
Alexandria Engineering Journal (2020) xxx, xxx–xxx
HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
The transient analysis for zero-input response of

fractal RC circuit based on local fractional

derivative
* Corresponding author at: School of Control Science and Engineer-

ing, Shandong University, Jinan 250061, China and Shandong Dawei

International Architecture Design Co., Ltd., Jinan 250101, China.

E-mail address: hongchangs@126.com (H.-C. Sun).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

https://doi.org/10.1016/j.aej.2020.08.024
1110-0168 � 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: K.-J. Wang et al., The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative, Ale
Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.08.024
Kang-Jia Wang a, Hong-Chang Sun b,c,*, Zhe Fei c
aSchool of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
bSchool of Control Science and Engineering, Shandong University, Jinan 250061, China
cShandong Dawei International Architecture Design Co., Ltd., Jinan 250101, China
Received 6 March 2020; revised 21 July 2020; accepted 21 August 2020
KEYWORDS

Local fractional calculus;

Local fractional derivative;

Zero-input response;

Fractal circuit systems
Abstract Local fractional calculus has gained wide attention in the field of circuit design. In this

paper, we propose the zero-input response(ZIR) of fractal RC circuit modeled by local fractional

derivative(LFD) for the first time. With help of the law of switch and the Kirchhoff Voltage Laws,

the transient local fractional ordinary differential equation is established, and the corresponding

exact solution behavior defined on Cantor sets is presented. What we found especially interesting

was that the fractal RC becomes the ordinary one in the particular case j = 1. The results obtained

in this paper reveal that the local fractional calculus is a powerful tool to analyze the fractal circuit

systems.
� 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The theory of fractional calculus [1–4], emerging as a powerful

mathematical analysis tool, has been successfully used to
model the non-differentiable(ND) and fractal phenomena in
science and engineering. For example, Kumar D, et al. pro-

posed the fractional exothermic reactions model in porous
media in [5]. Ghamisi et al. studied the segmentation of images
using fractional calculus in [6]. Yu et al. discussed the fractal
characters of porous media in [7]. Goswami et al. presented
an efficient solution for the fractional equal width equation

arising in cold plasma [8]. Atangana discussed the nonlinear
Fishers reaction–diffusion equation in [9]. Markup et al. anal-
ysed the fractional vibration equation in [10]. Kumar et al.
proposed the fractional epidemiological model of computer

viruses in [11]. Baleanu et al. given an exact solution for wave
equations on cantor sets in [12]. Bhatter et al. investigated the
fractional Drinfeld-Sokolov-Wilson model in [13]. Dubey et al.

studied the time fractional partial differential equations in [14].
And more applications in other fields are referred to [15–23].
Recently, a new definition of LFD has attracted much atten-

tion in various fields and is successfully applied to describe
many ND phenomena, such as Korteweg-de Vries equation
[24], rheological [25], circuits [26,27], nonlinear Burgers equa-

tion[28], Boussinesq equation [29], nonlinear local fractional
xandria
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Table 2 The LFLTs of several

functions on Cantor sets.
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Table 1 The LFDs of several

functions on Cantor sets.
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PDEs [30], vibration [31], filter [32], nonlinear local fractional
PDEs [33] and so on [34–38].

The main aim of this paper is to present the ZIR of fractal

RC circuit using LFD inspired by recent work in the fractal
circuits. The structure of this paper is arranged as follows. In
Section 2, we introduce the definitions and properties of the

LFD, local fractional Laplace transform(LFLT) and inverse
local fractional Laplace transform(ILFLT). In Section 3, we
define the ND capacitor and ND resistor by LFD, and intro-

duce the Kirchhoff Voltage Laws. In Section 4, the ZIR of
fractal RC circuit is proposed by using the law of switch,
and the corresponding solution on Cantor sets is presented.
In Section 5, we give the analysis of the ZIR in detail. Finally,

the conclusion is drawn in Section 6.

2. The correlative theories

Definition 2.1. For 8e > 0; d > 0 and 0 < s� s0j j < d, if there
is [39]:

N sð Þ � N s0ð Þj j < ej;

We say that N sð Þ is a local fractional continuous function
with a fractal dimension j, or N sð Þ 2 Cj x;-ð Þ, where
Cj x;-ð Þ is a set of local fractional continuous functions in
the interval x;-ð Þ.

Definition 2.2. Let N sð Þ 2 Cv x;-ð Þ, the LFD of the function

N sð Þ of order j(0 < j 6 1) is defined as [39]:

N jð Þ s0ð Þ ¼ djN sð Þ
dsj

js¼s0
¼ lim

s!s0

Mj N sð Þ � N s0ð Þð Þ
s� s0ð Þj ; ð2:1Þ

where Mj N sð Þ � N s0ð Þ½ � ffi C 1þ jð Þ N sð Þ � N s0ð Þ½ �. By letting

N jð Þ sð Þ ¼ Dj
sN sð Þ, then the LFD of higher order can be

expressed as:

N mjð Þ sð Þ ¼ Dj
s . . .D

j
s|fflfflfflfflffl{zfflfflfflfflffl}

m times

N sð Þ ð2:2Þ

Definition 2.3. The Mittag–Leffler function, sine function and
cosine function on Cantor sets with a fractal dimension j are
defined as follows[39]:

Ej sjð Þ ¼
X1
p¼0

spj

C 1þ pjð Þ ð2:3Þ

sinj sjð Þ ¼
X1
p¼0

�1ð Þp s 2pþ1ð Þj

C 1þ 2pþ 1ð Þj½ � ð2:4Þ

cosj sjð Þ ¼
X1
p¼0

�1ð Þp s2pj

C 1þ 2pþ 1ð Þj½ � ð2:5Þ

where p 2 N, the LFDs of several functions are listed in

Table 1.

Definition 2.4. If the LFLT of function N sð Þ denoted by

}j N sð Þ½ � ¼ NN
j vð Þ, the LFLT is defined as [39]:

}j N sð Þ½ � ¼ NN
j vð Þ ¼ 1

C 1þ jð Þ
Z 1

0

N sð ÞEj �sjvjð Þ dsð Þj ð2:6Þ
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where }j is called the LFLT operator.

Theorem 1. Suppose that the LFLT of N sð Þ is denoted by

}j N sð Þ½ � ¼ NN
j vð Þ. Then we have

}j N ijð Þ sð Þ� � ¼ vij}j N sð Þ½ � �
Xi�1

j¼0

v i�1�jð ÞN ijð Þ 0ð Þ: ð2:7Þ

where i; j 2 N, and Nij sð Þ is the LFD of order ij. The LFLTs of
several functions are listed in Table 2.

Definition 2.5. The definition of inverse local fractional

Laplace transform(ILFLT) of NN
j vð Þ is given as

N sð Þ ¼ 1

2pð Þj
Z bþix

b�ix
NN

j vð ÞEj sjvjð Þ dvð Þj ð2:8Þ

where v ¼ bþ ix; vj ¼ bj þ ijxj and x ! 1.
3. The ND lumped elements within LFD

3.1. The ND capacitor

The expression which describes the constitutive relation
between the ND charge Uj sð Þ and ND current ij sð Þ within
the LFD reads as

ij sð Þ ¼ @jUj sð Þ
@sj

ð3:1Þ

Definition 3.1. The capacitance of ND capacitor is given as

Cj ¼ Uj;C sð Þ
Uj;C sð Þ ð3:2Þ
ut response of fractal RC circuit based on local fractional derivative, Alexandria
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Combining Eq. (3.1) and Eq. (3.2) yields the following

relationship

ij;C sð Þ ¼ Cj
@jUj;C sð Þ

@sj
ð3:3Þ
3.2. The ND resistor

Definition 3.2. The Ohm’s Law for the ND resistor is defined
as

ij;R sð Þ ¼ Uj;R sð Þ
Rj

ð3:4Þ

where Uj;R sð Þ; ij;R sð Þ and Rj represent the ND voltage, ND

current and ND resistance of the ND resistor respectively.
3.3. The Kirchhoff Voltage Laws

Kirchhoff Voltage Laws is the basic law of voltage in a circuit.
The content gives that the algebraic sum of the potential differ-

ence (voltage) of all components in a closed circuit is equal to
zero, which can be expressed as

Xm
i¼1

Uj;i ¼ 0: ð3:5Þ
4. The ZIR of fractal RC circuit described by LFD

Fig. 1 illustrated the ZIR of fractal RC circuit modeled by
LFD, where the ND capacitor is charged when the switch is
set at the position s1. After a period of charging, the circuit

goes into steady state. By assuming that at the time s = 0,
the switch is turned to position s2 from position s1, then the
following relation can be obtained

Uj;Cj 0�ð Þ ¼ Uj; ð4:1Þ
According to the law of switch, we have

Uj;Cj 0�ð Þ ¼ Uj;Cj 0þð Þ; ð4:2Þ
When s P 0þ, the ND capacitor will discharge through ND

resistor once the switch turns to position s2, and generate the
ZIR in the ND circuit. With the help of the Kirchhoff Voltage

Laws, we have

�Uj;Cj sð Þ þUj;Rj;2 sð Þ ¼ 0; ð4:3Þ
Using Eq. (3.3) can yield
Fig. 1 The ZIR of the fractal RC circuit within LFD.
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ij;Cj sð Þ ¼ �Cj
@jUj;Cj sð Þ

@sj
; ð4:4Þ

According to the series theory, there is

ij;Cj sð Þ ¼ ij;Rj;2 sð Þ; ð4:5Þ
Combining Eqs. (3.4), (4.4) and (4.5), we have

Uj;Rj;2 sð Þ ¼ �Rj;2Cj
@jUj;Cj sð Þ

@sj
ð4:6Þ

Taking Eq. (4.6) into Eq. (4.3) gives

�Rj;2Cj
@jUj;Cj sð Þ

@sj
�Uj;Cj sð Þ ¼ 0; ð4:7Þ

subject to the initial condition

Uj;Cj 0ð Þ ¼ Uj;Cj 0þð Þ ¼ Uj: ð4:8Þ
where Rj;2 and Cj are constants.

Applying the LFLT to Eq. (4.7), it gives

Rj;2Cj vjNUj;Cj
j vð Þ �Uj;Cj 0ð Þ� �þNUj;Cj

j vð Þ ¼ 0; ð4:9Þ
In this case, we can rearrange Eq. (4.9) to obtain

NUj;Cj
j vð Þ ¼ Uj;Cj 0ð Þ 1

vj þ 1
Rj;2Cj

; ð4:10Þ

Here we define rj (rj ¼ Rj;2Cj) as ND time constant. By

using the initial condition, Eq. (4.10) can be written as

NUj;Cj
j vð Þ ¼ Uj

1

vj þ 1
rj

; ð4:11Þ

Taking the ILFLT for Eq. (4.11), yields

Uj;Cj sð Þ ¼ UjEj � sj

rj

� �
; ð4:12Þ

According to Eq. (4.4), the expression of ij;Cj sð Þ can be

obtained

ij;Cj sð Þ ¼ Uj

Rj;2
Ej � sj

rj

� �
; ð4:13Þ

In accordance with Eq. (4.3), there is

Uj;Rj;2 sð Þ ¼ UjEj � sj

rj

� �
; ð4:14Þ

Using Eq. (3.4), we can obtain the expression of ij;Rj;2 sð Þ as

ij;Rj;2 sð Þ ¼ Uj

Rj;2
Ej � sj

rj

� �
; ð4:15Þ
5. Analysis of the ND-ZIR

Now we let Uj = 1, Rj;2 = 2, rj = 1 to study the effect of

different fractional orders j on the circuit properties, and the
fractional orders we use are j = 0.2, ln2/ln3 and 0.9, respec-
tively. The behavior of Uj;Cj sð Þ; ij;Cj sð Þ;Uj;Rj;2 sð Þ and ij;Rj;2 sð Þ
that defined on Cantor sets are illustrated in Figs. 2–5 for dif-

ferent fractional orders.
When observing the curves in the legend, it is not difficult to

find that with the increase of fractional order j, the value of

corresponding quantity tends to increase. That is to say, when
the time is fixed, the larger the fractional order is, the larger the
corresponding value is. In addition, we find that Fig.2 is the
ut response of fractal RC circuit based on local fractional derivative, Alexandria
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Fig. 4 The behavior of Uj;Rj;2 sð Þ for different fractional orders

on Cantor sets.

Fig. 2 The behavior of Uj;Cj sð Þ for different fractional orders on
Cantor sets.

Fig. 3 The behavior of ij;Cj sð Þ for different fractional orders on
Cantor sets.

Fig. 5 The behavior of ij;Rj;2 sð Þ for different fractional orders on
Cantor sets.
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same as Fig.4, this is because the algebraic sum of potential
difference (voltage) of all components along the closed circuit

is equal to zero. Due to the series connection between the ND
resistor and ND capacitor, the results in Figs. 3 and 5 are also
consistent.

Let Uj = 1, j = ln2/ln3, we use three different ND time

constants to study the ND-ZIR, that is rln2=ln3 = 1 (Rln2=ln3;2

= 1, Cln2=ln3 = 1), rln=ln3 = 4 (Rln2=ln3;2 = 2, Cln2=ln3 = 2)

and rln2=ln3 = 16 (Rln2=ln3;2 = 4, Cln2=ln3 = 4). The

curves of Uln2=ln3;Cln2=ln3
sð Þ; iln2=ln3;Cln2=ln3

sð Þ;Uln2=ln3;Rln2=ln3;2
sð Þ and

iln2=ln3;Rln2=ln3;2
sð Þ defined on Cantor sets are plotted in Figs. 6–9.

It is easily seen that the attenuation rate of the curves is

related to rj, the attenuation of the curves decrease with the
increase of ND time constant rj. As an important physical
quantity, the ND time constant is generally used to measure

the change speed of transient process, and it is also a physical
quantity to measure the discharge speed of ND capacitor. The
larger the rj value is, the longer the transient process is, and
the smaller the rj value is, the shorter the transient process

is. In the actual circuit, the speed of the transition process
Fig. 6 The behavior of Uj;Cj sð Þ with different ND time

constants rj = 1, 4, 16 at j = ln2/ln3, Uj = 1 defined on

Cantor sets.

ut response of fractal RC circuit based on local fractional derivative, Alexandria
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Fig. 7 The behavior of ij;Cj sð Þ with different ND time constants

rj = 1, 4, 16 at j = ln2/ln3, Uj = 1 defined on Cantor sets.

Fig. 8 The behavior of Uj;Rj;2 sð Þ with different ND time

constants rj = 1, 4, 16 at j = ln2/ln3, Uj = 1 defined on

Cantor sets.

Fig. 9 The behavior of ij;Rj;2 sð Þ with different ND time constants

rj = 1, 4, 16 at j = ln2/ln3, Uj = 1 defined on Cantor sets.
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can be controlled by selecting the appropriate values of Rj;2

and Cj. For different ND time constants, Figs. 6 and 8 are
the same, Figs. 7 and 9 are also the same, which are all deter-
mined by the physical characteristics of the circuit when the
switch is on position s2.

It is worth noting that in the particular case j = 1, the ZIR
of the fractal circuit becomes the ordinary one, and the corre-
sponding expressions of Uj;Cj sð Þ; ij;Cj sð Þ;Uj;Rj;2 sð Þ and ij;Rj;2 sð Þ
are simplified as

UC sð Þ ¼ Uje
�s
rð Þ; ð5:1Þ

iC sð Þ ¼ Uj

Rj;2
e �s

rð Þ; ð5:2Þ

Uj;Rj;2 sð Þ ¼ Uje
�s
rð Þ; ð5:3Þ

ij;Rj;2 sð Þ ¼ Uj

Rj;2
e �s

rð Þ; ð5:4Þ

When Uj = 1, rj = 1 (Rj;2 = 1/2, Cj = 1), the curves of

Uj;Cj sð Þ; ij;Cj sð Þ;Uj;Rj;2 sð Þ and ij;Rj;2 sð Þ compared between j =

1 and j = ln2/ln3 are shown in Figs. 10–13. Since the switch is
Fig. 10 The curves of Uj;Cj sð Þ for j = 1 and j = ln2/ln3.

Fig. 11 The curves of ij;Cj sð Þ for j = 1 and j = ln2/ln3.
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Fig. 12 The curves of Uj;Rj;2 sð Þ for j = 1 and j = ln2/ln3.

Fig. 13 The curves of ij;Rj;2 sð Þ for j = 1 and j = ln2/ln3.
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turned to position 2, only ND resistor and ND capacitor con-
stitute a closed circuit in series, which lead to the results in
Figs. 10 and 12 remain the same as well as that of Figs. 11
and 13.

6. Conclusion

We have successfully modeled the ZIR of the fractal RC circuit
by LFD in this paper for the first time, where the transient
local fractional ordinary differential equation is obtained with
aid of the law of switch and Kirchhoff Voltage Laws. The

exact solution defined on Cantor sets is given by using the
LFLT and ILFLT, and the ND time constant is elaborated
as well. It is found that the ZIR of fractal RC circuit converts

into the ordinary one in the particular case j = 1. The
obtained results are expected to open some new perspectives
towards the characterization of ND electric circuits via LFD.
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