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Abstract
In this study, we present the application of two novel hybrid multiple-criteria decision-making (MCDM) techniques in the 
mineral potential mapping (MPM), namely FUCOM-MOORA and FUCOM-MOOSRA, as robust computational frameworks 
for MPM. These were applied to a set of exploration targeting criteria of skarn. The multi-objective optimization method 
on the basis of ratio analysis (MOORA) and the multi-objective optimization on the basis of simple ratio analysis (MOOSRA) 
approaches are used to prioritize and rank individual cells. What makes MOORA and MOOSRA more reliable compared 
to many other methods is the fact that the optimizations procedure is applied to calculate the prospectivity score of 
individual unit cells. This reduces the uncertainty stemming from erroneous mathematical calculations. The full consist-
ency method (FUCOM), on the other hand, is useful for assigning weights to the spatial proxies. The FUCOM method, as 
a pairwise comparison method, reduces a large number of pairwise comparisons of similar and popular approaches such 
as analytic hierarchy process (AHP) with n(n − 1)∕2 and the best–worst method (BWM) with 2n − 3 number of pairwise 
comparisons with n − 1 which leads to a less time-consuming and more consistent performance compared with AHP and 
BWM. These were applied to a set of exploration targeting criteria of skarn iron deposits from Central Iran. Two potential 
maps were retrieved from the procedures applied, the comparison of which using correct classification rates and field 
checks revealed the superiority of FUCOM-MOOSRA over the FUCOM-MOORA.
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1 Introduction

A great deal of attention has been recently focused on 
greenfields’ mineral potential mapping (MPM), in which 
the intent is to reduce the search space for the possible 
detailed surveys (e.g., [24, 44, 79, 82, 91, 92, 96, 97, 112, 
125]). In these studies, expert-based methods are applied 
for weighting and integrating exploration targeting cri-
teria into potential maps. Of the various expert-based 
methods employed in this context, multi-criteria decision-
making (MCDM) methods have gained a considerable 

reputation (e.g., [8, 14, 89, 95, 100, 102]). These methods 
are either comparison-based or matrix-based approaches 
[71]. The former and the latter methods are used for 
assigning weights to the targeting criteria and integrat-
ing the weighted criteria into potential maps, respectively.

The matrix-based MCDM methods are often too com-
plex [26, 77, 142, 143], making it challenging decision 
makers to follow their mathematical procedures. The 
multi-objective optimization method on the basis of ratio 
analysis (MOORA: [21]) and the multi-objective optimiza-
tion on the basis of simple ratio analysis (MOOSRA: [32]) 
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have been proposed to provide more straightforward 
mathematical procedures to follow. Notwithstanding the 
robustness and myriad applications of these methods 
(e.g., MOORA: [4, 20, 22, 25, 47, 48, 70, 84, 98, 103, 137], 
MOOSRA: [7, 11, 33, 75, 116, 129, 137]), seldom have they 
been applied to the context of MPM.

The comparison-based methods and, on the other 
hand, a large number of pair-wise comparisons (e.g., 
AHP: [113], BWM: [109]) make these methods time-con-
suming and less consistent (e.g., [9, 42, 83, 89, 99, 100, 
102, 124]). The full consistency method (FUCOM: [94]), 
a novel comparison-based procedure, has reduced the 
number of comparisons required. This method results in 
a higher consistency ratio by determining the deviation 
from utmost consistency ([12, 17, 35, 94, 105]) compared 
to those of similar procedures, making its outputs more 
reliable. Although this method has been applied in differ-
ent decision-making procedures (e.g., [12, 17, 18, 35, 41, 
90, 105, 127]), it is yet to be applied in MPM.

The intent of this study is to showcase the application 
of two novel hybrid MCDM techniques in MPM, namely 
FUCOM-MOORA and FUCOM-MOOSRA. The FUCOM 
technique was used in various scientific fields after it was 
published in 2018 because of two outstanding reasons: 
(1) this approach has reduced the number of comparisons 
required (which is less time-consuming) and (2) has more 
reliable outputs in comparison with previous approaches 
[17, 35, 94]; however, this method has been never used 
in MPM. In addition of applying the FUCOM method in 
MPM, we combined it to MOORA and MOOSRA to pre-
sent two-step methodologies, namely FUCOM-MOORA 
and FUCOM-MOOSRA. MOORA and MOOSRA, like the 
FUCOM approach, have been never used in MPM. MOORA 
and MOOSRA with approximately similar and authentic 
mathematical backgrounds have been well validated in 
various scientific fields based on comparison with other 
methods. The superiority of MOORA and MOOSRA meth-
ods in comparison with other similar methods is related to 
the optimization procedure in their mathematical theory, 
which reduces the uncertainty stemming from erroneous 
mathematical calculations and causes having more reli-
able outputs [7, 33, 98, 129, 137]. In this paper, FUCOM-
MOORA and FUCOM-MOOSRA were applied on a set of 
regional-scale targeting criteria of iron skarn deposits from 
Varan area in Central Iran to show the robustness of the 
proposed approaches in MPM. The intrusion of the Eocene 
plutonic rocks into the sediments of Qom formation, Cre-
taceous in age, yielded several cases of calcic skarn iron 
mineralization in the study area.

2  Methods

2.1  FUCOM

The full consistency method (FUCOM: [94]) is a compar-
ison-based MCDM procedure applying the principles of 
pairwise comparison and deviation from maximum con-
sistency [18, 35, 94, 136]. FUCOM requires only n − 1 pair-
wise comparisons for assigning weights to n mappable 
targeting criteria in MPM. The deviation from maximum 
consistency (DMC) of comparisons is used for validating 
the results of FUCOM [18].

FUCOM is implemented with regard to the following 
steps [18, 35, 94, 136]:

Step 1: The set of exploration targeting criteria, 
C =

{
C1,C2,… ,Cn

}
 , are initially ranked according to 

their importance; that is, the higher the initial rank is, 
the more critical the criterion is to mineralization. This 
is shown by the following formulation:

Step2: The ranking criteria are compared and the com-
parative priority ( �k∕(k+1), k = 1, 2,… , n, in which k rep-
resents the rank of the criteria) of the criteria is deter-
mined according to Eq. (2):

Step3: Weight coefficients of the targeting criteria (
w1,w2,… ,wn

)T
 are calculated. These values should 

meet the following conditions:

1. The weight coefficients (wk) are proportional to the 
comparative priorities (�k) ∶

2. The mathematical transitivity must be met among 
all the comparative priorities (�k) ∶

Step 4: The following optimization problem should 
be solved for calculating the optimal weights (
w1,w2,… ,wn

)T
 of the targeting criteria:

(1)Cj(1) > Cj(2) > ⋯ > Cj(k).

(2)� =
(
�1∕2,�2∕3,… ,�k∕(k+1

)
.

(3)
wk

wk+1

= �k∕(k+1).

(4)�k∕(K+1) × �(K+1)∕(K+2) = �k∕(k+2).
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2.2  MOORA

The multi-objective optimization method on the basis of 
ratio analysis (MOORA) has been proposed by Brauers and 
Zavadskas [21]. This method can be applied for integrating 
a set of weighted targeting criteria (cf. [10,25]) into maps 
of mineral potential. In the first step, targeting criteria are 
marked by positive and negative signs. The positive sign 
refers to the criteria in which higher values should be pri-
oritized. Negative criteria, on the other hand, are those 
in which lower values are more important (cf. [25]). Next, 
the following matrix is developed in which m and n refer 
to the number of unit cells in the area and the number of 
targeting criteria, respectively [23]:

For individual targeting criteria, each xij in the above 
matrix is normalized to *xij in which the values vary in a [0, 
1] range. This is implemented according to the following 
equation [23]:

Finally, the potential values assigned to individual unit 
cells, yi, are derived from the following optimization func-
tion [10, 25, 70]:

where g is the number of positive criteria [21] and wj 
refers to weight of jth criterion [19, 73].

(5)

Min X

s.t.

|||||
wj(k)

wj(k+1)

− �k∕k+1

|||||
= X , ∀j

|||||
wj(k)

wj(k+2)

− �k∕(k+1) × �(k+1)∕(k+2)

|||||
= X , ∀j

n∑
j=1

wj = 1

wj ≥ 0,∀j.

.

(6)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 ⋯ x1j … x1n
x21 ⋯ x2j … x2n
⋯ ⋯ … … ⋯

xi1 … xij … xin
… … … … …

xm1 ⋯ xmj … xmn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(7)
x∗
ij
=

xij
�∑m

i=1
x2
ij

� 1

2

(j = 1, 2,… , n).

(8)yi =

g∑
j=1

wjx
∗
ij
−

n∑
j=g+1

wjx
∗
ij

3  MOOSRA

The multi-objective optimization on the basis of simple 
ratio analysis (MOOSRA: [32]) is a matrix-based MCDM, 
with its procedure bearing a striking resemblance to 
that of MOORA [12]. The matrix alignment and the nor-
malization of arrays in MOORSA are identical to those of 
MOORA. However, the optimization procedure used for 
deriving the potential values assigned to individual unit 
cells is applied according to Eq. (9) as follows [11,32]:

where g and wj refer to the number of positive criteria 
and the weight assigned to the jth criterion, respectively.

4  The Varan area and input data

4.1  Geological setting and the deposit model

The NW–SE trending metallogenic belt of Zagros [46, 121, 
123, 139], as a segment of Alpine-Himalayan orogenic 
system [27, 93, 110, 117, 128] in the western section of 
Tethyan domain [63, 67, 132, 134, 135], is developed by 
the collision of the Arabian and Eurasia platforms [52, 87, 
108, 126, 131] (Fig. 1). The Zagros orogenic belt includes 
three aligned tectonic zones of (1) the Zagros fold–thrust 
belt, (2) the Sanandaj–Sirjan magmatic–metamorphic 
zone, and (3) the tertiary Urumieh–Dokhtar magmatic 
belt (UDMB) [5, 6, 60, 118, 122]. The Varan area is situated 
in the UDMB (Fig. 2) resulted from a convergent tectonic 
regime [2, 3, 31, 66, 141]. This Andean volcanic arc, having 
extended over a length of some 2000 km, hosts plutonic 
complexes included intrusive, extrusive, and volcano-
sedimentary units post Eocene volcanic, plutonic, and 
volcanic–sedimentary complexes [31, 60, 61, 66, 69, 74, 
115, 119, 138, 141]. The magmatism of the UDMB is associ-
ated with continual steps of the Neo-Tethys closure within 
Paleogene–Neogene times, started at ∼ 50 Ma [16], con-
tinued into middle Eocene, and followed by magmatic 
activities of Oligocene–Miocene intrusions [2, 3, 141]. The 
magmatism of UDMB is of calc–alkaline affinity [60, 61, 
69, 138, 141]. However, Jamali et al. [65] stated alkaline 
rocks locally, related to younger plutonic activity in some 
components of the UDMB. This tectonic setting emplaced 
extensive magmatism constituting the trigger and heat 
source, and the convention forces developed a vast array 
of metallic ore deposits [51], especially copper [58, 104, 
139, 140, 141] and Iron [42, 81, 83, 88, 138]. According to 

(9)y∗
i
=

∑g

j=1
wix

∗
ij∑n

j=g+1
wix

∗
ij
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Fig. 1  Schematic image of the geodynamic evolution of Urumieh–Dokhtar magmatic arc in associated with the formation calcic skarn iron 
(modified after Guilbert and Lowell [54] and Meinert [86])
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the existence of carbonate rocks, which are mostly older 
than plutonic complexes of the UDMB (mainly at the age 
of Cretaceous), there is remarkable potential for skarn min-
eralization in this tectonic setting.

Skarn mineralization is genetically and temporally asso-
ciated with mafic to intermediate plutons that intruded an 
older sedimentary basement comprising limestones and 
dolostones [15, 28–30, 34, 36−38, 53, 55, 57, 86, 120]. Three 

Fig. 2  Location of study area on the Urumieh–Dokhtar magmatic arc and the generalized geological map of the area (modified after 
Ghalamghash and Babakhani [49])
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consecutive steps occur are required for developing skarn 
mineralization: (a) contact metamorphism, (b) ascending 
the temperature of the plutonic body and the release of 
ore-bearing content, and (c) developing the ore-bearing 
and alteration mineral assemblages [56]. Steps b and c are 
associated with skarn mineralization and deposition [56]. 
This style of mineralization can be divided into two cat-
egories that include endoskarn or exoskarn on the basis 
of the host rock [34, 40−38, 56, 86]. Endo- and exoskarns 
are the consequences of replacements of intrusive rocks 
within the contact zone and carbonate host rocks at or 
near the contact, respectively [36, 86]. Fe skarn deposits 
are associated with magnetite mineralization in calc–sili-
cate contact metasomatic rocks, which can be categorized 
into two groups including calcic and magnesian skarn 
irons [28, 36, 37, 42, 81, 83, 86, 138]. The former is mostly 
developed by the replacement of limestone, tending to 
occur in convergent tectonic environments, especially in 
island arc settings. The latter, however, is mostly developed 
by the replacement of dolomite and is associated with oro-
genic belts along continental margins [28, 34, 36, 37, 86]. 
The majority of the world’s economic iron skarn deposits 
are calcic iron, while magnesian iron skarns are less docu-
mented [38]. Calcic skarn iron deposits are large deposits 
averaging some 300 million tons of iron content [133]. 
Calcic skarn irons are characterized by less silicic intru-
sions compared with magnesian skarns, minor amount 
of alkaline rocks, somewhat great amount of endoskarn 
mineralization, the extensive event of Na metasomatism, 
in association with magnetite, pyrite, hematite, garnet, 
pyroxene, and calcite, with geochemical enrichments of 
Fe, Cu, Zn, Au, and As [28, 34, 36, 37, 42, 56, 106]. Magne-
sian iron skarns are characterized by more silicic intrusions 
compared with calcic skarns, mostly occurred in dolomitic 
strata, in association with magnetite, forsterite, spinel, 
diopside, apatite, tremolite, phlogopite, talc, amphibole, 
serpentine, talc, chlorite, chondrodite, magnesite, and 
clinohumite [36, 37, 55–57].

Most of the skarns are related to magmatic arcs and 
subduction zones, which also host porphyry copper 
deposits [55] such as the UDMB which has the same situ-
ation. Iron deposits of Iran, especially the ones located in 
the UDMB, are the consequence of magmatic activities 
pending Eocene to Miocene [122]. The Sarvian deposit, 
hosting some 2 million tons of Iron [138], is one of the cal-
cic skarn irons of the UDMB [83], situated in the Varan area. 

This deposit is resulted from a quartz diorite intruding an 
early Permian to Tertiary limestone of Qom formation, with 
the temperature of 370–550 °C according to Garnet–pyrox-
ene thermometry [138]. Mansouri et al. [83] implemented 
successfully the potential mapping of calcic skarn iron 
in the Sarvian area, which is considered in this study for 
the Varan area, with using intrusive rocks of tonalites and 
quartz diorites as the source of mineralization, a reduced-
to-pole map of ground magnetic data representing a fur-
ther proxy for the source, the outcropping limestones and 
skarn units representing the trap; uni-element geochemi-
cal signatures of ore-related elements derived from litho-
geochemical samples including Fe, Cu, Zn, Au, and As; 
and the remotely sensed derived accumulation of miner-
als include magnetite, pyrite, hematite, garnet, pyroxene, 
and calcite. Figure 1 shows a schematic representation of 
the subduction-related tectonic regime and ore formation 
model of calcic skarn iron deposit in the Varan area (after 
Lowell and Guilbert 1978).

The Varan area is marked by the presence of Eocene 
plutonic rocks and the sediments of Qom formation, Creta-
ceous in age [49]. The intrusion of the former into the latter 
yielded several cases of calcic skarn iron mineralization in 
the area [42]. Figure 2 depicts a simplified geological map 
of the study area, thoroughly discussed in Feizi et al. [43]. 
In the area confined by this study, calcic skarn iron miner-
alization [133] occurs in the contact of basic to intermedi-
ate intrusions and crystalline limestones, sandstones, and 
shales of Qom formation. The Qom formation has been 
reported as a proper trap of Skarn deposits in the UDMB 
[42, 81, 83, 88, 138].

4.2  Translating the deposit model to spatial proxies 
with using mineral system approach

Proper insight into mineral systems leads to defining the 
exploration targeting criteria in regional- and district-scale 
exploration targeting systems [62, 80, 85] which should 
be translated to mappable spatial proxies with the goal 
of targeting undiscovered mineralization [71, 72, 78, 111]. 
The same suit of targeting criteria exploited in Feizi et al. 
[42] was employed to vector toward skarn iron mineral-
ized zones. They used a minerals system framework [76] 
to translate critical processes to the formation of calcic 
skarn iron deposits—source, trap, and deposition—to a 
set of targeting criteria. This set comprises the outcrop-
ping tonalites and quartz diorites representing the source 
of mineralization (Fig. 3a), the outcropping limestones of 
the Qom formation representing the physiochemical trap 
(Fig. 3b), the remotely sensed derived accumulation of 
ore minerals as a criterion representing the deposition 
(Fig.  3c), uni-element geochemical signatures of ore-
related elements derived from litho-geochemical samples 

Fig. 3  Targeting criteria derived from mineral systems approach: a 
outcropping tonalities and quartz diorites representing the source, 
b outcropping calcareous sediments representing the physiochem-
ical trap, c distribution of ore-related minerals representing the 
depositional processes, d uni-elemental litho-geochemical anoma-
lies representing the depositional processes, e and geophysical 
anomalies representing the depositional processes

◂
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(Fig. 3d), and a reduced-to-pole map of aeromagnetic data 
representing another proxy for the source (Fig. 3e) (Feizi 
et al. [42]). Table 1 provides a summary of these criteria. 
Readers are referred to Feizi et al. [42] for further details.

5  Mineral potential mapping

5.1  Weighting spatial proxies

Spatial proxies for calcic skarn iron mineralization com-
prising surficial heat sources (C1), physiochemical trap (C2), 
mineral assemblages (C3), geochemical anomalies (C4), 
and subsurficial heat sources (C5) were procreated (Fig. 3). 
According to step 1 of FUCOM, the ranking of spatial prox-
ies was determined as C1 > C2 > C3 > C4 > C5 . Then, based 
on step 2, a comparison was applied based on the ranking 
criteria, determining the significance ( �k ) of the proxies, 
which led to computing the comparative priority of the 
proxies (Table 2). Step 3 was performed to calculate the 

final values of the weight coefficients, which satisfied two 
conditions of Eqs. 3 and 4. (Table 3). After that, Step 4 was 
accomplished with solving an optimization problem in 
Lingo software as follows:

Thus, the optimal weights 
(
w1,w2,… ,wn

)T
 acquired 

are given in Table 4. The spatial proxies were, therefore, 
ranked from the most to the least critical as heat sources 
(C1: w = 0.434), trap (C2: w = 0.255), mineral assemblages 
(C3: w = 0.128), geochemical anomalies (C4: w = 0.096), and 
subsurficial heat sources (C5: w = 0.087).

(5)

Min X

s.t.

||||
w1

w3

− 3.4
|||| = X ,

||||
w2

w4

− 2.64
|||| = X ,

||||
w3

w5

− 1.47
|||| = X

5∑
j=1

wj = 1

wj ≥ 0,∀j

.

Table 1  Mineral systems approach [62, 80, 85] applied for deriving targeting criteria, and the weights assigned to individual classes

Critical process Constituent process Targeting criteria Class Score

Source Basic to intermediate intrusive rocks Outcropping tonalites and quartz 
diorites

Presence 10

Physiochemical trap Calcareous sedimentary sequence, 
Qom formation

Outcropping calcareous sequences Outcropping sandy limestones 10
Outcropping limestones 8

Deposition Accumulation of certain mineral 
assemblages including iron-bearing 
minerals

Mineral assemblages Magnetite 10

Pyrite 8
Hematite 8
Garnet 6
Pyroxene 4
Calcite 2

RTP-transformed geophysical signa-
ture

Anomalies 10

Geochemical anomalies Fe 10
Cu 8
Zn 6
Au 4
As 2

Table 2  The targeting 
criteria for calcic iron skarn 
mineralization and step 2 of 
FUCOM method

Spatial proxies Symbol Significance ( �k) Step 2: the comparative 
priority of the criteria

Surficial heat sources C
1

1 �C
1
∕C

2
= 1.7∕1 = 1.7

Physiochemical trap C
2

1.7 �C
2
∕C

3
= 3.4∕1.7 = 2

Mineral assemblages C
3

3.4 �C
3
∕C

4
= 4.5∕3.4 = 1.32

Geochemical anomalies C
4

4.5 �C
4
∕C

5
= 5∕4.5 = 1.11

Subsurficial heat sources C
5

5 –
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5.2  Prioritization and ranking of alternatives 
(pixels)

The targeting criteria were converted to raster maps with a 
cell size of 50 × 50 square meters according to the distribu-
tion of geochemical samples [59] and flight-line distancing 

of aeromagnetic data [64] used in this work. These criteria 
were converted to the matrix represented in Eq. (6). Given 
the weights of the FUCOM method in Table 4, Eqs. (7–10) 
are used for integrating the weighted criteria into maps of 
mineral potential (Figs. 4, 5).

5.3  Validation of the results

Natural breaks [68] were employed for the initial classi-
fication of prospectivity maps (Figs. 4, 5). Nevertheless, 
for a more robust delineation of exploration targets, 
favorability–area [9, 42] fractal modeling was employed. 
Figure 6 represents the favorability–area model applied 
to the potential maps of MOORA (Fig. 4) and MOOSRA 
(Fig. 5). This process retrieved two classified maps rep-
resented in Figs. 7 and 8. Also, the thresholds derived 

Table 3  Step 3 and conditions 
of FUCOM method

Condition 1 Condition 2 Final values of the 
weight coeffi-
cients

w
1
∕w

2
= 1.7 �C

1
∕C

3
= �C

1
∕C

2
× �C

2
∕C

3
= 1.7 ∗ 2 = 3.4 w

1
∕w

3
= 3.4

w
2
∕w

3
= 2 �C

2
∕C

4
= �C

2
∕C

3
× �C

3
∕C

4
= 2 ∗ 1.32 = 2.64 w

2
∕w

4
= 2.64

w
3
∕w

4
= 1.32 �C

3
∕C

5
= �C

3
∕C

4
× �C

4
∕C

5
= 1.32 ∗ 1.11 = 1.47 w

3
∕w

5
= 1.47

w
4
∕w

5
= 1.11 – –

Table 4  Results of the FUCOM approach

Spatial proxies Symbol Weight

Surficial heat sources C
1

0.434
Physiochemical trap C

2
0.255

Mineral assemblages C
3

0.128
Geochemical anomalies C

4
0.096

Subsurficial heat sources C
5

0.087

Fig. 4  Prospectivity map 
retrieved from the method of 
MOORA
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from the fractal model are illustrated in Tables 5 and 
6. According to these tables and figures, each map is 
divided into five classes. Field surveys were carried out 
to ground-check the anomalies derived from the two 
potential maps. Evidence of skarn iron mineralization 
has been observed in the area as illustrated in Fig. 9. In 
each ground control point illustrated in Fig. 9, litho-geo-
chemical sampling was conducted. These samples were 
analyzed for their iron content using XRF. We sought the 
opinion of many experts regarding the concentration of 
iron in calcic skarn iron deposits. The average opinion 
of experts is represented in Table 7, according to which 
we classified our collected samples into five classes 
(Table 7). Table 8 provides a comparative tool through 
which one can opt for the more robust potential map. 
According to the result of the last column in Table 8, the 
accuracy of the MOOSRA method is 80% (8 correct pre-
dictions of 10), but the MOORA method is 70% (7 cor-
rect predictions of 10). Based on this comparison, the 
method of MOOSRA outperformed MOORA in MPM.

In addition, with respect to high prospective classes 
retrieved from the two methods, the method of MOOSRA 
is superior to MOORA. This is because the former has 
reduced the search space to some 1.7 square kilometers, 
while this number is some 3.7 square kilometers for the 

latter (cf. [79]). An illustration of this comparison is pro-
vided in Fig. 10.

We also applied confusion matrixes [1, 71] to compare 
the two modeling methods using the correct classification 
rate (CCR) (Tables 9, 10). We qualitatively translate the val-
ues of very low, low, moderate, high, and very high derived 
from Table 8 into the values of 1, 2, 3, 4, and 5, respectively. 
The sum of values of diagonal lines in confusion matrixes is 
divided by the total number of control points, which is 10 
in this study. The value of CCR is therefore 0.7 and 0.8 for 
MOORA and MOOSRA, respectively. This also implies that 
MOOSRA provides a more robust map of mineral potential.

6  Discussion

Several multi-criteria decision-making (MCDM) methods, 
which have their advantages and disadvantages [42, 71, 
100–102], have been applied to knowledge-driven GIS-
based issues, such as mineral potential mapping stud-
ies (e.g., [13, 40, 45, 50, 107, 114, 130]). These methods 
are used in weighting spatial proxies [9, 13, 39, 42, 71, 
99, 124]. The FUCOM method, as a pairwise comparison 
method, reduces the large number of pairwise compari-
sons of similar and popular approaches such as analytic 
hierarchy process (AHP: [113]) with n(n − )/2 and the 

Fig. 5  Prospectivity map 
retrieved from the method of 
MOOSRA
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best–worst method (BWM: [109]) with 2n − 3 number 
of pairwise comparisons with n − 1 which leads to a less 
time-consuming and more consistent performance com-
pared with AHP and BWM. Yet, the application of FUCOM 
in MPM is not without drawbacks. The subjectivity has 
been regarded as the most crucial flaw of FUCOM in MPM 
(cf. [94]). Further research should account for fuzziness 
and ambiguity to modulate this caveat in FUCOM-based 
MPM (cf. [94]). Turning to the MOORA [21] and MOOSRA 
[32] methods, this study demonstrated the application 
of these approaches in the integration of weighted evi-
dence maps. Regional-scale maps of mineral potential 

are used for reducing the search space and thus the 
cost of exploratory surveys [79]. In this work, two multi-
criteria decision-making approaches, namely MOORA 
[21] and MOOSRA [32], were applied in the context of 
knowledge-driven mineral potential mapping (MPM). 
Both methods successfully limited the search space for 
field checks and further surveys. However, MOOSRA 
returned a more cost-effective potential map, with its 
target zones occupying merely some 1.7  km2. Ground-
truth analysis of the delineated target also sheds light 
on the superiority of the MOOSRA method. Furthermore, 
the statistical comparison of the two methods using 

Fig. 6  Log–log plot of a MOORA and b MOOSRA prospectivity values in the study area
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Fig. 7  Classified prospectivity 
map of skarn deposits in the 
Varan area based on favorabil-
ity–area fractal modeling of 
the MOORA method

Fig. 8  Classified prospectivity 
map of skarn deposits in the 
Varan area based on favorabil-
ity–area fractal modelling of 
the MOOSRA method
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correct classification rates (CCR) revealed that MOOSRA 
returned a more reliable map of mineral potential.

There are a whole host of different multi-criteria 
decision-making methods used in MPM. However, what 
makes MOORA and MOOSRA more reliable compared 
to many other methods is the fact that optimizations 
procedure is applied to calculate the prospectivity score 
of individual unit cells [4, 7, 11, 33, 70, 75, 84, 98, 116, 
129, 137]. This reduces the uncertainty stemming from 
erroneous mathematical calculations. In addition, this 
study was applied on a suite of mineral systems-derived 
targeting criteria (e.g., [85]), modulating the errors 
embedded in the local-scale deposit models [80]. There-
fore, the target zones retrieved from these frameworks 
can be assumed as confident targets, in which the risk 
of exploration has been reduced.

Aside from the comparison of these methods, the 
delineated target zones show evidence of calcic skarn 
mineralization. The presence of mineral assemblages 
critical to the exploration of this style of mineralization, 

such as magnetite, crystalline calcite, and pyrite, pro-
vides compelling evidence for the presence of minerali-
zation. The delineated targets, therefore, are worthy of 
detailed surveys.

7  Conclusions

This study proposed the application of FUCOM method 
as a MCDM approach for assigning weights to the spatial 
proxies and two matrix-based decision-making methods 
of MOORA and MOOSRA for intergrading a set of target-
ing criteria for mineral potential mapping. These methods 
combined to each other to present two-step methodolo-
gies, namely FUCOM-MOORA and FUCOM-MOOSRA. The 
results of combined methods were interesting and accu-
rate because FUCOM weighting method has the minimum 
possible number of comparisons in its theory, which lead 
to having more reliable outputs in comparison with previ-
ous approaches, and both MOORA and MOOSRA meth-
ods have robust mathematical theory, which reduces the 
uncertainty stemming from erroneous mathematical cal-
culations and causes having more trusty results. The pro-
posed methods FUCOM-MOORA and FUCOM-MOOSRA 
were utilized for intergrading a set of 2D spatial proxies 
representing calcic skarn mineralization in Central Iran. 
The latter method revealed superior results as shown by 
field checks and statistical analyses. Both methods suc-
cessfully reduced the search space for further exploratory 
surveys. Moreover, a mineral system approach was applied 
for deriving the targeting criteria, which itself reduces the 
bias of fallacious assumptions in geological models. As 
a result, the retrieved maps of mineral potential can be 
assumed as a high confident map, based on which further 
decisions can be made. The target zones suggested in the 
potential maps are probably worthy of conducting further 
exploration surveys including litho-geochemical sampling, 
magnetic geophysical survey, trenching, and exploration 
drilling. The genetic characteristics of calcic skarn deposits 
and the data available were used to develop a set of 2D 
spatial proxies representing iron skarn mineralization. In 
the future, the proposed methods can be used to integrate 
a set of 3D spatial proxies for determining exploration drill-
ing points in the target zones.

Table 5  Classification of values based on favorability–area fractal 
modeling in the MOORA method

Class ID Classes range of C-A prospectivity 
map of MOORA method

Favorability

1 0–0.0236 Very low
2 0.0236–0.0284 Low
3 0.0284–0.0877 Moderate
4 0.0877–0.5169 High
5 0.5169–1 Very high

Table 6  Classification of values based on favorability–area fractal 
modeling in the MOOSRA method

Class ID Classes range of C-A prospectivity 
map of MOOSRA method

Favorability

1 0–0.0196 Very low
2 0.0196–0.0247 Low
3 0.0247–0.0730 Moderate
4 0.0730–0.7302 High
5 0.7302–1 Very high



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:358 | https://doi.org/10.1007/s42452-021-04342-9

Fig. 9  Comparison between classified prospectivity maps of the MOORA and MOOSRA

Table 7  Classification of mineralization intensity of iron skarn deposits based on Fe total analyses

Grade % Fe total 0–6 6–12 12–18 18–24 Greater than 24

Classification of mineralization intensity in skarn deposits Very low Low Moderate High Very high
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Fig. 10  Anomalous area of the 
MOORA in comparison with 
the MOOSRA (background: hill-
shade of study area prepared 
from ASTER DEM)

Table 8  Comparison between thresholds of the MOORA and MOOSRA prospectivity maps (based on favorability–area fractal modeling) 
with classification of mineralization intensity of calcic iron skarn prospectivity

Sample 
number

Thresholds of C-A pro-
spectivity map (MOORA 
method)

Thresholds of C-A pro-
spectivity map (MOOSRA 
method)

Grade 
% Fe 
total

Classification of mineralization 
intensity in calcic iron skarn 
deposits

The most accurate method

1 Very high Very high 27 Very high MOORA & MOOSRA
2 Moderate Moderate 14 Moderate MOORA & MOOSRA
3 Very high High 22 High MOOSRA
4 Very high High 21 High MOOSRA
5 Moderate Moderate 15 Moderate MOORA & MOOSRA
6 Very high Very high 28 Very high MOORA & MOOSRA
7 Very high High 25 Very high MOORA
8 Very high High 26 Very high MOORA
9 Moderate High 19 High MOOSRA
10 Moderate Moderate 15 Moderate MOORA & MOOSRA

Table 9  Confusion matrix of 
the MOORA method in the 
Varan area

Estimated class 1 2 3 4 5

Real class – – – – –
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 3 0 0
4 0 0 1 0 2
5 0 0 0 0 4

Table 10  Confusion matrix of 
the MOOSRA method in the 
Varan area

Estimated class 1 2 3 4 5

Real class – – – – –
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 3 0 0
4 0 0 0 3 0
5 0 0 0 2 2
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