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IMMUNOPATHOLOGY AND INFECTIOUS DISEASES
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The endocrine system participates in regulating macrophage maturation, although little is known about
the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such
hormone, triiodothyronine (T3), in triggering the differentiation of bone marrowederived monocytes
into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signa-
ture. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses
alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3
increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the
content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against
endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3
levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased
recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-
inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a
context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and
the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor b1 as the
major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hor-
mones and the pathophysiological role of macrophages opens new perspectives on the interactions
between the endocrine and immune systems. (Am J Pathol 2014, 184: 230e247; http://dx.doi.org/
10.1016/j.ajpath.2013.10.006)
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Accumulating evidence indicates that the endocrine and
immune systems engage in a complex cross talk. Hormones
and endocrine transmitters bind to immune system cells,
leading to production of factors that modify immune cell
functions and tune immune responses.1 Several studies have
addressed the role of different hormones, including growth
hormone, leptin, insulin-like growth factor-1, steroid
hormones, thyroid-stimulating hormone, prolactin, and
neurohypophyseal hormones, in the immune system.1e5

Comparatively, our understanding of the role, as immune-
modulating factors, of the thyroid hormones (THs) 3,30,50-
triiodo-L-thyronine (T3) and L-thyroxine (T4), is still rather
incomplete,6 despite the significant role played by these
stigative Pathology.

.

molecules in complex function in which the immune system
participates, including differentiation, growth, and meta-
bolism.7,8 Reports focusing mainly on natural killer cells,
effector B and T lymphocytes, and dendritic cells revealed
that THs may support the basal functions of immune cells,
although contradictory results are reported regarding the
effect of hypohyperthyroidism on immunity.6,9e12 In
particular, scant information exists about the role of THs in
modulating the functions of macrophages, despite the fact
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T3 Regulates Macrophage Pathophysiology
that these monocyte-derived immune-competent cells play
key roles in innate and adaptive immunity13,14 and that THs
may change the level of cytokines involved in their func-
tion.6 The magnitude of macrophage inflammatory response
is stimulated in rats during the hypothyroid condition and
inhibited during the hyperthyroid condition; in addition,
in hyperthyroid rats, phagocytic activity and hydrogen
peroxide release by macrophages are suppressed.15 In
hypothyroid rats, conversely, macrophage phagocytosis and
reactive oxygen species release are both enhanced.16 T4 and,
in some cases, T3 were shown to stimulate mouse macro-
phage phagocytosis.17e20 THs were also suggested to in-
crease mouse peritoneal macrophage chemotaxis in vitro.21

Recently, a beneficial role of THs in macrophage-mediated
meningococcal infection has also been demonstrated.20

Macrophages perform an important immune surveillance
role through their ability to sense and adapt to local
microenvironmental signals.13 Two distinct states of polar-
ized activation for macrophages have been recognized: the
classically activated (M1) macrophage phenotype and the
alternatively activated (M2) macrophage phenotype.13,22,23

The M1 macrophages are activated by Toll-like receptor
ligands, such as lipopolysaccharide (LPS) and interferon-g
(IFN-g), express proinflammatory cytokines, mediate de-
fense of the host from a variety of bacteria, protozoa, and
viruses, and have roles in antitumor immunity. The M2
macrophages are stimulated by IL-4 or IL-13 and have anti-
inflammatory, protumoral function and regulate wound
healing.13,23,24

The classic genomic actions of THs are mediated by
ligand-inducible transcription factors that are members of
the steroid/thyroid hormone receptor superfamily. There are
two types of TH nuclear receptors (TRs) encoded by TRa
and TRb genes.7,25 TRa has one T3-binding splice product,
TRa1, and two noneT3-binding splice products, TRa2 and
TRa3, with several additional truncated forms. TRb has
three major T3-binding splice products: TRb1, TRb2, and
TRb3. The expression of the mRNAs coding for TRa and
TRb has been reported in bone marrowederived macro-
phages26; however, the presence of TR proteins and
the effects of TH on macrophage differentiation and M1/M2
macrophage activation are unknown.

In the present study, we have investigated the role of the T3

system in the regulation of growth/development and func-
tional phenotype of unpolarized macrophages, as well as its
influence on M1 or M2 activation. We demonstrate that
macrophages, at different stages of growth, express the
mRNAs of the two major TR isoforms, TRa1 and TRb1, but
only TRb1 was detected at the protein level. The action of T3

at intracellular TRs (likely at TRb1) consists of the regulation
of unpolarized macrophage, M1, or M2 development. By
comparative analysis of euthyroid and hypothyroid animals,
we also found that this function by T3 is reflected in the
profile of peritoneal macrophages, indicating the functional
relevance of the interactions of TH/macrophages in basal
conditions and during systemic inflammation.
The American Journal of Pathology - ajp.amjpathol.org
Materials and Methods

Animals

Experiments were performed on C57BL/6J female mice at 12
to 18weeks after birth (20 to 30 g bodyweight). Animalswere
kept in a regulated environment (23�C � 1�C, 50% � 5%
humidity) with a 12-hour light/dark cycle (lights on at 8 AM).
All studies were conducted in accordance with the Italian law
on animal care number 116/1992 and the European Com-
munities Council Directive EEC/609/86. The experimental
protocols were also approved by the Ethics Committee of the
University of Milan (Milan, Italy). All efforts were made to
reduce both animal suffering and the number of animals used.

Isolation of Bone MarroweDerived Cells,
Differentiation, and Activation of Macrophage Primary
Cultures

By using published protocols,27,28 bone marrow precursors
from the femur and tibia of mice were isolated and propagated
for 8 days in a-minimum essential medium (37�C, 5%CO2 in
a humidified atmosphere) containing 10% fetal bovine serum
(FBS) in the presence of 100 ng/mL macrophage-specific
colony-stimulating factor (M-CSF) to generate macro-
phages (Supplemental Figure S1). Adherent cells were then
collected and cultured in the presence of 10 ng/mLM-CSF to
formmonolayers of differentiated, unpolarized macrophages.
Cells were cultured for 2 additional days in the presence of 50
ng/mL IFN-g to generate activated, polarized M1 cells24 and
for 4 additional days with 10 ng/mL IL-4 and 10 ng/mL M-
CSF to generate activated, polarized M2a cells.24 In agree-
ment with previous reports,28,29 the morphological charac-
teristics of M1 cells appeared flattened and rounded, with
different cells displaying a fried eggelike shape, whereas M2
cells were more stretched and elongated (spindle-like
morphological features) (Supplemental Figure S2A). Unpo-
larized macrophage cells appeared adherent, with the char-
acteristic intermediate morphological characteristics of
polarized macrophages, with some cells being more elon-
gated, whereas others were more rounded.

In Vitro T3 Treatments

The thyroid gland produces mainly T4, but other tissues de-
iodinate it to the more potent hormone, T3. In our experi-
ments, T3 or, when indicated, the integrin aVb3 antagonist,
tetraiodothyroacetic acid (tetrac; Sigma-Aldrich, St. Louis,
MO), and the TR antagonist, 1-850, were added daily to the
medium. Parallel cultures were maintained with T3 vehicle
and used as a control. During treatments, all cells were
exposed to 10% TH-depleted FBS-containing medium.7

Routinely, TH-depleted FBS-containing medium was
added 1 to 2 days before T3 treatment.30 TH-depleted FBS
was obtained by adsorption of FBS onto analytical-grade
anion exchange resin (AG 1-X8 Resin, 200 to 400 mesh,
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Table 1 Antibodies and Dilutions Used in Flow Cytometry Analysis, Western Blot Analysis, and Immunofluorescence Microscopy of
Macrophages

Primary antibody Isotype Dilution Secondary antibody Dilution

PE hamster polyclonal anti-CD11c: 117308 IgG 1:100 (FC) e e
APC rat monoclonal anti-CD14: 560634 IgG1 1:100 (FC) e e
APC hamster polyclonal anti-CD34: 128612 IgG 1:100 (FC) e e
FITC rat monoclonal anti-CD68: SM1550FS IgG2a 1:250 (FC) e e
PE rat polyclonal anti-CD206: 141706 IgG2a 1:100 (FC) e e
FITC rat monoclonal anti-F4/80: BM4008FS IgG2b 1:500 (FC), 1:50 (IF) e e
Rabbit polyclonal anti-TRa/b: sc-772 IgG 1:500 (WB) HRPeanti-rabbit 1:2000
Goat polyclonal anti-TRa1: sc-10819 IgG 1:50 (IF) Alexa Fluor 546 anti-goat 1:500
Rabbit polyclonal anti-TRb: ab53170 IgG 1:500 (WB) HRPeanti-rabbit 1:2000
Mouse monoclonal anti-TRb1: sc-738 IgG 1:50 (IF, FC) Alexa Fluor 546 anti-mouse 1:500
Rabbit polyclonal anti-arginase 1: sc-20150 IgG 1:5000 (WB) APeanti-rabbit 1:10,000
Mouse monoclonal antieb-actin: A5441 IgG1 1:10,000 (WB) HRPeanti-mouse 1:5000

AP, alkaline phosphatase; APC, allophycocyanin; FC, flow cytometry; FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; IF, immunofluorescence;
PE, phycoerythrin; WB, Western blot analysis.
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chloride form), according to the manufacturer-recommended
procedure (Bio-Rad, Hercules, CA).

Immunophenotyping by Flow Cytometry

To determine the expression of several cell surface markers
on macrophages, a fluorescence-activated cell sorter anal-
ysis was performed. In brief, collected cells were washed
with PBS supplemented with 2% FBS and incubated with
different antibodies for 1 hour at 4�C. After washing, the
extent of marker expression in duplicate samples was
analyzed using an FC500 Dual Laser system (Beckman
Coulter, Brea, CA). Unstained, single stains, and fluores-
cence minus one controls were used for setting compensa-
tion and gates. Irrelevant isotypic monoclonal antibodies
were routinely used as negative controls. FCS Express,
version 3 (De Novo System, Portland, OR), was then used
for data analysis. When indicated, mean fluorescence in-
tensity (MFI; arbitrary units) was determined as a measure
of the extent of marker cell surface expression, excluding
cells negative to the staining.

As listed in Table 1, the cell markers used were F4/80, a
member of the epidermal growth factoretransmembrane 7
family, CD68 (macrosialin), a member of the lysosomal-
associated membrane protein family with a macrophage-
specific mucin-like extracellular domain, the integrin a X
chain protein CD11c (CR4), CD14, a glycosylphosphatidyl
inositolelinked membrane glycoprotein, the mannose re-
ceptor 1 CD206, and CD34, a member of a family of single-
pass transmembrane proteins. F4/80, CD68 (conventional
pan-macrophage markers),13,31,32 and CD11c (conventional
dendritic cell marker) are commonly used to distinguish
macrophages from dendritic cells.13,33,34 CD14 and CD206
are highly expressed in M1 or M2a cells, respectively,24

whereas CD34 shows distinct expression on early hemato-
poietic precursors and vascular-associated tissue.35 Quanti-
tative image analysis revealed that the percentage of cells
that positively immunostained for F4/80 (F4/80þ) was
232
approximately 97% to 98% of total adherent cells
(Supplemental Figure S2B). Similar results were achieved
with CD68, whereas the levels of CD14þ and CD206þ cells
were low. In contrast, CD11cþ and CD34þ cells were
almost undetectable. These results confirm the macrophage
phenotype (unpolarized) and the high purity of our unpo-
larized macrophage cell preparation obtained from bone
marrowederived cells. Quantitative image analysis also
revealed that, similar to unpolarized macrophages, the per-
centage of cells that positively immunostained for F4/80
was high in both M1 and M2 cells. However, the levels of
CD14þ cells were high in the presence of IFN-g and almost
undetectable in the presence of IL-4. Conversely, the levels
of CD206þ cells were high in the presence of IL-4 and
almost undetectable in the presence of IFN-g. Thus, the
activated, polarized phenotype of M1 cells was F4/80þ/
CD14þ/CD206� and that of M2 cells was F4/80þ/CD14�/
CD206þ, in agreement with previous reports.24

PCR Experiments

Total RNA from unpolarized macrophage, M1, and M2
cells was extracted with the High Pure RNA Isolation Kit
(Roche Applied Science, Mannheim, Germany), according
to the manufacturer-recommended procedure. After solubi-
lization in RNase-free water, total RNA was quantified by
the Nanodrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA). First-strand cDNA was generated
from 1 mg of total RNA using the ImProm-II Reverse
Transcription System (Promega, Madison, WI). As show in
Table 2, a set of primer pairs, amplifying fragments ranging
from 85 to 354 bp, was designed to hybridize to unique
regions of the appropriate gene sequence. The PCRs were
performed using 1 mL of cDNA and the GoTaq Green
Master Mix (Promega), containing 500 nmol/L of appro-
priate primers. The amplification reactions were performed
in the MJ Mini personal thermal cycler (Bio-Rad). A sample
(5 mL) of the PCR was electrophoresed on ethidium
ajp.amjpathol.org - The American Journal of Pathology
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Table 2 Primer Pairs Designed for PCR Analysis

Name Symbol Gene accession No. Primer sequence Amplicon (bp) Source

TRa Thra NM_178060 F: 50-GGACAAAGACGAGCAGTGTGTCG-30 100 Custom designed
R: 50-TGTGCGGCGAAAGAAGCCCT-30

TRb1 Thrb NM_001113417 F: 50-CAGAAGCCCCGTCCAGACCGA-30 101 Custom designed
R: 50-TTCAGTGCACCACGCCTCTCC-30

CCL2 Ccl2 NM_011333 F: 50-AGGTGTCCCAAAGAAGCTGTA-30 85 RTPrimerDB*
R: 50-ATGTCTGGACCCATTCCTTCT-30

CCL5 Ccl5 NM_013653 F: 50-ATATGGCTCGGACACCACTC-30 123 RTPrimerDB*
R: 50-GTGACAAACACGACTGCAAGA-30

CCL9 Ccl9 NM_011338 F: 50-CCCTCTCCTTCCTCATTCTTACA-30 141 PrimerBanky

R: 50-AGTCTTGAAAGCCCATGTGAAA-30

CD36 Cd36 NM_001159558 F: 50-ATGGGCTGTGATCGGAACTG-30 110 PrimerBanky

NM_007643 R: 50-GTCTTCCCAATAAGCATGTCTCC-30

NM_001159555
NM_001159557
NM_001159556

CXCL9 Cxcl9 NM_008599 F: 50-TCCTTTTGGGCATCATCTTCC-30 110 PrimerBanky

R: 50-TTTGTAGTGGATCGTGCCTCG-30

CXCL10 Cxcl10 NM_021274 F: 50-TCCTTGTCCTCCCTAGCTCA-30 124 RTPrimerDB*
R: 50-ATAACCCCTTGGGAAGATGG-30

CXCL12 Cxcl12 NM_001012477 F: 50-TGCATCAGTGACGGTAAACCA-30 146 PrimerBanky

NM_013655 R: 50-TTCTTCAGCCGTGCAACAATC-30

NM_021704
CXCL16 Cxcl16 NM_023158 F: 50-CCTTGTCTCTTGCGTTCTTCC-30 139 PrimerBanky

R: 50-TCCAAAGTACCCTGCGGTATC-30

CXCR4 Cxcr4 NM_009911 F: 50-TCCAACAAGGAACCCTGCTTC-30 101 RTPrimerDB*
R: 50-TTGCCGACTATGCCAGTCAAG-30

IL-1b Il1b NM_008361 F: 50-GCAACTGTTCCTGAACTCAACT-30 89 PrimerBanky

R: 50-ATCTTTTGGGGTCCGTCAACT-30

IL-10 Il10 NM_010548 F: 50-GCTCTTACTGACTGGCATGAG-30 105 PrimerBanky

R: 50-CGCAGCTCTAGGAGCATGTG-30

IL-13 Il13 NM_008355 F: 50-AGACCAGACTCCCCTGTGCA-30 123 RTPrimerDB*
R: 50-TGGGTCCTGTAGATGGCATTG-30

TNF-a Tnf NM_013693 F: 50-TTCTGTCTACTGAACTTCGGGGTGATCGGTCC-30 354 RTPrimerDB*
R: 50-GTATGAGATAGCAAATCGGCTGACGGTGTGGG-30

GAPDH Gapdh NM_008084 F: 50-ACCCAGAAGACTGTGGATGG-30 172 RTPrimerDB*
R: 50-ACACATTGGGGGTAGGAACA-30

*Available at http://medgen.ugent.be/rtprimerdb/index.php, last accessed February 26, 2013.
yAvailable at http://pga.mgh.harvard.edu/primerbank, last accessed February 26, 2013.
F, forward; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; R, reverse.
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bromideecontaining 2.5% agarose gel by the use of the
Bio-Rad Subcell GT System. After migration, bands cor-
responding to the amplified products were visualized with
the Bio-Rad Gel Doc XR System. Real-time quantitative
PCR (qPCR) was performed using a LightCycler 480 SYBR
Green I Master (Roche Applied Science) on Roche Light-
Cycler 480 Instrument, according to the manufacturer-
recommended procedure. All reactions were run as tripli-
cates. The melt-curve analysis was performed at the end of
each experiment to verify that a single product per primer
pair was amplified. Regarding control experiments, gel
electrophoresis was also performed to verify the specificity
and size of the amplified qPCR products. Samples were
analyzed using the Roche LightCycler 480 Software release
1.5.0 and the second derivative maximum method. The
fold increase or decrease was determined relative to a cali-
brator after normalizing to glyceraldehyde-3-phosphate
The American Journal of Pathology - ajp.amjpathol.org
dehydrogenase (internal standard) through the use of the
following formula:

2-DDCT.36,37

Because there is a great overlap in surface protein
expression between the different macrophage subsets, we
decided to quantify specific gene expression profiles.13 Thus,
macrophage activation obtained under our experimental
protocol was confirmed by qPCR of specific patterns of cy-
tokines and receptors. In agreement with previous reports,27

M1 cells, when compared with M2 cells, expressed higher
levels of transcripts encoding chemokine (C-C motif) ligand
(CCL) 5 (alias RANTES, regulated upon activation, normal
T cell expressed and secreted), CXCL9 (alias monokine
induced by IFN-g), CXCL10 (alias IFN-geinduced protein-
10), CXCL16, IL-1b, IL-10, and TNF-a (Supplemental
Figure S3A). Conversely, M2 cells, when compared with
M1, expressed higher levels of the transcripts encoding
233
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CCL2, CCL9, the integral membrane protein CD36, the
chemokine receptor CXCR4 (alias fusin or CD184), and IL-
13. The melt-curve analysis and the conventional gel elec-
trophoresis confirmed the qPCR readings (Supplemental
Figure S3, B and C). These results indicate that IFN-
getreated cells displayed a typical M1 gene signature and
IL-4etreated cells had a typical M2 gene signature.13,22e24

Western Blot Analysis

Unpolarized macrophage, M1, and M2 cells were harvested
and homogenized for 10 minutes at 4�C in radio-
immunoprecipitation assay lysis buffer, containing 50 mmol/L
Tris-HCl (pH 7.4), 150 mmol/L NaCl, 1% NP-40, 1% sodium
deoxycholate, 1 mmol/L EDTA, 0.1% SDS, and supple-
mented with protease inhibitors. The supernatant was ob-
tained by centrifugation at 2000 � g (5 minutes). When
indicated, human melanoma C32 whole cell lysate (sc-2205)
(Santa Cruz Biotechnology, Santa Cruz, CA) was used
as a positive control, according to the manufacturer-
recommended procedure. Protein concentration was deter-
mined using the bicinchoninic acid assay (Thermo Fisher
Scientific), according to the manufacturer-recommended
procedure. SDS and b-mercaptoethanol were added to sam-
ples before boiling, and an equal amount of proteins (40 mg
per lane) was separated by 10%SDS-PAGEwith the Bio-Rad
Mini-PROTEAN 3 system.38 After transfer of proteins onto
nitrocellulose membrane (GE Healthcare, Milan, Italy), blots
were blocked for 1 hour with Tris-buffered salinee0.1% (v/v)
Tween containing 5% skimmed-milk powder. The incubation
with primary antibody (Table 1) was performed overnight at
4�C. After 1 to 3 hours of incubation with the appropriate
horseradish peroxidase (HRP)econjugated secondary anti-
body, bands were visualized using SuperSignal West Pico
Chemiluminescent Substrate (Thermo Fisher Scientific), ac-
cording to the manufacturer’s instructions, and exposure to
autoradiography Cl-Xposure films (Thermo Fisher Scientific)
or with a Bio-Rad ChemiDoc MP imaging system. When
indicated, alkaline phosphatase (AP)econjugated secondary
antibody was used in combination with the colorimetric AP
and peroxidase substrate detection system (Sigma-Aldrich,
St. Louis, MO), according to the manufacturer’s instructions.
To monitor potential artifacts in loading and transfer among
samples in different lanes, the blots were routinely treated
with the Restore Western Blot Stripping Buffer (Thermo
Fisher Scientific) and reprobed with antieb-actin primary
antibody and the appropriate HRP-conjugated secondary
antibody (Table 1).

Immunofluorescence Microscopy and Flow Cytometry
of Thyroid Hormone Receptors

By using published protocols,39,40 unpolarized, M1, M2, and
peritoneal macrophages (see later) were cultured on glass
coverslips coated with poly-L-lysine. Cells were fixed in
ice-cold 4% paraformaldehyde in PBS for 5 minutes and
234
quenched with 1% glycine-PBS. Incubation with anti-F4/80
antibody (Table 1) was then performed in a humid chamber
overnight at 4�C. Cells were then permeabilized in 0.25%
Triton X-100 in PBS and incubated with anti-TRa1 and anti-
TRb1 antibodies for 2 hours before staining (1 hour) with
appropriate secondary antibodies for fluorescence detection
(Table 1). Nuclei were also stained with Hoechst 33258 for 5
minutes. Samples were washed in PBS and mounted on glass
slides for fluorescence examination using a Leica DMI4000 B
automated inverted microscope equipped with a DCF310
digital camera (Leica Microscopy Systems, Heerbrugg,
Switzerland). Images were collected under a 100� oil im-
mersion objective. Image acquisition was controlled by Leica
LAS AF software version 2.5.0.6735.
The expression of TRb1 on unpolarized macrophage cells

was performed by flow cytometry, as previously described.
Cells were incubated with anti-TRb1 antibody (Table 1) for
2 hours before staining (1 hour) with appropriate secondary
antibodies. For intracellular staining, cells were fixed in 4%
paraformaldehyde and 0.1% saponin, which were added to
the antibody and wash solutions because permeabilization
with saponin is reversible.

Cell Counts

The number of viable adherent unpolarized macrophage cells
was evaluated by dye exclusion (indicative of an intact
membrane) using the DNA-binding probe, propidium iodide
(PI) or trypan blue. Briefly, pelleted cells (unlysed) were
added to PBS containing 2 mg/mL PI and cells were counted
by flow cytometry within 30 minutes. In particular, cells were
acquired for a constant amount of time, using enough time to
acquire at least 10,000 events for samples. Alternatively, the
cell concentration was measured after 0.2% trypan blue
staining by counting trypan blueeexcluding cells (aliquots of
50 mL) in a standard hemocytometer chamber under low-
power microscopy.

Apoptosis

Apoptosis was analyzed as described previously.41,42

Briefly, phosphatidylserine exposure on the outer leaflet of
the plasma membrane in PI-excluding cells was detected by
flow cytometry of unpolarized macrophage cells (duplicate
samples) stained for 15 minutes with 1 g/mL fluorescein
isothiocyanateelabeled annexin V.

Phagocytosis

The Phagocytosis Assay Kit (IgG fluorescein isothiocya-
nate) (Cayman Chemical Company, Ann Arbor, MI) was
used following the manufacturer’s instruction protocol. The
kit uses latex beads coated with fluorescently labeled rabbit-
IgG. The engulfed fluorescent beads in unpolarized
macrophage, M1, and M2 cells were determined by flow
cytometry at 3-hour bead exposure, when the number of M1
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Serum Levels of THs and TSH in Mice, as Assessed by
ELISA

Name Unit Euthyroid Hypothyroid

Total T3 nmol/L 2.19 � 0.23 0.22 � 0.02
Total T4 nmol/L 63.19 � 14.52 7.14 � 3.93
TSH mIU/L 9.43 � 1.15 23.02 � 5.66
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phagocytic cells reached the maximal values. M1 cells were
also incubated with the latex beads for 1 hour (intermediate
values of fluorescent-positive cells). Both the percentage of
macrophages engaging in phagocytosis (percentage posi-
tive) and MFI (as a measure of the extent of fluorescence/
phagocytosed latex beads) were determined. Because flow
cytometry measures both beads bound to the surface and
beads internalized, microscopy images on a Leica DMI4000
B automated inverted microscope equipped with a DCF310
digital camera were taken of cells after phagocytosis. After 3
hours of bead exposure, fluorescence appeared inside the
M1 cells (data not shown), thus suggesting that phagocy-
tosis had taken place. These results support that the uptake
measured by flow cytometry is phagocytosis, although we
cannot exclude the surface binding of beads.

Cytokine Release

By using published protocols,27,39,43 IFN-g, IL-13, and tumor
necrosis factor (TNF)-a levels were measured and quantified
in the culture cell supernatants by means of commercially
available enzyme-linked immunosorbent assay (ELISA) kits
(RayBiotech, Norcross, GA), according to the manufacturer-
recommended procedure. Briefly, the supernatants of unpo-
larizedmacrophage cells were collected after 24 or 48 hours of
culture, and the color intensity of the reaction product (pro-
portional to the cytokine concentration) was quantified spec-
trophotometrically by the GloMax Multi detection system
(Promega). Each experiment was performed in quadruplicate.
At the end of each experiment, viable cells were counted with
a standard hemocytometer chamber and trypan blue exclu-
sion. Release data were expressed as pg/mL of medium/106

cells. Basal values were consistent with previous reports.27,43

Migration Assay

The migration of unpolarized macrophage cells was
assessed using Costar Transwell permeable supports
(Corning Incorporated Life Sciences, Tewksbury, MA),
which are chambers with inserts (8-mm pore polycarbonate
membranes). Following published protocols,44,45 unpolar-
ized macrophages were plated in the appropriate medium in
the upper chamber, whereas medium with 100 ng/mL M-
CSF (used as chemoattractant) was placed in the lower
chamber. After 24-hour migration, nonmigratory cells were
removed from the top of the insert membrane by gently
wiping (cotton swabs). The underside of each membrane
was fixed and stained with crystal violet, and the number of
cells that migrated completely through the pores was
counted per 0.1 mm2 using a scored eyepiece.28 From this,
the total number of migrated cells was calculated.

Hypothyroid Animals

Mice were made hypothyroid by treatment (at least 4 weeks)
with the 0.02% anti-thyroidal drug, methimazole, and 0.1%
The American Journal of Pathology - ajp.amjpathol.org
sodium perchlorate in the drinking water.46 The treatment
was continued until the end of experiments. In agreement
with previous reports,46e48 classic signs of hypothyroidism,
such as reduced weight compared with the untreated con-
trols (euthyroid mice), were observed. At the end of treat-
ment, the blood of five mice per group (euthyroid and
hypothyroid) was withdrawn from eyes of anesthetized an-
imals for the assessment of thyroid status. Briefly, total T3,
total T4, and thyrotropin (TSH) in serum specimens were
measured by means of triiodothyronine/thyroxine ELISA
kits (Calbiotech, Spring Valley, CA) and TSH ELISA kits
(Bio-Medical Assay, Beijing, China), according to the
manufacturer-recommended procedure. As shown in
Table 3, the hormone levels of the animals mirrored the
expected values,49 in agreement with other reports in
mice.46,50e53

When indicated, hypothyroid mice were treated i.p. with
0.2 mg/g body weight per day T3 for 5 days, an approach
used to increase the levels of circulating hormones, as pre-
viously described.47,54 Hypothyroid mice were also i.p.
injected with the TR antagonist, amiodarone hydrochloride
(AMIO).55 Each mouse received injections of AMIO at a
dose of 20 mg/g body weight per day for 2 weeks before
treatment with T3, as previously described. Mice used as a
control received i.p. injections of vehicle at an equivalent
volume as the experimental groups. For all of the experi-
ments and analytic methods, we used three mice per group
as a minimum. All of the experiments were repeated at least
three times.

Isolation of Resident Peritoneal Cavity Cells

The peritoneal cavity is a unique compartment within which
a variety of immune cells reside, and from which macro-
phages are commonly drawn without altering their physio-
logical properties.56 Peritoneal macrophages from euthyroid/
hypothyroid mice were collected by peritoneal lavage with
5 mL ice-cold PBS supplemented with 3% FBS. The exu-
dates were strained to remove peritoneal debris and centri-
fuged to isolate the cell pellet. The cell pellet was
immediately resuspended in ice-cold PBS and kept on ice
until immunophenotyping by flow cytometry.

In Vivo Inflammation Experiments

As previously reported,45,57 acute illness was induced by a
single i.p. injection of 10 to 15 mg/g body weight of LPS
(endotoxin, Escherichia coli serotype O55:B5). Survival
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Figure 1 TR expression in unpolarized macrophage (MF) cells. A: PCR
products of distinct TR mRNAs in unpolarized macrophage cells after 8 days
of culture. The panel is representative of four independent experiments. B:
Western blot analysis of TR expression performed with the anti-TRa/b
(sc-772) antibody. b-Actin (antieb-actin A5441) was used as an internal
standard. The image is representative of four independent experiments. pc,
positive control. C: Immunofluorescence analysis of unpolarized macro-
phage cells with anti-TRa1 (sc-10819) and anti-TRb1 (sc-738) antibodies
(red). Unpolarized macrophage cells were also stained with the anti-F4/80
antibody (green) and with Hoechst dye (blue). The images are represen-
tative of three independent experiments. Scale bar Z 20 mm. D: Flow
cytometry analysis of TRb1 (sc-738) expression in unpolarized macrophage
cells either left intact (left panel) or permeabilized (right panel). Results
are representative of three independent experiments.
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was monitored for 96 hours. In another set of experiments,
mice received a single injection i.p. of LPS for 16 hours
before the isolation and flow cytometry analysis of resident
peritoneal cavity cells.

Statistics

On verification of normal distribution, statistical signifi-
cance of raw data between the groups in each experiment
was evaluated using the Student’s t-test or one-way
ANOVA, followed by the Newman-Keuls multiple com-
parison post test. Kaplan-Meier data were analyzed with the
multiple comparison survival curve method using the log-
rank (Mantel-Cox) test. The GraphPad Prism software
package version 5.01 (GraphPad Software, San Diego, CA)
was used. After statistics, data belonging from different
experiments were represented and averaged in the same
graph. The results were expressed as means � SEM of the
indicated n values.

Chemicals

M-CSF, IFN-g, and IL-4 were purchased from Miltenyi
Biotec (Bergisch Gladbach, Germany). a-Minimum essen-
tial medium and annexin V were obtained from Life
Technologies (Monza, Italy). FBS and PBS were purchased
from Euroclone (Milano, Italy). Primer pairs were obtained
from Primm (Milano, Italy). The 1-850 was obtained from
Santa Cruz Biotechnology. Antibodies are as follows
(Table 1): CD11c, CD34, and CD206 (BioLegend, San
Diego, CA), CD14 (BD Biosciences, Franklin Lakes, NJ),
CD68 and F4/80 (Acris Antibodies, Herford, Germany),
TRb (ab53170) (Abcam, Cambridge, UK), TRa/b (sc-772),
TRa1 (sc-10819), TRb1 (sc-738), and arginase 1 (sc-20150)
(Santa Cruz Biotechnology), b-actin (A5441) (Sigma-
Aldrich), HRPeanti-rabbit (Cell Signaling, Danvers, MA),
APeanti-rabbit (Promega), HRPeanti-mouse (Bio-Rad),
and Alexa Fluor 456 anti-goat/mouse/rabbit (Life Technol-
ogies). When appropriate, all reagents and solutions were
verified to be endotoxin free by the Sigma Limulus
amebocyte lysate assay (sensitivity limit, 0.1 ng/mL).
Where not specified, chemicals and reagents were purchased
from Sigma-Aldrich.

Results

TR Expression in Unpolarized Macrophage Cells

The major isoforms, TRa1 and TRb1, are bona fide receptors
to which T3 binds with high affinity.7 TRs were found to be
widely expressed throughout the body, including in immune
and hematopoietic cells.7,11,12,26,58e61 As shown in the PCR
experiments of Figure 1A, primary cultures of unpolarized
macrophage cells express detectable mRNA levels of TRa and
TRb1. In addition, as depicted in Western blot experiments
with anti-TRa/b antibody (Figure 1B), using C32 cell proteins
236
as a positive control, we detected two immunoreactive bands
corresponding to the molecular weights of TRa1 (47 kDa) and
TRb1 (52 kDa). In contrast, we detected only the TRb-specific
band in unpolarized macrophage cells. In another set of
experiments, immunofluorescence analysis of unpolarized
macrophage cells with anti-TRa1 and anti-TRb1 antibodies, in
combination with an anti-F4/80 antibody (a macrophage-
specific surface marker) and Hoechst staining, allowed us to
study the expression of TRs at the cellular level. In broad
ajp.amjpathol.org - The American Journal of Pathology
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agreement withWestern blot analysis, we did not find a TRa1-
specific signal (Figure 1C). Conversely, the immunostaining
for TRb1 showed bright cytoplasmic/perinuclear labeling,
whereas nuclear staining was scarce and diffuse. A similar
expression pattern of TRb1 staining has been already
demonstrated in mouse dendritic cells.11 As shown in the
analysis of TRb1 expression by flow cytometry (Figure 1D),
no signal was detected in intact unpolarized macrophage cells,
whereas permeabilized cells exhibited specific staining for
TRb1, further confirming the intracellular distribution of this
molecule.

Inhibitory Effects of T3 on Macrophage Differentiation

To investigate the role of THs in the physiological charac-
teristics of macrophages, and their influence on macrophage
development, we investigated whether T3 affects the differ-
entiation of monocytes into unpolarized macrophages. T3 was
applied daily beginning from the isolation of bone mar-
rowederived cells. In agreement with previous in vitro
studies on brain macrophages,47 T3 was added at a final
concentration of 500 nmol/L, which is a supraphysiological
concentration in mouse,50e52 (Table 3) giving maximal TRa/
Figure 2 T3 and differentiation of unpolarized macrophage cells. A: Bone mar
absence (control) or in the presence of 500 nmol/L T3, 500 nmol/L tetrac, or 1 mmol
cells (trypan blue exclusion test). Data are expressed by setting the control as 100%
experiments. BeD: Bone marrowederived cells were differentiated into unpolarize
B: PI exclusion test (cell counting) by flow cytometry at different days of culture.
experiments. Data are expressed by setting the control as 100%. C: Cell surface ana
Results are representative of three to five independent experiments. D: F4/80-posi
represents the means � SEM of data from five independent experiments. Data are
Bone marrowederived cells were differentiated into unpolarized macrophages in th
of T3 effects on the number of F4/80þ cells (by flow cytometry) at 8 days of cultu
experiments. Data are expressed by setting as 100% the maximum effect of T3. **
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TRb occupancy.62 As shown in Figure 2, A and B, after 8
days of continuous T3 application, the number of adherent
viable cells decreased by almost 35% and 44% versus control
cells, as assessed by the trypan blue and PI exclusion tests,
respectively. Actions of thyroid hormone that are not initiated
by binding of the hormone to intranuclear TRs are termed
nongenomic.63 Plasma membrane-initiated actions begin at a
receptor on integrin aVb3. Tetrac is a TH analogue that in-
hibits binding of iodothyronines to the integrin receptor and is
a probe for the participation of this receptor in cellular actions
of the hormone.30,63,64 The simultaneous application of
500 nmol/L tetrac and T3 did not modify T3 effects on the
number of adherent viable cells, whereas the addition of
1 mmol/L TR antagonist 1-85065e67 inhibited T3 actions
(Figure 2A). In addition, T3 effects were dependent on the
time of exposure (Figure 2B). The absence of phosphati-
dylserine exposure on the outer leaflet of the plasma mem-
brane, measured by annexin V staining, excluded the
induction of apoptosis during T3 exposure (Supplemental
Figure S4). Similarly, flow cytometry analysis revealed that
T3 reduced the expression of the pan-macrophagemarkers F4/
80 and CD68 and the number of F4/80þ cells in the popula-
tion of adherent cells (Figure 2, C and D), suggesting that not
rowederived cells were differentiated into unpolarized macrophages in the
/L 1-850. Cell viability was measured after 8 days of culture by counting vital
. Each histogram represents the means� SEM of data from five independent
d macrophages in the absence (control) or in the presence of 500 nmol/L T3.
Each histogram represents the means � SEM of data from five independent
lysis by flow cytometry of F4/80 and CD68 expression after 8 days of culture.
tive cells analyzed by flow cytometry at different days of culture. Each point
expressed by setting as 100% the total adherent cells at each time point. E:
e presence of increasing concentrations of T3. Concentration-response curve
re. Each point represents the means � SEM of data from three independent
P < 0.01, ***P < 0.001 versus respective control.
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all of the living cells that are adherent to the substrate had
differentiated into macrophages. The fact that the levels of
CD34 and CD11c markers were almost undetectable in both
control and T3-exposed cells (data not shown) demonstrates
the virtual absence of hematopoietic- and dendritic-like phe-
notypes, although we cannot exclude that, in the presence of
the hormone, progenitor cells may differentiate toward other
lineages. Collectively, these data indicate that a bone mar-
rowederived cell suspension differentiates into a population
of living cells expressing macrophage markers mostly be-
tween days 4 and 8, and that T3 affects the ability of cells to
attach and, thus, to completely differentiate to macrophages.

The concentration used in these in vitro experiments is
higher than the T3 serum concentration achieved in our
in vivo models (Table 3); thus, we tested if the observed
inhibitory effects of T3 exposure on F4/80þ cells were
concentration dependent and if they are detectable at con-
centrations of T3 comparable with the physiological serum
concentration. As shown in Figure 2E, T3 application
caused a concentration-dependent effect on F4/80þ cells
(EC50 Z 59 nmol/L). No significant effects were seen with
concentrations <10 nmol/L, whereas the maximal changes
were seen with concentrations >300 nmol/L.
Figure 3 T3 and differentiated macrophage cells. Macrophage cells
were treated in the absence (control) or in the presence of 500 nmol/L T3
for 24 hours. A: qPCR of TR mRNAs in the presence of T3. Values are
expressed as means � SEM (n Z 9) of the fold change over control (set as
1). B: Western blot analysis of TRb protein (anti-TRb ab53170). b-Actin
(antieb-actin A5441) was used as an internal standard. The image is
representative of five independent experiments. pc, positive control. C and
D: PI exclusion test (cell counting) and analysis of F4/80/CD14-positive
cells, respectively, by flow cytometry. Each histogram represents the
means � SEM of data from 10 independent experiments. Data are expressed
by setting the control as 100%. E: qPCR of mRNAs encoding for genes
selectively expressed by M1 or M2 activated cells, in the presence of T3.
Values are expressed as means � SEM (n Z 4) of the fold change over
control (set as 1). F: The number of migrated cells is plotted for each
experimental condition (using 100 ng/mL M-CSF as chemoattractant) (top
panel). Each histogram represents the means � SEM of data from five
independent experiments. Representative stains of migrated cells are
depicted (bottom panel). Scale bar Z 40 mm. **P < 0.01, ***P < 0.001
versus respective control.
Effects of T3 on Differentiated Macrophage Cells

We investigated whether 500 nmol/L T3 affected only un-
polarized macrophage differentiation or acted also on differ-
entiated macrophages. Cells were treated with T3 for 24 hours
after bone marrowederived cell differentiation (8 days) onto
macrophage cells. As shown in Figure 3A, in macrophage
cells, the mRNA levels of TRa were not modified by T3,
whereas the hormone decreased the expression of TRb1
mRNA. In addition, T3 decreased the expression of the TRb
protein band, as confirmed by using Western blot analysis
using an antieTRb-specific antibody (Figure 3B).

The number of adherent viable cells was not affected by T3

application, as assessed by the PI exclusion test (Figure 3C).
Remarkably, flow cytometry analysis revealed that T3

increased the percentage of F4/80/CD14 (M1 marker)epos-
itive cells by almost 50% (Figure 3D) and increased the levels
of transcripts (Figure 3E) encoding for genes selectively
expressed by M1-activated macrophages (as described in
Materials and Methods). In addition, T3 decreased the
expression of genes selectively expressed by M2-activated
macrophages, whereas the percentage of F4/80/CD206 (M2
marker)epositive cells remained undetectable (data not
shown). Consistently, T3 increased the release in the super-
natant of the M1 cytokines, IFN-g and TNF-a (Table 4). This
effect was registered 48 hours after T3 application, but not
after 24 hours. Accordingly, in mouse macrophages in vitro,
application of T3 and T4 at supraphysiological concentrations
for 24 hours was found to be devoid of effects on cytokine
release, including TNF-a.20 Herein, we also show that the
release of the M2 cytokine, IL-13, was not affected by T3.
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Interestingly, T3 also inhibited the migratory ability of mac-
rophages by almost 37% (Figure 3F).

T3 Regulates Macrophage Activation toward M1/M2

Macrophages were activated into polarized M1 or M2 via
exposure to IFN-g for 2 days or M-CSF þ IL-4 for 4 days,
respectively.27,28 As detailed in Materials and Methods, the
specificity of polarization was assessed by flow cytometry
using various surface markers characterizing the various cell
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 4 TR expression in unpolarized macrophages (MF), M1, and M2
cells. A: qPCR of mRNAs encoding for TRa and TRb1 genes. Values are
expressed as means � SEM (n Z 3 to 5) of the fold change over unpo-
larized macrophages (set as 1). ***P < 0.001. B: Western blot analysis
performed with the anti-TRa/b (sc-772) antibody. b-Actin (antieb-actin
A5441) was used as internal standard. The image is representative of four
independent experiments. pc, positive control.

Table 4 Concentrations of Soluble Molecules in the Supernatants
of Macrophages, as Assessed by ELISA

Name At 24 hours At 48 hours

IFN-g
Control 12.77 � 1.03 14.20 � 0.70
T3 11.86 � 0.81 28.26 � 3.93*

IL-13
Control ND ND
T3 ND ND

TNF-a
Control 129.9 � 11.20 176.3 � 17.06
T3 131.7 � 11.38 293.2 � 54.73*

Values are given in pg/mL � 106 cells.
*P < 0.05 versus respective control.
ND, not detectable.

T3 Regulates Macrophage Pathophysiology
subsets and gene expression profiles of specific patterns of
cytokines and receptors. Then, the relative expression of TRs
in unpolarized macrophage, M1, and M2 cells was investi-
gated. As shown in Figure 4A, the transcript encoding TRa
was similarly expressed by both unpolarized and polarized
cells, whereas the expression of TRb1 mRNA was enhanced
in M2 cells (approximately 25 fold versus unpolarized
macrophages) but not in M1. As depicted in Western blot
experiments with anti-TRa/b antibody (Figure 4B), we
detected only the TRb-specific band in M1 and M2 cells,
which appeared to be up-regulated in M2 when compared
with unpolarized macrophage cells. In addition, immuno-
fluorescence analysis with anti-TRa1 and anti-TRb1 anti-
bodies, in combination with the anti-F4/80 antibody and
Hoechst staining, showed the absence of TRa1-specific
signal in M1 (Figure 5A) and M2 (Figure 5B) cells. In
contrast, strong perimembranous and cytoplasmic/peri-
nuclear labeling for TRb1 was found in both cell models. The
nuclear staining for TRb1 was generally scarce and diffuse.

In another set of experiments, T3 was administered at
500 nmol/L to unpolarized macrophages daily, starting from
the beginning of the activation process. When combined
with M1 stimulation, T3 significantly increased the number
of F4/80þ also positive for CD14, while not affecting the
overall percentage of F4/80-positive cells (Figure 6A). T3

exposure differentially modulated the expression of M1
marker genes. In particular, it increased the expression of
CXCL16 and TNF-a mRNAs, whereas, unexpectedly, it
decreased the levels of transcripts encoding CCL5 and IL-
1b (Figure 6C). When combined with M2 stimulation, T3

significantly decreased the number of F4/80þ also positive
for CD206, while not affecting the overall percentage of F4/
80-positive cells (Figure 6B). Consistently, T3 decreased the
expression of the M2 marker genes, CCL2, CCL9, CD36,
and IL-13 (Figure 6C).

Arginase 1, a manganese metalloenzyme that catalyzes
the hydrolysis of L-Arg to L-ornithine and urea, is one of the
most specific markers of M2 macrophages.68e70 M2 acti-
vation led to a marked up-regulation of arginase 1 that was
inhibited by treatment with 500 nmol/L T3 (Figure 7A).
The American Journal of Pathology - ajp.amjpathol.org
We finally assessed the effect of 500 nmol/L T3 at the
functional level. To this end, we relied on phagocytosis,
which is increased in M1 cells compared with unpolarized
or M2 macrophages.28 Phagocytosis was measured using
latex beads coated with fluorescently labeled IgG, by
determining, in flow cytometry analyses, the percentage of
positive (ie, actively phagocytosing) cells and the extent of
phagocytosis as MFI. As shown in Figure 7B, phagocytic
M2 cells were 28% less than M1 cells and the extent of
phagocytosis in M1 cells was 3.9-fold higher than that
of M2 cells. Of interest, T3 increased both the percentage of
M1 cells participating in phagocytosis and the extent of
phagocytosis (Figure 7C).

T3 Affects Macrophage Subsets in Vivo

We investigated whether the sensitivity of macrophages to
T3, determined in in vitro experiments, was observed
in vivo. Immunofluorescence analysis with anti-TRa1 and
anti-TRb1 antibodies, in combination with the anti-F4/80
antibody and Hoechst staining, showed the substantial
239
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Figure 5 Immunofluorescence analysis of TR expression in M1 (A) and M2 (B) cells stained with anti-TRa1 (sc-10819) and anti-TRb1 (sc-738) antibodies
(red). M1 and M2 cells were also stained with anti-F4/80 antibody (green) and with Hoechst dye (blue). The images are representative of three independent
experiments. Scale bars: 20 mm.
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absence of TRa1-specific signal in macrophages isolated
from the peritoneal cavity (Figure 8). In contrast, we
found strong perimembranous and cytoplasmic/perinuclear
labeling for TRb1, whereas the nuclear staining was
generally scarce and diffuse.

Then, we took advantage of an established model of
hypothyroid mice (Table 3) that was compared with
euthyroid mice. As shown in Figure 9A, quantitative image
analysis, by flow cytometry, of isolated peritoneal cavity
cells revealed similar levels of cells that positively immu-
nostained for F4/80 in both euthyroid and hypothyroid
mice; a small, but not significant, decrease of F4/80þ cells
was obtained after i.p. injection of hypothyroid animals with
0.2 mg/g body weight per day T3 for 5 days. These results
suggest that T3 levels do not perturb drastically the total
content of peritoneal macrophages. Two coexisting perito-
neal macrophage subsets have been recently distinguished
in mice, with unique phenotypic and functional character-
istics.56,71 The ones expressing high levels of F4/80 (F4/
80high) were defined as large peritoneal macrophages
(LPMs), and the subset of remaining macrophages
expressing low levels of F4/80 (F4/80low) was defined as
small peritoneal macrophages (SPMs). By using the gating
strategy reported in Figure 9B, we identified such different
subsets of macrophages (SPM, 10.9% � 2.5%; and LPM,
42.0% � 3.8% versus total cell number; n Z 8). In hypo-
thyroid mice, the SPM population became the dominant
macrophage subset (41.2% � 5.9%; n Z 10; P < 0.0001
versus euthyroid) and LPM frequencies decreased (11.9% �
1.7%; n Z 10; P < 0.0001 versus euthyroid). At 5 days, 0.2
mg/g body weight per day T3 i.p. injection prevented the
effect of hypothyroidism on the SPM subset (12.1% �
0.4%; n Z 5; P < 0.0001 versus hypothyroid), and a slight,
240
but significant, effect was achieved on LPM frequencies
(19.6% � 2.9%; n Z 5; P < 0.05 versus hypothyroid). In
both euthyroid and hypothyroid animals, we also found that
a few (<8%) of the F4/80-positive cells expressed CD14 or
CD206 (data not shown).

TH Levels Affect Animal Mortality and Peritoneal
Macrophage Subsets during Endotoxemia

LPM and SPM differ markedly in their in vivo responses to
inflammatory stimuli,56 and M1 cells (CD14þ) have a classic
proinflammatory profile; we evaluated whether alterations of
TH levels affected the animal survival rate during systemic
inflammation. To this end, we injected euthyroid and hy-
pothyroid mice i.p. with LPS to induce endotoxemia, and we
recorded the mortality of the animals over 96 hours. As
shown in the Kaplan-Meier curve of Figure 10A, hypothy-
roid mice exhibited significantly increased mortality during
the course of the experiment (10% survival of hypothyroid
mice versus 35% survival of euthyroid mice). When injected
i.p. with 0.2 mg/g body weight per day T3 for 5 days before
the onset of endotoxemia, hypothyroid animals were
significantly protected from death (70% survival). To verify
the involvement of TRs, hypothyroid mice were also injected
i.p. with 20 mg/g body weight per day AMIO for 2 weeks
before the treatment with T3 and the onset of endotoxemia.
AMIO is an antiarrythmic drug that acts in vitro and in vivo
as a TRa1 and TRb1 antagonist via its major metabolite,
desethylamiodarone.55 It has been recently reported that
mice injected i.p. with 80 mg/g body weight per day AMIO
for 25 days had only mild alterations in TH economy, with
doubling of plasma TSH concentrations in the face of steady
plasma T4 and T3 levels.51 As shown in Figure 10A, the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 T3 and activation of M1/M2 cells. Macrophages were polarized
into M1 or M2 in the absence (control) or in the presence of 500 nmol/L T3.
A and B: Flow cytometry analysis of F4/80-positive cells and F4/80/CD14-
or F4/80/CD206-positive cells in M1- and M2-stimulating conditions,
respectively. Each histogram represents the means � SEM of data from four
to six independent experiments. Data are expressed by setting the control
as 100%. C: qPCR of mRNAs encoding for M1 or M2 genes in M1- or M2-
stimulating conditions (left and right panels, respectively), and in the
presence of T3. Values are expressed as means � SEM (n Z 4) of the fold
change over control (set as 1). **P < 0.01 versus respective control.

Figure 7 A: Western blot analysis of arginase 1 (antiearginase 1
sc-20150) in unpolarized macrophage, M1, and M2 cells and in the M2-
stimulating condition in the presence of 500 nmol/L T3. b-Actin
(antieb-actin A5441) was used as internal standard. The image is
representative of three independent experiments. B: Percentage of
phagocytic cells and MFI in unpolarized macrophage, M1, and M2 cells
after 3 hours of incubation with latex beads coated with fluorescently
labeled IgG. Each histogram represents the means � SEM of data from
five independent experiments. C: Percentage of phagocytic cells and MFI
in M1-stimulating conditions and in the presence of 500 nmol/L T3, at 1
hour of bead exposure. Each histogram represents the means � SEM of
data from five independent experiments. **P < 0.01 versus M1 or
respective control.

T3 Regulates Macrophage Pathophysiology
protective effects of T3 in our system were decreased in
AMIO-injected mice (45% survival).

We next delineated TH/macrophage phenotype in-
teractions during systemic inflammation, using euthyroid
and hypothyroid mice. Animals were treated i.p. with LPS
for 16 hours (ie, a time interval before animal death). As
previously suggested in a model of mouse injury obtained
by cecal ligation and puncture,72 it is likely during this
period that inflammatory changes differentiate between
mice that live and die. At the end of the experiment, the
phenotype of peritoneal F4/80þ cells was determined. In
euthyroid animals, a marked shift in the SPM/LPM ratio
(SPM, 37.8% � 3.9%; LPM, 15.0% � 1.7%; n Z 4; P <
0.001 versus untreated euthyroid) was observed after LPS
i.p. injection (Figure 10B). It was previously demonstrated
that significantly lower doses of LPS (10 mg versus 10 to
15 mg/g body weight, as in our experiments) did not change
mouse SPM and LPM frequencies at 20 hours after i.p.
LPS injection, whereas by 2 days after stimulation, SPM
becomes the highly dominant subset.56 Taken together,
these results indicate a correlation between LPS doses and
The American Journal of Pathology - ajp.amjpathol.org
time-response of macrophage phenotype. As shown in
Figure 10B, we also found that hypothyroid mice showed an
additional increase of the SPM frequencies (58.6% � 3.3%;
n Z 3; P < 0.05 versus LPS-injected euthyroid mice),
whereas LPM frequencies did not substantially change
(19.82% � 2.7%) compared with LPS-injected euthyroid
mice. In contrast, hypothyroid mice i.p. injected for 5 days
with 0.2 mg/g body weight per day T3 and treated with LPS
showed a dramatic decrease of the SPM/LPM ratio (SPM,
27.4% � 6.7%; LPM, 35.2% � 4.5%; n Z 3; P < 0.05
versus both LPS-injected euthyroid and hypothyroid mice).
After LPS injections, F480þ/CD14þ expression in SPM or
LPM cells did not change in euthyroid, hypothyroid, or
hypothyroid mice treated with T3 (Figure 10C), whereas the
presence of F4/80-positive cells expressing CD206 was
almost undetectable (data not shown).
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Figure 8 Immunofluorescence analysis of TR expression in peritoneal
macrophages stained with anti-TRa1 (sc-10819) and anti-TRb1 (sc-738)
antibodies (red). Macrophages were also stained with anti-F4/80 antibody
(green) and with Hoechst dye (blue). The images are representative of
three independent experiments. Scale bar Z 20 mm.
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Discussion

This study identifies a homeostatic link between THs and the
pathophysiological role of macrophages. Macrophages fulfill
key functions in immunity, and these properties may change
in response to the variable microenvironmental signals of the
local milieu.13,14,22 There is evidence that T3 drives matura-
tion and signaling of dendritic cells,11,12 the cells most
closely associated with macrophages.13 We show that T3

affects macrophage phenotype and function, thus extending
the role of this hormone as an immune-regulating factor.
In Vitro Results

Bone marrowederived monocytes enter peripheral blood
and circulate for several days in an inert state before
entering tissues and differentiating into tissue-resident
macrophages. The endocrine system participates in regu-
lating their differentiation and maturation.5,73,74 Our results
indicate a negative role of T3 in triggering the differentiation
of monocytes into macrophages in culture. Physiological
concentrations of T3 were suggested to regulate the cell
population growth of human hematopoietic cells.58

Compared with the serum concentration of T3 measured in
euthyroid mice50e52 (present results), and disregarding any
degradation during the culture time, the T3 concentration
used under our experimental condition in vitro (500 nmol/L)
is higher than the physiological range. In mouse
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macrophages in vitro, T3 was recently shown to be active at
supraphysiological concentrations (100 nmol/L).20 In addi-
tion, tissues derive most of their T3 from local de-iodination
of T4 and cells can regulate their T3 content by means of
active transport.7,8 Thus, defining the exact concentration of
active T3 acting locally on tissue cells versus the one
measured in the serum is difficult. In addition, although cell
cultures mimic the in vivo systems, the more vigorous
metabolism in vitro can degrade T3 rapidly, dramatically
reducing the initial dose after 24 hours, as described in
primary cultures of rat brain cells.75 Consistently, a wide
range of hormone concentrations has been used in vitro to
define the actions of THs. Several reports describe T3 effects
at subnanomolar-nanomolar concentrations in cell
cultures,11,12,21,58,65,76e79 whereas others used T3 concen-
tration of two to three orders of magnitude higher than the
one measured in the serum.30,47,64,80e84 As previously
shown, the binding affinity curves of T3 at TRs in vitro
indicate that the maximal receptor occupancy occurs at a
higher than physiological hormone concentration (ie, >10
nmol/L).62 We demonstrate herein that concentrations of T3

comparable with free serum concentration were not suffi-
cient to elicit detectable effects in in vitro primary cultures
of monocytes/macrophages, and maximal T3 effects were
achieved only at higher levels, as already reported in other
systems, including macrophages.47,80,84

An important conclusion of our study is the demonstra-
tion that T3 induces unpolarized macrophage cells to display
a classically activated (M1) signature, as revealed by the
expression analysis of surface proteins, gene markers, and
cytokine release. Chemotaxis represents an important
function by which macrophages confront certain pathogens.
The motility in vitro of mouse M1 cells was reported to be
lower than that of M2 cells28; our observation that T3

induced inhibition of unpolarized macrophage migratory
ability is consistent with an M1-priming effect of T3. This is
also observed on activated, polarized macrophages. Indeed,
we show that T3 reversed M2 activation while enhancing
that of M1 cells, even at a functional level. Macrophages are
strategically located throughout the body tissues, where they
ingest and process foreign materials, dead cells, and
debris.85 Our results indicating a positive fine-tuning role
for T3 in promoting the phagocytic activity of M1 cells are
consistent with evidence that phagocytosis is increased in
M1 cells compared with M2 macrophages28 (present results)
and with earlier observations in mice.19 Different results
have been reported in hypothyroid rats.16 In particular, in-
cubation in vitro of mouse peritoneal macrophages with
higher than physiological concentrations of T3 induced no
modifications in the phagocytic capacity, whereas phago-
cytosis was stimulated by physiological concentrations of
T4.

17 In a recent study, high concentrations of T3 and T4

stimulated bacterial phagocytosis of mouse macrophages.20

Accordingly, in vivo T4 treatment of mice induced a slight
increase in peritoneal macrophage phagocytosis.18 As pre-
viously suggested,6 it is possible that the different responses
ajp.amjpathol.org - The American Journal of Pathology
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Figure 9 T3 and in vivo content of murine peritoneal macrophages. Cell
surface analysis by flow cytometry of isolated peritoneal cavity cells in
euthyroid and hypothyroid mice, as well as in hypothyroid mice injected
i.p. for 5 days with 0.2 mg/g body weight per day T3. A: Analysis of F4/80-
positive cells. Data are expressed by setting as 100% the total cell number
(n Z 8 to 18). B: Gating strategy used to identify the macrophage subsets
of large cells expressing high levels of F4/80 (LPM) and small cells
expressing low levels of F4/80 (SPM). FSLin, forward scatter in linear mode
(cell size) (n Z 5 to 10).

Figure 10 T3 and survival in murine endotoxemia induced by i.p. in-
jection with LPS. A: Percentage survival (Kaplan-Meier curve, n Z 13 to 18)
of euthyroid and hypothyroid mice. Hypothyroid mice were also injected i.p.
with 0.2 mg/g body weight per day T3 alone or with 20 mg/g body weight per
day of AMIO for 5 days before the onset of endotoxemia. *P < 0.05 versus
euthyroid value. B and C: Cell surface analysis by flow cytometry of isolated
peritoneal cavity cells in euthyroid and hypothyroid mice and in hypothyroid
mice injected i.p. for 5 days with 0.2 mg/g body weight per day T3. Mice
were injected with LPS for 16 hours. B: Gating strategy used to identify the
macrophage subsets of large cells expressing high levels of F4/80 (LPM) and
small cells expressing low levels of F4/80 (SPM). FSLin, forward scatter in
linear mode (cell size) (n Z 3 to 4). C: Analysis of CD14 expression (MFI �
SEM) on LPM and SPM F4/80þ cells (n Z 3 to 4).

T3 Regulates Macrophage Pathophysiology
elicited by THs depend on the type of inert particles
phagocytosed. In this respect, in our experiments, we
assayed the engulfment of IgG-labeled particles; however,
the effects of THs on other forms of phagocytosis (eg, the
noninflammatory complement-mediated phagocytosis)
would deserve further systematic investigation. It is gener-
ally assumed that M1 or M2 activation in vivo represents
extremes of a continuum in a universe of activation states
and mixed phenotypes, and coexistence of cells in different
activation states has been observed in preclinical/clinical
conditions.22 Our data reporting the inhibition of leading
M1 gene markers, such as IL-1b or CCL5, after T3 exposure
revealed a somehow mixed phenotype. The switching
induced by T3 in activated cells appears, therefore, complex
and represents an important biological issue that needs to be
investigated further.

The use of T3 antagonists in our system indicated that T3

effects are initiated by intracellular TRs. Among TRs, we
found that bone marrowederived unpolarized macrophage,
M1, and M2 cells expressed detectable levels of transcripts
encoding for TRa and TRb1, the latter being positively
regulated during M2 activation. The mRNAs for TRa and
TRb were previously detected in bone marrowederived
macrophages and found to increase in IFN-geprimed
cells.26 However, when considering these results, mRNA
expression may correlate poorly with levels of TR protein.
Our results indicate that unpolarized macrophage, M1, and
M2 cells expressed TRb1 protein at the intracellular level,
The American Journal of Pathology - ajp.amjpathol.org
whereas TRa1 protein was undetectable. In agreement with
mRNA data, M2 expressed higher levels of TRb. At the
mRNA and/or protein level, the presence of TRa1 and
TRb1 was reported in rat skeletal mast cells and human
bone marrow CD34þ cells,58,61 as well as at different stages
of mouse dendritic cell maturation.11,12

We show the following in bone marrowederived mac-
rophages: i) only TRb1 is expressed in differentiated un-
polarized macrophages and M1/M2 activated cells, ii)
T3 in differentiated macrophages significantly decreases the
expression of TRb1, and iii) TRb1 is strongly up-regulated
in M2 cells. Collectively, these data suggest a major func-
tional role of TRb1 in mediating T3 effects, including the
243
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promotion of unpolarized macrophage cells toward the M1
versus M2 signature. This issue, however, deserves further
investigations. Of interest, TRb1 was shown to mediate the
T3-induced maturation and signaling of mouse dendritic
cells.11,12

In Vivo Results

Given the effects of T3 on unpolarized macrophage matu-
ration in vitro, we investigated the effects of THs in the
modulation of macrophage phenotype/recruitment in vivo.
Although macrophages were historically considered to be
derived from the blood monocyte reservoir, numerous
studies have since demonstrated that, under steady-state
conditions, resident tissue macrophage populations are
largely maintained through local proliferation.86 Inflamma-
tory insults, however, result in the rapid recruitment of
blood-borne precursors to the respective tissue macrophage
compartment.86 Our data demonstrate that circulating T3

increased the content of LPMs, the resident macrophages in
the peritoneal cavity,56 while reducing the content of SPMs,
the recruited monocyte-derived cells.56 The half-life of
macrophages in tissues varies from a few days up to several
months. Thus, the decreased content of LPM cells in hy-
pothyroid mice may account, at least in part, on the effect of
T3 levels on macrophages that were in the peritoneal cavity
at the beginning of the hypothyroid model and were still
there when the analysis was done.

Tissue macrophages, and newly recruited monocytes,
ensure baseline tissue homeostasis and prevent constant
inflammation.13,22 Classic inflammatory stimuli, such as mi-
crobial insult (ie, LPS), frequently occur with concomitant
type 2 helper T cell (Th2) cytokine (ie, IL-4) production. It
has been recently shown that both resident and recruited (ie,
LPM and SPM, respectively, as identified in our model)
mouse macrophages can be activated and driven to proliferate
by a Th2 environment in vivo.71 It was demonstrated that a
Th2 environment was sufficient to drive accumulation of
tissue macrophages through self-renewal, indicating that the
mechanism of local expansion in type 2 inflammation does
not require enhanced bone marrow activity and may delib-
erately avoid inflammatory cell recruitment and the associ-
ated potential for tissue damage.71 Thus, the proliferation in
situ has been proposed as an alternative mechanism of
inflammation that allows macrophages to accumulate in
sufficient numbers to perform critical functions in the absence
of potentially damaging cell recruitment.71 In light of these
observations, it is tempting to speculate that T3 contributes to
limit inflammation by promoting the proliferation of macro-
phages in situ, while inhibiting the potentially damaging cell
recruitment from monocyte cell pools. Accordingly, we show
that circulating T3 significantly protected mice against
inflammation induced by LPS i.p. injection, a model of
endotoxemia resembling sepsis.45,57 This is consistent with
previous observations that high circulating levels of THs
oppose proinflammatory mechanisms in which monocytes
244
and macrophages are involved, although discrepancies on TH
effects have been also reported.6 Our findings are in good
agreement with published reports on the beneficial role of
THs in mice with severe meningococcal sepsis symptoms20

or in rats during severe sepsis induced by cecal ligation and
puncture.87,88 Relevant data on TH levels as indicators of
sepsis severity and predictors of mortality come from human
studies. For instance, in patients with septic shock, tissue
responses are orientated to decrease production and increase
degradation (muscle) or decrease uptake (adipose tissue) of
T3, as well as to decrease thyroid hormone actions.89 In
addition, T3 levels were significantly lower in patients with
sepsis compared with patients with an inflammatory response
without underlying infection,90 and the levels of THs have
been found to be a parameter for evaluating meningococcal
septic shock severity.91,92 A systematic review regarding the
association between thyroid hormone abnormalities and the
outcome of patients with sepsis or septic shock suggests the
existence of an association between lower T3 or T4 and worse
outcome, although definite conclusions on the described issue
cannot be drawn on the basis of the data available.93 In this
respect, because thyroid hormone abnormalities are common
in septic patients, future studies should aim to more clearly
establish the strength of the previously mentioned association
and to determine whether TH supplementation could be
beneficial for the outcome of septic patients.
The functional plasticity of macrophages in the course of

inflammation and its resolution serve as a means of regu-
lating inflammation in space and time,94 and sepsis is a case
of deregulated inflammation.95 Although the mechanisms
by which T3 protects mice against LPS-induced endotox-
emia are unclear, the use of hypothyroid mice provides
evidence that decreased T3 levels increased SPM fre-
quencies induced by LPS i.p. injection; however, the
restoration of T3 levels decreases SPM and increases LPM
frequencies. This suggests that the anti-inflammatory effect
of the T3 system is coupled to the functional modulation of
SPM (potentially damaging recruited from bone marrowe
derived cells) and LPM (potentially beneficial resident)
subsets.56,71 This is consistent with our in vitro results
showing a negative role of T3 in triggering the differentia-
tion of macrophages from bone marrowederived cells. The
fact that peritoneal macrophages expressed TRb1 protein,
whereas TRa1 detection failed, and that the TRa1/b1
antagonist, AMIO, inhibited T3-induced protection against
LPS-induced endotoxemia strongly suggest TRb1 as the
major player mediating T3 effects in vivo, in agreement with
the in vitro results. THs have been recently suggested to
control meningococcal septicemia in mice by up-regulating
the macrophage production of nitric oxide,20 a well-
established marker of the M1 phenotype.13,22,28 In this re-
gard, in vivo stimulation would classify SPMs and LPMs as
M1 cells because both produce large amounts of nitric oxide
in response to LPS.56 Thus, the fact that the M1/M2
framework does not readily accommodate the SPM and
LPM subsets should be considered. Our in vivo data suggest
ajp.amjpathol.org - The American Journal of Pathology
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that T3 protection against LPS-induced endotoxemia is
caused more by changes in macrophage migration than the
differential expression of M1 markers. Accordingly, during
the early phase of inflammation, M1 macrophages mediate
microbicidal activity, recruitment, and activation of adaptive
immune cells and trigger a full-fledged inflammatory
response, whereas, during resolution, these cells switch to
an anti-inflammatory and tissue remodeling mode.94

Conclusions

The balance of a positive action of T3 in inflammation
versus a potential detrimental one because of the novel link
between THs and macrophage maturation we demonstrate
opens new perspectives on the interactions between the
endocrine and immune systems. The key role of T3 in
inhibiting the differentiation of monocytes into macro-
phages, while favoring the M1 activation, indicates that this
hormone has significant functions in the regulation of im-
mune responses. The increase of resident versus monocyte-
recruited macrophages may be an important effector of
T3-induced protection against the systemic inflammatory
response of endotoxemia, which may be developed in
therapeutic strategies to counteract pathological conditions
disregulating, at least in part, TH homeostasis.
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