∈ W 1,∞(0, T ) with 0 ≤ ξ ≤ 1, and δ ∈ (0, e−
T
ε ]. Further, define

σ(t) := δe
t
ε ξ(t) as well as

ϕ̃ε,δ(x, t) := σ(t)ϕ(x, t) ≡ δe
t
ε ξ(t)ϕ(x, t), (x, t) ∈ ΩT ,

while assuming either ξ(0) = 0 or ϕ(0) = 0. Then, set

vε,δ(x, t) := uε(x, t) + ϕ̃ε,δ(x, t) ≡ uε(x, t) + δe
t
ε ξ(t)ϕ(x, t)

and observe that vε,δ ∈ L∞(ΩT ), Dvε,δ ∈ L∞(ΩT ,R
n) and ∂tvε,δ ∈ L2(ΩT ). Fur-

ther, vε,δ = uo on the parabolic boundary ∂PΩT . To conclude vε,δ ∈ K̂
(L)
uo (ΩT ),

i.e. that it is an admissible comparison map in the minimality condition for uε, it
remains to show that supΩT

|Dvε,δ| ≤ L. But, this follows from the fact that vε,δ
is a convex combination of uε and uε + ϕ on every fixed time slice t ∈ [0, T ], the
assumption (5.8) and the fact that 0 ≤ σ(t) ≤ 1 by the choice of δ above. The
minimality of uε thus shows that

Fε(uε) ≤ Fε(vε,δ),

which by the convexity of f can be rewritten to

δ
ε

¨
ΩT

ξ(t)f(Duε)dxdt ≤
¨

ΩT

e−
t
ε

[
1
2δ

2
∣∣∂t(e t

ε ξϕ
)∣∣2 + δ∂tuε∂t

(
e

t
ε ξϕ

)]
dxdt

+ δ
ε

¨
ΩT

ξ(t)f(Duε +Dϕ)dxdt.

Multiplying both sides of the previous inequality by ε/δ and letting δ ↓ 0, yields¨
ΩT

ξ(t)f(Duε)dxdt ≤
¨

ΩT

ξ(t)f(Duε +Dϕ)dxdt+

¨
ΩT

ξ∂tuεϕdxdt

+ ε

¨
ΩT

[
ξ′∂tuεϕ+ ξ∂tuε∂tϕ

]
dxdt(5.9)

for any ϕ ∈ L∞(ΩT ) with Dϕ ∈ L∞(ΩT ,R
n) and ∂tϕ ∈ L2(ΩT ), vanishing on the

lateral boundary ∂Ω × (0, T ), satisfying (5.8), and for any ξ ∈ W 1,∞((0, T )) with
0 ≤ ξ ≤ 1, and such that either ξ(0) = 0 or ϕ(0) = 0.

5.3. A uniform estimate for the time derivative. In this section we shall es-
tablish a uniform L2-bound for the time derivative of Fε-minimizers uε ∈ K̂

(L)
uo (ΩT ).

This estimate together with the bound

(5.10) sup
0<ε≤1

[
‖uε‖L∞(ΩT ) + ‖Duε‖L∞(ΩT ,Rn)

]
≤ ‖uo‖L∞(Ω) + L

(
1 + diam(Ω)

)
allows the extraction of a converging subsequence in the limit ε ↓ 0. Note that
(5.10) follows from (5.2). To this end, define [uε]h according to (2.1) with uo and
uε instead of vo and v, respectively. We can use the definition with r = q and
X = W 1,q(Ω), since uε ∈ Lq(0, T ;W 1,q

uo
(Ω)) and uo ∈ W 1,q(Ω) for any choice of

q ≥ 1. By means of Lemma 2.4 we conclude that [uε]h ∈ Lq(0, T ;W 1,q
uo

(Ω)) with

∂t[uε]h ∈ L2(ΩT ) and ∂t[uε]h = 1
h (uε − [uε]h). The last identity implies even more,

as the right-hand side is an element of the space Lq(0, T ;W 1,q
0 (Ω)) whose time

derivative is an element of L2(ΩT ). Moreover, since [uε]h (0) = uo it follows that
∂t [uε]h (0) =

1
h (uo − [uε]h (0)) = 0. Further, from (2.1) we conclude that∥∥D[uε]h(t)

∥∥
Lq(Ω)

≤ e−
t
h ‖Duo‖Lq(Ω) +

1
h

ˆ t

0

e
s−t
h ‖Duε(s)‖Lq(Ω) dt

≤ L|Ω| 1q
[
e−

t
h + 1

h

ˆ t

0

e
s−t
h ds

]
= L|Ω| 1q ,
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establishing that [
−−
¨

ΩT

∣∣D[uε]h
∣∣qdxdt] 1

q

≤ L ∀ q ≥ 1.

But this implies ‖D[uε]h‖L∞(ΩT ,Rn) ≤ L, and we conclude that∥∥D(
uε − h∂t[uε]h

)∥∥
L∞(ΩT ,Rn)

=
∥∥D[uε]h

∥∥
L∞(ΩT ,Rn)

≤ L.

In other words, we are allowed to take ϕ = −h∂t [uε]h as testing function in (5.9)
(note that ϕ(0) = 0), which for any ξ ∈ W 1,∞(0, T ) with 0 ≤ ξ ≤ 1 implies

h

¨
ΩT

[
(ξ + εξ′)∂tuε∂t[uε]h + εξ∂tuε∂tt[uε]h

]
dxdt

≤
¨

ΩT

ξ(t)
[
f(D[uε]h)− f(Duε)

]
dxdt

≤
¨

ΩT

ξ(t)
[
[f(Duε)]h − f(Duε)

]
dxdt

= −h

¨
ΩT

ξ(t)∂t
[
f(Duε)

]
h
dxdt,

by means of Lemma 2.5, where [f (uε)]h is defined according to (2.1) with vo and
v replaced by f(Duo) and f(Duε), respectively. The second term on the left-hand
side of the previous inequality can be estimated further as follows

∂tuε∂tt [uε]h = ∂t[uε]h∂tt [uε]h +
(
∂tuε − ∂t[uε]h

)
∂tt[uε]h

= 1
2∂t

∣∣∂t[uε]h
∣∣2 + 1

h

∣∣∂t[uε]h − ∂tuε

∣∣2
≥ 1

2∂t
∣∣∂t [uε]h

∣∣2.
Inserting this estimate in the inequality above and dividing by h > 0, we get¨

ΩT

[
(ξ + εξ′)∂tuε∂t[uε]h + ε

2ξ∂t
∣∣∂t[uε]h

∣∣2]dxdt
≤ −

¨
ΩT

ξ(t)∂t
[
f(Duε)

]
h
dxdt.(5.11)

We choose ξ ≡ 1 in (5.11) to obtain by means of Fubini’s theorem¨
ΩT

∂tuε∂t[uε]hdxdt ≤ −
¨

ΩT

∂t
[
f(Duε)

]
h
dxdt− ε

2

¨
ΩT

∂t
∣∣∂t[uε]h

∣∣2dxdt
=

ˆ
Ω

[
f(Duε)

]
h
(0)dx−

ˆ
Ω

[
f(Duε)

]
h
(T )dx

+ ε
2

ˆ
Ω

(∣∣∂t[uε]h
∣∣2(0)− ∣∣∂t[uε]h

∣∣2(T ))dx
≤ 2|Ω| sup

BL(0)

|f |.

In the last inequality we also used the facts ∂t[uε]h(0) = 0, |∂t[uε]h|2(T ) ≥ 0 and the
obvious upper bounds for |[f(Duε)]h(0)| and |[f(Duε)]h(T )|. Taking into account
that ∂t[uε]h → ∂tuε in L2(ΩT ) due to Lemma 2.4, the last inequality therefore
implies the following uniform bound on the time derivative

(5.12)

¨
ΩT

|∂tuε|2dxdt ≤ 2|Ω| sup
BL(0)

|f |.

Moreover, due to (5.3) and the bound this implies

(5.13) ‖uε(t2)− uε(t1)‖L2(Ω) ≤
(
2|Ω| sup

BL(0)

|f |
) 1

2√|t2 − t1|
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for any t1, t2 ∈ [0, T ]. In other words, (5.13) implies that the family (uε)ε∈(0,1] of

minimizers is also uniformly bounded in C0, 12 ([0, T ];L2(Ω)).

6. Existence of solutions to the gradient constrained problem

In this section we establish the existence of variational solutions to the gradient
constrained problem in the sense of Definition 3.1. More precisely, we show:

Theorem 6.1 (Existence to the gradient constrained problem). Let L > 0 and Ω
be a bounded, open set in R

n. Further, suppose that f : Ω → R is a convex function
and that uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L. Then, for any T ∈ (0,∞] there

exists a unique variational solution u on ΩT in the class K
(L)
uo (ΩT ) in the sense of

Definition 3.1.

Proof. First, we assume T < ∞. For any ε ∈ (0, 1] we denote by uε the
unique Fε-minimizer from Lemma 5.1 on ΩT . In the following we will perform
the limit procedure ε ↓ 0 in the sequence (uε)ε>0. By means of the estimates
(5.10), (5.12), and (5.13) the sequence (uε)ε>0 is uniformly bounded in the spaces

L∞(ΩT ) and C0, 12 ([0, T ];L2(Ω)), the sequence of spatial gradients (Duε)ε>0 is uni-
formly bounded in L∞(ΩT ,R

n), and the sequence of the corresponding time deriva-
tives (∂tuε)ε>0 is uniformly bounded in the space L2(ΩT ). Therefore, there exists
a map

u ∈
⋂
q≥1

Lq(0, T ;W 1,p(Ω)) with ∂tu ∈ L2(ΩT )

and a subsequence of uε (still denoted this way) such that⎧⎪⎨⎪⎩
uε ⇀ u weakly in Lq(ΩT ) for any q ≥ 1,

Duε ⇀ Du weakly in Lq(ΩT ,R
n) for any q ≥ 1,

∂tuε ⇀ ∂tu weakly in L2(ΩT ).

Moreover, from above convergences and the compactness result in [30] we infer the
existence of a further (not relabelled) subsequence such that

uε → u strongly in L2(ΩT ).

Note that the above convergences together with the fact that uε(0) = uo for any
ε ∈ (0, 1] imply by a similar argument as in the proof of Lemma 5.1 that u ∈
C0, 12 ([0, T ];L2(Ω)) with u(0) = uo. Moreover, the argument from Lemma 5.1
leading to the validity of the boundary condition on the lateral boundary ∂Ω×(0, T )
also applies in the context here, eventually proving the boundary condition u = u0

on ∂PΩT . By lower semicontinuity with respect to weak L2-convergence and the
uniform bound (5.12) it holds that¨

ΩT

|∂tu|2dxdt ≤ lim inf
ε↓0

¨
ΩT

|∂tuε|2dxdt ≤ 2|Ω| sup
BL(0)

|f |.

Moreover, the lower semicontinuity of the Lq-norm with respect to weak conver-
gence and the fact that ‖Duε‖L∞(ΩT ,Rn) ≤ L, lead as in the proof of (5.6) to the
assertion that also ‖Du‖L∞(ΩT ,Rn) ≤ L holds true.

Next, turning to the lower semicontinuity of the integral related to the integrand
f , we observe that, thanks to the convexity of f , there exists a Borel-vectorfield
λ : Rn → R

n, bounded on compact subsets of Rn, such that

f(w) ≥ f(ξ) + λ(ξ) · (w − ξ) ∀w, ξ ∈ R
n.

Therefore, we have¨
ΩT

f
(
Duε

)
dxdt ≥

¨
ΩT

[
f
(
Du

)
+ λ(Du) · (Duε −Du

)]
dxdt.
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The second term on the right-hand side of the preceding inequality vanishes in the
limit ε ↓ 0, since ΩT � (x, t) �→ λ(Du(x, t)) ∈ R

n is bounded and measurable and
Duε ⇀ Du in Lq(ΩT ) for any q ≥ 1. That is,

lim
j→∞

¨
ΩT

λ(Du) · (Duε −Du
)
dxdt = 0.

Inserting this above, we arrive at

lim inf
j→∞

¨
ΩT

f
(
Duε

)
dxdt ≥

¨
ΩT

f
(
Du

)
dxdt.(6.1)

Note that ∣∣∣∣¨
ΩT

f
(
Du

)
dxdt

∣∣∣∣ ≤ T |Ω| sup
BL(0)

|f |.

For u to be a variational solution as in Definition 3.1 it just remains to show, that
u satisfies the minimality condition (3.1). To this end, consider v ∈ L∞(ΩT ) with
Dv ∈ L∞(ΩT ,R

n) and ∂tv ∈ L2(ΩT ), such that v = uo on the lateral boundary
and

‖Dv‖L∞(ΩT ) ≤ L.

For fixed θ ∈ (0, T/2) let

ξθ(t) :=
t
θχ[0,θ](t) + χ(θ,T−θ)(t) +

T−t
θ χ[T−θ,T ](t)

denote a cut-off function with respect to time. Now, fix ε ∈ (0, 1] and consider ϕ =
v−uε. The properties of v and uε imply that ϕ ∈ L∞(ΩT ) with Dϕ ∈ L∞(ΩT ,R

n)
and ∂tϕ ∈ L2(ΩT ,R

N ). Observe that uε +ϕ fulfills the assumption (5.8). Further,
observe that ϕ vanishes on the lateral boundary and that ξθ(0) = 0. Therefore,
both ϕ and ξ = ξθ are admissible in the inequality (5.9). Adding

˜
ΩT

f(Duε)dxdt
on both sides shows¨

ΩT

f(Duε)dxdt

≤
¨

ΩT

(1− ξθ)f(Duε)dxdt+

¨
ΩT

ξθ∂tuε (v − uε) dxdt

+

¨
ΩT

ξθf(Dv)dxdt+ ε

¨
ΩT

[
ξ′θ∂tuε(v − uε) + ξθ∂tuε∂t(v − uε)

]
dxdt.

In the following, we first pass to the limit ε ↓ 0 and then let θ ↓ 0. Due to the
strong convergence uε → u in L2(ΩT ) and the weak convergence ∂tuε ⇀ ∂tu in
L2(ΩT ), the second integral on the right-hand side converges. Moreover, due to
the uniform L2-bunds of ∂tuε and uε from (5.12) and (5.10), we know that the last
integral on the right-hand side vanishes in the limit ε ↓ 0. Finally, for the first
integral on the right-hand side we use the facts that 1− ξθ(t) = 0 for t ∈ (θ, T − θ)
and ‖Duε‖∞ ≤ L. Therefore, using these facts and the lower semicontinuity of the
integral

˜
ΩT

f(Dv)dxdt with respect to the weak convergences form (6.1) yields
¨

ΩT

f(Du)dxdt ≤
¨

ΩT

ξθ∂tu (v − u) dxdt+

¨
ΩT

ξθf(Dv)dxdt+ 2θ|Ω| sup
BL(0)

|f |.

For the first term on the right-hand side we compute¨
ΩT

ξθ∂tu (v − u) dxdt =

¨
ΩT

ξθ∂tv (v − u) dxdt

+ 1
2θ

¨
Ω×(0,θ)

|v − u|2dxdt− 1
2θ

¨
Ω×(T−θ,T )

|v − u|2 dxdt,
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so that¨
ΩT

f(Du)dxdt ≤
¨

ΩT

ξθ
[
∂tv(v − u) + f(Dv)

]
dxdt+ 2θ|Ω| sup

BL(0)

|f |

+ 1
2θ

¨
Ω×(0,θ)

|v − u|2dxdt− 1
2θ

¨
Ω×(T−θ,T )

|v − u|2dxdt,

where θ ∈ (0, T/2) is arbitrary. We may therefore pass to the limit θ ↓ 0, with the
result that¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tv(v − u) + f(Dv)

]
dxdt

+ 1
2‖v(0)− uo‖2L2(Ω) − 1

2‖(v − u)(T )‖2L2(Ω)

holds true for any v ∈ L∞(ΩT ) with Dv ∈ L∞(ΩT ,R
n) and ∂tv ∈ L2(ΩT ), coin-

ciding with uo on the lateral boundary and such that ‖Dv‖L∞(ΩT ) ≤ L, i.e. u is
indeed a variational solution on ΩT as in Definition 3.1. This finishes the proof
of Theorem 6.1 in the case T < ∞. In order to construct a global variational
solution on Ω∞ we consider 0 < T1 < T2 < ∞ and denote by u1 and u2 the
unique variational solutions on ΩT1 and ΩT2 , respectively. By means of the local-
izing principle from Lemma 3.2 it follows that u2 is also a variational solution on
ΩT1

which by Lemma 4.3 coincides with u1 on ΩT1
. Therefore, taking a sequence

0 < T1 < T2 < . . . with limi→∞ Ti = ∞ this allows for a construction of a unique
global variational solution. �

7. Existence of solutions to the unconstrained problem (Proof of

Theorem 1.2)

In this section we will complete the proof of Theorem 1.2. At this point, the
main difficulty is to remove the gradient constraint from the variational solutions
to the gradient constrained obstacle problem constructed in Theorem 6.1.

7.1. Affine functions. The following lemma ensures that time independent affine
functions are variational solutions with respect to their own lateral boundary values.

Lemma 7.1. Let Ω ⊂ R
n be open and bounded and f : Rn → R convex. Then, any

affine function w(x, t) := a + ξ · x independent of time with a ∈ R and ξ ∈ R
n is

a variational solution in the sense of Definition 1.1 with boundary data uo = w on
the parabolic boundary.

Proof. Let w(x, t) := a + ξ · x be an affine function independent of time with
a ∈ R and ξ ∈ R

n. Observe, that Dw ≡ ξ and ‖Dw‖L∞(ΩT ,Rn) = |ξ|. Consider

v ∈ Kw(ΩT ) with ∂tv ∈ L2(ΩT ). Then, for ϕ := v − w we have that ϕ ∈ K0(ΩT ).
Since f is convex, we find λ ∈ R

n such that f(ξ + η) ≥ f(ξ) + λ · η for any η ∈ R
n.

We apply this with η = Dϕ(x, t) and obtain that

f(ξ +Dϕ(x, t)) ≥ f(ξ) + λ ·Dϕ(x, t) ∀(x, t) ∈ ΩT .

Integrating this over ΩT we end up with¨
ΩT

f(Dw +Dϕ)dxdt ≥ |ΩT |f(Dw) +

¨
ΩT

λ ·Dϕdxdt =

¨
ΩT

f(Dw) dxdt.

In the last identity we used an integration by parts via the Gauss-Green theorem.
Assuming that ∂tϕ ∈ L2(ΩT ) we can utilize the identity¨

ΩT

∂t(w + ϕ)ϕ dxdt = 1
2‖ϕ(T )‖2L2(Ω) − 1

2‖ϕ(0)‖2L2(Ω).
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Therefore, we end up with¨
ΩT

f(Dw) dxdt ≤
¨

ΩT

[
∂t(w + ϕ)ϕ+ f(Dw +Dϕ)

]
dxdt

+ 1
2‖ϕ(0)‖2L2(Ω) − 1

2‖ϕ(T )‖2L2(Ω).

Since ϕ = v−w we conclude that (3.1) holds for any v ∈ Kw(ΩT ) with ∂tv ∈ L2(ΩT )
coinciding with w on the lateral boundary. This proves that affine functions are
variational solutions of the unconstrained problem. �

7.2. A quantitative Lipschitz bound. We consider a variational solution u with
initial and boundary datum uo ∈ W 1,∞(Ω) such that ‖Duo‖L∞(Ω,Rn) ≤ Q and,
moreover, such that the restriction of uo to the boundary ∂Ω satisfies the bounded
slope condition for the same parameter Q. We fix xo ∈ ∂Ω. Taking the affine
functions w±

xo
from the bounded slope condition, we have that w−

xo
≤ uo ≤ w+

xo
, so

that the maximum principle from Lemma 4.4 implies the estimate

w−
xo
(x) ≤ u(x, t) ≤ w+

xo
(x) ∀ (x, t) ∈ ΩT ,

so that
|u(x, t)− uo(xo)| ≤ Q|x− xo| ∀ (x, t) ∈ ΩT .

Since xo ∈ ∂Ω was arbitrary, this implies that

(7.1)
|u(x, t)− uo(xo)|

|x− xo| ≤ Q ∀xo ∈ ∂Ω, (x, t) ∈ ΩT .

Next, we consider points x1, x2 ∈ Ω with x1 �= x2 and t ∈ (0, T ). We let y := x2−x1

and define

uy(x, t) := u(x+ y, t) for (x, t) ∈ Ω̃T := {(x− y, t) ∈ R
n+1 : (x, t) ∈ ΩT }.

Then, uy is a parabolic minimizer in K(L)(Ω̃T ) on Ω̃T in the sense of Defini-
tion 4.1. From Remark 4.2 we know that both, u and uy are parabolic minimizers

in K(L)((Ω∩Ω̃)T ) on (Ω∩Ω̃)T := (Ω∩Ω̃)×(0, T ). Applying the maximum principle

from Lemma 4.4 we conclude that there exists (xo, to) ∈ ∂P((Ω ∩ Ω̃)T ) such that

|u(x1, t)− uy(x1, t)| ≤ |u(xo, to)− uy(xo, to)|.
This, together with the definition of uy yields

|u(x1, t)− u(x2, t)| = |u(x1, t)− u(x1 + y, t)| = |u(x1, t)− uy(x1, t)|
≤ |u(xo, to)− uy(xo, to)| = |u(xo, to)− u(xo + y, to)|.

Since either one of the points xo and xo + y belongs to ∂Ω, or to = 0, we can now
use (7.1), respectively the fact that ‖Duo‖L∞ ≤ Q to further estimate

|u(x1, t)− u(x2, t)|
|x1 − x2| ≤ |u(xo, to)− u(xo + y, to)|

|y| ≤ Q.

Since x1, x2 ∈ Ω with x1 �= x2 are arbitrary, this implies that

‖Du‖L∞(ΩT ,Rn) ≤ Q.

7.3. Removing the gradient constraint. In this section we indicate how the
gradient constraint hypothesis ‖Du‖L∞(Ω,Rn) ≤ L < ∞ for a variational solution u

of the gradient constrained obstacle problem in K
(L)
uo (ΩT ) can be removed. There-

fore, we let Q > 0 as in §7.2 and choose L > Q. Then, we have that the strict
inequality

‖Du‖L∞(ΩT ,Rn) ≤ Q < L

holds true. In the following we will establish that the variational inequality (3.1)

satisfied by u actually holds for any comparison map w ∈ K
(∞)
uo (ΩT ) with ∂tw ∈
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L2(ΩT ). We start with the observation that ∂tu ∈ L2(ΩT ) by Lemma 3.4 and
u(0) = uo in the L2(Ω)-sense. Therefore, as observed in §4, u is a parabolic

minimizer in K
(L)
uo (ΩT ) in the sense of Definition 4.1. Consider w ∈ K

(∞)
uo (ΩT ),

i.e. w ∈ L∞(ΩT ) with Dw ∈ L∞(ΩT ,R
n), coinciding with uo on ∂Ω × (0, T ) and

such that ∂tw ∈ L2(ΩT ). As testing function in (4.1) we choose

v := u+ s(w − u) for 0 < s � 1.

Observe that this choice is allowed, since ∂tv ∈ L2(ΩT ) and ‖Dv‖L∞(ΩT ) < L for
s > 0 small enough. Moreover, v = uo on the lateral boundary. From (3.1) and the
convexity of f we infer¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
s∂tu(w − u) + f

(
(1− s)Du+ sDw

)]
dxdt

≤
¨

ΩT

[
s∂tu(w − u) + (1− s)f(Du) + sf(Dw)

]
dxdt.

We re-absorb the second term of the right-hand side in the left-hand side and divide
the result by s > 0. This leads to the inequality¨

ΩT

f(Du)dxdt ≤
¨

ΩT

[
∂tu(w − u) + f(Dw)

]
dxdt

=

¨
ΩT

[
∂tw(w − u)− 1

2∂t|w − u|2 + f(Dw)
]
dxdt

=

¨
ΩT

[
∂tw(w − u) + f(Dw)

]
dxdt

+ 1
2‖w(0)− uo‖2L2(Ω) − 1

2‖(w − u)(T )‖2L2(Ω),

i.e. the variational inequality (3.1) holds true for any comparison function w ∈
K

(∞)
uo (ΩT ) satisfying ∂tw ∈ L2(ΩT ) and therefore u is a variational solution of the

unconstrained problem in the sense of Definition 1.1. This finishes the proof of
Theorem 1.2.

8. Regularity (Proof of Theorem 1.3)

The first assertion in Theorem 1.3 already follows from Lemma 3.4. Therefore, it
remains to show that the variational solution u is Lipschitz continuous with respect
to the parabolic metric, i.e. u ∈ C0;1,1/2(ΩT ), if f is of class C1.

A first consequence, which holds true in case of differentiable integrands, is
the validity of the associated Euler-Lagrange equation. More precisely, variational
solutions u (recall the gradient bound ‖Du‖L∞(ΩT ) ≤ max{Q, ‖Duo‖L∞(Ω)} =: M)
are weak solutions of the associated parabolic equation, i.e. we have¨

ΩT

[
uϕt −Df(Du) ·Dϕ

]
dxdt = 0 ∀ϕ ∈ C∞

0 (ΩT ).

Using the Poincaré inequality for solutions to parabolic equations (cf. [6, Lemma
3.1]) we obtain

−−
¨

Q�(zo)

|u− (u)zo;�|2dxdt ≤ C(n) �2
[
−−
¨

Q�(zo)

|Du|2dxdt+ sup
BM (0)

|Df |2
]
≤ C�2,

for any parabolic cylinder Q�(zo) := B�(xo) × (to − �2, to + ρ2) ⊂ ΩT with zo =
(xo, to) ∈ ΩT . We note that Ω is convex by assumption, and therefore Ω is a Lips-
chitz domain. This allows to employ the methods from [5] to deduce similar versions
of the above Poincaré inequality for parabolic cylinders with center (xo, to) ∈ ∂PΩT .
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At this stage, the parabolic version of Campanato’s characterization of Hölder con-
tinuity (with respect to the parabolic metric) by Da Prato [11] implies the Lipschitz
continuity of u with respect to the parabolic metric, i.e. u ∈ C0;1,1/2(ΩT ).

Higher regularity can for instance be established, if the integrand f : Rn → R is
of class C2(Rn) and strictly convex in the sense that for every R ∈ (0,∞) there
exists 0 < λR ≤ ΛR such that

λR|w|2 ≤ 〈
D2f(ξ)w,w

〉 ≤ ΛR|w|2 ∀w ∈ R
n, ξ ∈ BR(0)

holds true. Under this assumption the standard difference quotient method implies
D2u ∈ L2

loc(ΩT ,R
n×n) with the following quantitative Caccioppoli-type estimate

sup
to− 1

4�
2<t<to

ˆ
B�/2(xo)

|Du|2dx+

¨
Q�/2(zo)

|D2u|2dxdt ≤ C�−2

¨
Q�(zo)

|Du|2dxdt,

for a constant C = C(n,ΛM/λM ) ≥ 1. Eventually, this gives by differentiating the
equation for any α ∈ {1, . . . , n} that there holds¨

ΩT

[
Dαuϕt −

〈
D2f(Du)DDαu,Dϕ

〉]
dxdt = 0 ∀ϕ ∈ C∞

0 (ΩT ),

i.e. the partial derivatives w := Dαu solve a linear parabolic equation with mea-
surable coefficients a(x, t) := D2f(Du(x, t)) which are symmetric, bounded and
coercive with constants λM and ΛM . The classical parabolic De Giorgi & Nash &
Moser theory for linear parabolic equations [27, 28] therefore implies that Dαu ∈
C

0;β,β/2
loc (ΩT ) for some Hölder exponent β ∈ (0, 1) depending on the same param-

eters as the constant C from the Caccioppoli inequality. Higher regularity follows
by standard bootstrap arguments (using the classical Schauder theory for para-
bolic equations in divergence form, cf. [20, Chapter IV]), provided the integrand f
is regular enough.

References

[1] G. Akagi and U. Stefanelli. Doubly nonlinear evolution equations as convex minimization.

SIAM J. Math. Anal. 2014 46(3):1922–1945. 4
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