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Abstract

A new formal kinetics methodology suitable for the situation in which transformations take place
simultaneously or sequentially is presented. Based on the distinction between theoretical and
experimental quantities and with the help of the superposition principle general relationships
were obtained to deal with simultaneous and sequential reactions. The equations presented here
are able to deal with position dependent quantities and there is no need to rely on extended
volume. They are suitable both for model building, i. e. obtaining expressions for simultaneous
or sequential reactions from models of the kinetics of each reaction in isolation as well as for
extracting theoretical information from the experimentally measured quantities.
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1 Introduction

Formal kinetics methodology is frequently employed to analyze a variety of heterogenous trans-
formations in condensed phases [1–5].This methodology has its origin in the early work of Kol-
mogorov [6], Johnson-Mehl [7] and Avrami [8–10].

Usually theoretical developments are concerned with the formation of a single phase at a cer-
tain nucleation site that grows with a given interface velocity. Nonetheless, sometimes more than
one transformation( “transformation” and “reaction” are used interchangeably in this paper) takes
place simultaneously. A methodology to model simultaneous reactions was proposed by Vandermeer
and Juul-Jensen [11,12] in connection with recrystallization in a textured matrix. Recrystallization
in a textured matrix can be quite complex because the recrystallized regions may belong to specific
texture components. Moreover, each texture component may nucleate on a distinct nucleation site
and may grow with different velocities. Subsequently, a similar methodology was used by Jones
and Bhadeshia [13,14] to model simultaneous precipitation of more than one phase. In the context
of glass crystallization [15–17] corresponding ideas were also proposed to deal with transformations
proceeding simultaneously nucleated both on the surface and in the bulk of small specimens. More
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recently, also the potential overlap of recristallization and austenite formation during heating of
cold worked steels has gained significant attention [18, 19]. In fact, we may have a more general
situation than that described above, namely, when the reactions do not start simultaneously but
consecutively. For example, reaction 1 starts at t = 0 whereas reaction 2 starts at t = τ > 0.
One might say that reactions 1 and 2 are sequential reactions. If reaction 1 starts and finishes
before reaction 2 starts then these sequential reactions are non-overlapping. In contrast if reaction
2 starts before reaction 1 stops then we have overlapping reactions. One may regard simultane-
ous transformations as a particular case of sequential transformations when all reactions start at
t = 0. One example from steels would be the decomposition of austenite. Austenite decomposition
starts by transforming into ferrite and as the carbon content of austenite increases pearlite starts
to form. Therefore there is a sequence of transformations: first ferrite and next pearlite. If austen-
ite decomposition takes place during cooling one may further increase the number of sequential
reactions because bainite and the martensite can form. Sequential transformations, overlapping
or non-overlapping, are often observed in practice, perhaps even more often than simultaneous
transformations. Nonetheless such a situation has not received much theoretical attention [20].

We may identify transformations according to their specific characteristics with regard to nu-
cleation and growth:

1. Spatial location: nucleation sites may have different dimensionality: points, lines and internal
interfaces [21] and we may also include clusters [22, 23]. In small specimens, nucleation
may occur on the surface and/or in the bulk of the small specimen [24]. In addition nuclei
distribution may be position dependent as in an inhomogeneous Poisson point process [25].

2. Time dependence: nucleation may be site-saturated, constant nucleation rate or have a more
general time dependence [26].

3. Growth: constant growth rate or time dependent growth [26].

4. Shape: the growing regions may be spherical or ellipsoidal [25,26].

Transformations may take place with each reaction belonging to one or more of the groups
above. The above classification essentially deals with the geometrical interdependency among the
simultaneous reactions. But there may be another interdependency a kinetic interdependency. Such
kinetic interdependency may happen, for example, when two growing phases compete for the same
solute in order to grow. Thus the velocity of the two phases are related to the common amount
of solute in the parent matrix and are therefore interdependent. In this work we will restrict our
treatment to the geometric interdependency, i.e. the growing regions only compete for space.

Modeling simultaneous reactions normally involves two distinct but closely related objectives:

1. Predict the overall kinetics quantities of the combined reactions such as the mean volume
density( to be more rigorously defined in Section 2), VV (t, x), from theoretical expressions
developed for each individual reaction. For example, one may wish to predict the overall
behavior of a combination of two reactions, one nucleated on the external surface another in
the bulk of a finite specimens as described by Villa and Rios [24].

2. Extract the kinetics, i.e mean volume density as a function of time, for an individual reaction
from experimental measurements. One might or might not have an analytical model for the
nucleation and growth of this specific reaction beforehand but the experimental data may
be useful precisely to establish which model would be suitable to describe it. Therefore one
needs to know how to use the measured data to obtain quantities suitable for comparison
with available theoretical models.
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Of course one may also have a combination of both: the experimental kinetics is known for
some reactions whereas the theoretical behavior is known for other reactions.

In previous work, the present authors resorted to recent developments in stochastic geometry
[27–30] and obtained exact analytical expressions for the situation in which nuclei were located in
space according to an inhomogeneous Poisson point processes [25], for nuclei located in spherical
clusters according to a Matérn cluster process [22] and for nuclei located in the bulk and on the
surface of small specimens [24]. This paper follows up the idea of these previous papers that is to
obtain exact mathematical expressions, thus, increasing the number of the exactly solvable cases
available to formal kinetics applications.

In this work we use stochastic geometry methods to develop a general formal kinetic method-
ology for treating the situation in which several heterogeneous transformations take place simulta-
neously or sequentially.

sectionMathematical background

1.1 Nucleation and growth and birth and growth processes

Consider a specimen that initially contains a single phase, say α. Let α partially transform to
another phase, β. In the solid state this transformation frequently involves two steps: the first is
the initiation of β from the α matrix, which is called nucleation of β and the second is the subsequent
growth of the β phase as it consumes the α phase. This process is called “nucleation and growth”
by the materials scientist whereas the mathematicians prefer to call it “birth and growth”. This
transformation is a physical phenomenon and its progress may be followed, for example, by direct
observation of the microstructure of transformed samples by means of a microscope. In order to
model such a transformation it is necessary to describe it in the language of abstract mathematics, i.
e. using set theory. Thus, the transformed region is regarded as a set designated Θt. The superscript
t indicates that the transformed region depends on time, it is a dynamic process. Suppose that
we observe the transformed region( the set Θt) with the help of an optical microscope. We fix the
observation window under the lens but move the stage of the microscope so that several different
transformed regions can be seen within the observation window. Mathematics has a powerful tool
do deal with such a situation that is to consider that Θt is a random set. These ideas may expressed
in a more formal way as follows.

A birth and growth (stochastic) process is a dynamic germ-grain model [28], used to model
situations in which nuclei (germs) are born in time and are located in space randomly, and each
nucleus generates a grain evolving in time according with a given growth law. Since, in general,
the nucleation is ‘random’ in time and space, then the transformed region at any time t > 0 will
be a ‘random’ set [28] in Rd, that is a measurable map from a probability space to the space of
closed subsets in Rd. Denote by Tj the R+-valued random variable representing the time of birth
of the j-th nucleus, and by Xj the Rd-valued random variable representing the spatial location of
the nucleus born at time Tj , let Θt

Tj
(Xj) be the grain obtained as the evolution up to time t ≥ Tj

of the nucleus born at time Tj in Xj ; then, the transformed region Θt at time t is

Θt =
⋃

Tj≤t

Θt
Tj

(Xj), t ∈ R+. (1)

The family {Θt}t of all transformed regions Θt over time is called birth and growth process.
Birth and growth and nucleation and growth will be used as synonyms in this paper.
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1.2 Meaning of VV , SV

A point of paramount practical importance is to be able to quantify the volume of the transformed
region and the area between the transformed region and the parent matrix. This quantification
is carried out on the set representing the transformed region with the help of measure theory.
Measure theory is the mathematical counterpart of everyday experimental measure carried out by
the materials scientist. For technical mathematical reasons measure theory prefers to deal with a
special class of sets: the Borel sets [31]. Unions and intersections of closed and/or open sets are
Borel sets. In practice, any set of engineering interest is going to be a Borel set. The objective
of the following mathematical formalism is to define quantities that will be useful to quantify the
transformed region. The general d-dimensional euclidian space Rd is used but naturally d = 2, 3
are the cases of physical interest in this paper.

A measure µ on Rd admits density if there exists a locally integrable function f : Rd → R such
that

µ(A) =
∫

A
f(x)dx ∀A ∈ BRd , (2)

where BRd is the Borel σ-algebra of Rd [31]; x = (x1, x2, x3, ...xd) is the spatial coordinate and A is
a subset of Rd, corresponding to the region of the physical sample under observation. We denote
by νd the usual d-dimensional Lebesgue measure in Rd, that is, the usual d-dimensional volume
measure.

Since Θt is a random set, its volume νd(Θt) will be a random quantity, so that we may deal
with its expected volume E[νd(Θt)] at time t. In particular, it is of interest to consider the expected
volume measure E[νd(Θt ∩ · )] and its density, said mean volume density of Θt and denoted by VV ,
provided it exists,

E[νd(Θt ∩A)] =
∫

A
VV (t, x)dx ∀A ∈ BRd . (3)

Eq.(3) shows that in general VV depends on space and time. If Θt is so-to-say homogeneous(i.e.
its probability law is invariant under translations, in other words, the microstructure remains “in-
variant” if the observation window is moved only by translations.) in space, then VV is independent
of x

E[νd(Θt ∩A)] = VV (t)νd(A) ∀A ∈ BRd . (4)

Therefore, for the homogeneous case, VV (t) is a positive constant, representing the mean volume
density per unit of volume also called the volume fraction

VV (t) =
E[νd(Θt ∩A)]

νd(A)
∀A ∈ BRd . (5)

For the inhomogeneous case, Eq.(3) implies that the value of the volume fraction depends on A

VV(t, A) :=

∫
A VV (t, x)dx

νd(A)
∀A ∈ BRd (6)

In the homogeneous case one normally uses the volume fraction, which is independent of x.
Therefore, for the homogeneous case there is no distinction between VV and VV.

Similarly, the mean volume density of interfaces or mean interfacial area density [29] can be
defined as

E[νd−1(∂Θt ∩A)] =
∫

A
SV (t, x)dx ∀A ∈ BRd . (7)

where ∂Θt is the topological boundary of Θt, and νd−1 is the Lebesgue surface measure. When the
meaning is clear “interfacial area density” will be used for brevity.
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1.3 Probabilities and VV (t, x)

The advantage of the mathematical formalism employed here is that one may readily identify
VV (t, x) with the probability of x belonging to the transformed region, Θt

VV (t, x) = P(x ∈ Θt) (8)

The probability that x does not belong to Θt is simply

1− VV (t, x) = P(x 6∈ Θt) (9)

Suppose that there are two transformations Θt
1 and Θt

2 with boundaries ∂Θt
1 and ∂Θt

2, respec-
tively. Suppose also that the reactions take place independently of one another. If the reactions
are superposed one has the situation depicted in Fig. 1. We can use set operations and the equiv-
alence between probability and mean volume density to describe the combination of these two
transformations.

The overall transformed area Θt is simply the union Θt
1 ∪ Θt

2. The region in which the trans-
formations overlap is described by Θt

1 ∩Θt
2. If the transformations are independent the probability

that a point belongs to this intersection is the product of the probabilities of the point belonging
to Θt

1 and Θt
2

P(x ∈ Θt
1 ∩Θt

2) = P(x ∈ Θt
1)P(x ∈ Θt

2) (10)

identifying VV 1(t, x) = P(x ∈ Θt
1) and VV 2(t, x) = P(x ∈ Θt

1) one obtains the mean volume density
of the overlapping regions

VV Θt
1∩Θt

2
(x, t) = P(x ∈ Θt

1 ∩Θt
2) = VV 1(x, t)VV 2(x, t) (11)

Similar reasoning could be applied, for example, to Θt
1 ∪ Θt

2 or to Θt
1\Θt

2. In the sequel this
kind of operation will be frequently used in the definitions and in the demonstrations.

1.4 Useful relationships and definitions

Under quite general assumptions, normally satisfied in practical applications, it can be proved
that [29]

G(t) =
1

SV (t, x)
∂VV (t, x)

∂t
(12)

where G is the overall velocity of the moving boundaries, also called the growth rate. This equation
was introduced to materials science by Cahn and Hagel [32]. It is worth mentioning that in the
general case [33] Eq.(12) has to be taken in weak form, which means that the following equation
holds: ∫

A
VV (t, x)dx =

∫

A
VV (t0, x)dx +

∫ t

t0

∫

A
G(x, s)SV (s, x)dxds

for any Borel subset A of Rd such that E[νd−1(∂Θt ∩ ∂A)] = 0. Therefore Eq.(12) hides a possible
exchange between derivative and integral, which is valid whenever G and SV are sufficiently regular.
In all our applications we may suppose G and SV regular enough so that Eq.(12) holds.

Finally, it is worth mentioning two definitions that will be used below.
The indicator function 1A(x) is defined as equal to 1 if x ∈ A and 0 if x 6∈ A. A may be any

set, for example, the interval [0, t].
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A⊕B is the so-called Minkowski addition of A and B defined as

A⊕B := {a + b : a ∈ A, b ∈ B} =
⋃

a∈A

B + a. (13)

Note that if B = Br(0), then A⊕B is the set of points of Rd which have a distance from A less
than or equal to r. This latter definition is only used in the proofs given in the Appendix.

2 Model building: total quantities from theoretical quantities

Figure 1: A schematic example of superposition of two transformations, 1 and 2. The transformed
area of each is indicated by Θt

1 and Θt
2. Their boundaries, ∂Θt

1(solid line) and ∂Θt
2(dashed line),

are indicated by arrows. The mean volume densities of Θt
1 and Θt

2 are VV 1 and VV 2, respectively.
The mean interfacial densities of ∂Θt

1 and ∂Θt
2 are SV 1 and SV 2, respectively. VV 1, VV 2, SV 1 and

SV 2 are called “theoretical quantities”.

In this section we show how to use models developed for a single reaction to obtain a model for
the combined reaction with the help of the superposition principle. The total mean volume density
and the total interfacial area density are denoted here VV (t, x) and SV (t, x), respectively. We define
here the theoretical mean volume density of reaction i as the mean volume density if reaction i were
the only reaction to take place. What is called here theoretical mean volume density is therefore
the expression that is normally obtained from modeling a single reaction. The theoretical mean
volume density and mean interfacial area density of reaction i will be denoted as VV i(t, x) and
SV i(t, x), respectively. See Fig.1 for a schematic view. The reason for this definition will become
clear in the next section.

Whenever the nucleation process Φ is given by the union of two or more nucleation processes,
say Φ :=

⋃n
i=1 Φi, then Φ is said to be the superposition of Φ1, . . . ,Φn. For more details about

the superposition operation of point processes, see, e.g., [28]. Recalling that VV (t, x) represents the
probability that the point x belongs to the transformed region at time t, say Θt, then 1−VV (t, x) =
P(x 6∈ Θt) = P({x 6∈ Θt

1} ∩ . . .∩ {x 6∈ Θt
n}), where Θt

i denotes the transformed region at time t due
to the nucleation process Φi. If the nucleation processes Φ1, . . . , Φn are independent then the events
{x 6∈ Θt

i} are independent as well; as a consequence P({x 6∈ Θt
1}∩ . . .∩{x 6∈ Θt

n}) =
∏n

i=1 P(x 6∈ Θt
i)

and so

VV (t, x) = 1−
n∏

i=1

(1− VV i(t, x)) (14)
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Figure 2: A schematic example of two simultaneous transformations, 1 and 2. The “visible” or
“experimental” transformed area of each is indicated by Θ∗t

1 and Θ∗t
2 . Their boundaries, ∂Θ∗tsolid

line) and ∂Θ∗t
2 (dashed line), are indicated by arrows. The mean volume densities of Θ∗t

1 and Θ∗t
2

are VV 1∗ and V ∗
V 2, respectively. The mean interfacial densities of ∂Θ∗t

1 and ∂Θ∗t
2 are S∗V 1 and S∗V 2,

respectively. V ∗
V 1, V ∗

V 2, S∗V 1 and S∗V 2 are called “experimental quantities”. The dotted line is the
boundary between reactions 1 and 2 and is not counted as part of ∂Θ∗t

1 and ∂Θ∗t
2 .

having denoted by VV i the mean volume density associated with the nucleation process Φi. Fig. 1
depicts the superposition of two independent reactions: 1 and 2.

The corresponding equation for SV (t, x) is

SV (t, x) =
n∑

i=1

1− VV (t, x)
1− VV i(t, x)

SV i(t, x) (15)

The proof of Eq.(15) requires results that are obtained in Section 4 and will be postponed until
then.

The overall velocity of the simultaneous reactions, G, is given by

G(t, x) =
1

SV (t, x)
∂VV (t, x)

∂t
(16)

The overall velocity G may be position dependent even if the boundary velocities of the indi-
vidual reactions, i, are not position dependent. This point will become clear examining Eq. (24),
which is introduced in Section 4. Notice that this may happen because the overall velocity has no
actual physical existence, that is, no interface actually moves with the overall velocity.

These expressions are the mathematically exact method to handle superposition when one has
expressions derived for single reactions and wishes to use these expressions to build a model for the
simultaneous reactions. Eqs.(14)and (15) permit obtaining a wide range of analytical models from
theoretical models for each nucleation and growth process.

3 Experimental and theoretical quantities

First, it is necessary to make a distinction between an experimental and a theoretical quantity. As
its own name implies an experimental quantity is a quantity that is directly measured from the
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transformed microstructure. For example, suppose that a transformation occurs by means of n
simultaneous reactions. Then the experimental mean volume density of a certain reaction i will be
denoted V ∗

V i(t, x), and analogous notation applies to the experimental mean interface area density,
namely, S∗V i(t, x). In contrast, we recall that in Section 2 the theoretical mean volume density and
the mean interfacial area density of a reaction i were denoted as VV i(t, x) and SV i(t, x), respectively.
Obviously, for a single reaction the experimental and theoretical quantities will be the same. Figs.
1 and 2 schematically show these definitions. In what follows we sometimes refer to “reaction Θt

i”
meaning reaction i.

We now give more precise definitions of the experimental quantities. V ∗
V i and S∗V i, the mean

experimental volume density and mean interfacial area density, respectively, of reaction i, say, Θt
i,

may be defined as

E[νd(Θ∗t
i ∩A)] =

∫

A
V ∗

V i(t, x)dx ∀A ∈ BRd (17)

where Θ∗t
i denotes the visible part of the transformed region due to the reaction Θt

i, and

E[νd−1((∂Θt
i \

⋃

j 6=i

Θt
j) ∩A)] =

∫

A
S∗V i(t, x)dx ∀A ∈ BRd (18)

VV i(t, x) is the mean volume density of the transformed region, Θt
i, due to the reaction i when

only such a reaction takes place. In contrast, V ∗
V i(t, x) is the mean volume density of the visible part

of the transformed region due to the reaction Θt
i when all the other reactions also take place, and

so it is the mean volume density of Θ∗t
i . Note that, because of impingement, transformed regions

of different reactions cannot overlap, so that Θt is given by the union of all Θ∗t
i . In particular, any

interior point x ∈ Θt belongs to only one transformed region Θ∗t
i , and so the following relationship

between total and experimental quantities holds

VV (t, x) =
n∑

i=1

V ∗
V i(t, x) (19)

Analogously, definition (18) means that S∗V i(t, x) is the mean surface density of the visible part
of the boundary of the transformed region due to the reaction Θt

i, (i.e. the free or moving boundary
of Θ∗t

i , given by ∂Θt
i \ (

⋃
j 6=i Θ

t
j)). In particular, any boundary point x ∈ ∂Θt belongs to the free

boundary of only one transformed region Θ∗t
i , and so the following relationship between total and

experimental quantities holds

SV (t, x) =
n∑

i=1

S∗V i(t, x) (20)

It is worthy emphasizing that ∂Θ∗t
i and consequently S∗V i comprise solely the interfacial area be-

tween the transformed region i and the parent matrix. In other words, ∂Θ∗t
i and S∗V i refer to

the moving boundary between transformed region Θ∗t
i and the parent matrix. For example, the

immobile boundaries between regions 1 and 2 that result from impingement, see dotted line in Fig.
2, are not counted as part of as part of ∂Θ∗t

1 and ∂Θ∗t
2 . Likewise, immobile boundaries resulting

from impingement between regions of the same reaction i also do not count as part ∂Θ∗t
i .

3.1 Derivation of an expression for the interface velocity

A grain associated with reaction i may have a boundary velocity Gi that is different from the
boundary velocity of grains associated with another reaction j 6= i. This may happen, for example,
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when there are different texture components [11] or different constituents [13]. In this paper, the
boundary velocities of the individual reactions, Gi, are assumed to be only time dependent and to
have the same value at every point of the moving boundary of a certain reaction. This assumption
is not overly restrictive and considerably simplifies the mathematics. Position dependent velocities
would make the problem much more difficult if exactly solvable at all. As an example of the
complications involved, consider that if the boundary velocity is position dependent one cannot
assume that the shape of the individual region remains constant.

Gi may be obtained from the theoretical quantities by

Gi(t) =
1

SV i(t, x)
∂VV i(t, x)

∂t
(21)

but a boundary velocity G∗
i may also be obtained from the experimental quantities by

G∗
i (t) =

1
S∗V i(t, x)

∂V ∗
V i(t, x)
∂t

(22)

It is “intuitive” that Gi = G∗
i so that

Gi(t) =
1

S∗V i(t, x)
∂V ∗

V i(t, x)
∂t

(23)

Even though Eq.(23) looks reasonable its proof is not trivial. For this reason the proof is given
in the Appendix.

3.2 Derivation of relationships between experimental,V ∗
V i and S∗V i, and theoret-

ical quantities, VV i and SV i,

Taking the derivative with respect to t of VV (t, x) in Eq. (19) and using Eqs.(16) and (23)

G(t, x)SV (t, x) =
n∑

i=1

Gi(t)S∗V i(t, x) (24)

Eq. (24), as anticipated in Section 3, shows that the overall velocity, G(t, x), may be position
dependent even if all Gi(t) are only time dependent. Eq. (24) shows that this may happen when
at least one reaction has the interfacial area density position dependent. Furthermore, it can be
proved (see Appendix) that

∂V ∗
V i(t, x)
∂t

=
1− VV (t, x)
1− VV i(t, x)

Gi(t)SV i(t, x) (25)

Combining Eqs. (23) and (25) gives

S∗V i(t, x) =
1− VV (t, x)
1− VV i(t, x)

SV i(t, x) (26)

Eq. (15) may be obtained by inserting Eq. (26) into Eq. (20). It is now possible to relate
theoretical and experimental quantities. From Eqs. (21) and (26)

∂V ∗
V i(t, x)
∂t

= −(1− VV (t, x))
∂ ln(1− VV i(t, x))

∂t
(27)
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and therefore

VV i(t, x) = 1− exp
(
−

∫ t

0

1
1− VV (s, x)

∂V ∗
V i(s, x)
∂s

ds

)
(28)

V ∗
V i(t, x) =

∫ t

0

1− VV (s, x)
1− VV i(s, x)

∂VV i(s, x)
∂s

ds (29)

In Eq. (28) the theoretical quantity is on the left hand side and the experimentally measurable
quantities are on the right hand side. This permits obtaining theoretical quantities from exper-
imental quantities. By contrast in Eq. (29) the experimental quantity is on the left hand side
whereas the theoretical quantities are on the right hand side. This permits obtaining experimental
quantities form theoretical quantities. Notice that VV (t, x) may be either obtained experimentally
or from the theoretical quantities by means of Eq. (14).

4 Sequential transformations

In many cases transformations might not start at the same time but at different times. We call
these sequential reactions. In the general case one might imagine a situation in which a second
reaction starts while the first reaction is still in progress, so that the reactions overlap, i. e. they
proceed simultaneously only during a certain time. As mentioned above, simultaneous reactions
may be seen as a particular case when all starting times are the same. Moreover, there is no need
to treat the case in which the first reaction starts and finishes before the second reaction starts, the
non-overlapping case. Indeed, the non-overlapping case may also be considered a particular case of
the overlapping case.

We present here a general model for these situations based on the equations derived in the
previous section. In order to modify previous equations to encompass these cases we need to define
the time, tis, at which reaction i starts. As usual let us denote by Θt

i the transformed region due
to reaction i at time t; clearly Θt

i = ∅ for any t < tis. It follows that

VV i(t, x) = P(x ∈ Θt
i) = P(x ∈ Θt

i | t ≥ tis)1[tis,∞)(t)

where 1[tis,∞)(t) is the indicator function; it is equal to 1 if tis ≤ t < ∞ and 0 otherwise.
Defining ṼV i and S̃V i to be the mean volume density and the mean surface density, respectively,

associated to the same reaction i starting at time t = 0, we get that P(x ∈ Θt
i | t ≥ tis) =

ṼV i(t− tis, x) and so,
VV i(t, x) = ṼV i(t− tis, x)1[tis,∞)(t) (30)

SV i(t, x) = S̃V i(t− tis, x)1[tis,∞)(t) (31)

Then, using Eq.(14), one finally obtains

VV (t, x) = 1−
n∏

i=1

(
1− ṼV i(t− tis, x)1[tis,∞)(t)

)
(32)

For any t > tis, from Eqs. (21) and (23) we know that

Gi(t) =
1

S̃V i(t− tis, x)

∂ṼV i(t− tis, x)
∂t

=
1

S∗V i(t, x)
∂V ∗

V i(t, x)
∂t

(33)

10



¿From Eq (26)

S∗V i(t, x) =
1− VV (t, x)

1− ṼV i(t, x)
S̃V i(t, x) (34)

and from Eq. (27)
∂V ∗

V i(t, x)
∂t

= −(1− VV (t, x))
∂ ln(1− ṼV i(t− tis, x))

∂t
(35)

therefore, also for any t > tis,

ṼV i(t− tis, x) = 1− exp
(
−

∫ t

tis

1
1− VV (s, x)

∂V ∗
V i(s, x)
∂s

ds
)

(36)

V ∗
V i(t, x) =

∫ t

tis

(1− VV (s, x))
∂ ln(1− ṼV i(t− tis, x))

∂t
ds (37)

These equations may be used when one has sequential, non-overlapping or overlapping, trans-
formations.

5 Examples and Discussion

5.1 Two simultaneous reactions

Suppose that there are two simultaneous reactions denoted reaction 1 and 2. Each reaction has
its own velocity, G1 and G2, supposed constant. Nucleation is site saturated in both of them. In
reaction 1 and 2 nuclei are located uniform randomly in space and the number of nuclei per unit
of volume is NV 1 and NV 2, respectively. For a more precise treatment of nucleation employing
homogeneous and inhomogeneous Poisson point process see Rios and Villa [25]. The theoretical
mean volume density or volume fraction and interfacial area density for reaction 1 are

VV 1(t) = 1− exp
(
−4πNV 1

3
G3

1t
3

)
(38)

SV 1(t) = 4πNV 1G
2
1t

2 exp
(
−4πNV 1

3
G3

1t
3

)
(39)

Analogous expressions may be written for reaction 2 just by exchanging the subscript 1 by 2.
The total mean volume density may be found using Eq.(14)

VV (t) = 1− (1− VV 1(t))(1− VV 2(t)) = 1− exp
(
−4π

3
(NV 1G

3
1 + NV 2G

3
2)t

3

)
(40)

V ∗
V 1 can be obtained from Eqs. (29) and (38)

V ∗
V 1(t) =

∫ t

0
(1− VV 2(s))

dVV 1(s)
ds

ds =
∫ t

0
4πNV 1G

3
1s

2 exp
(
−4π

3
(
NV 1G

3
1 + NV 2G

3
2

)
s3

)
ds (41)

This equation may be integrated analytically and simplified

V ∗
V 1(t) =

NV 1G
3
1

NV 1G3
1 + NV 2G3

2

VV (t) (42)

Analogous expression may be derived for V ∗
V 2(t), recalling that V ∗

V 2(t) = VV (t)− V ∗
V 1(t). These

equations may be used to investigate the effect of the growth rate on the transformation when all

11



other parameters are kept constant. For a numerical example reasonable values are NV 1 = NV 2 =
105mm−3, G1 = 10−5mm/s and G2 = 1.5G1. The value of 1.5 was chosen here because Vandermeer
and Jensen [12] found that, during recrystallization of copper, cube + cube twin grains grew about
1.5 times faster than the random grains. Fig. 3 shows the mean volume density or volume fraction
transformed as a function of time for these parameters. In Fig. 3 V ∗

V 1 and V ∗
V 2 are represented

by the dotted line and by the dashed line, respectively. It is clear that reaction 2, which has the
higher velocity, develops much faster than reaction 1. In order not to be overwhelmed it would be
necessary for reaction 1 to have some other advantage, such as a higher number of nuclei per unit
of volume [12]. A better overview of the effect of the growth rate may be achieved by plotting the
final volume fraction of reaction 2, V ∗

V 2(t →∞), as a function of the velocity ratio, G2/G1 . Such
an expression may be found from Eq. (42) and from NV 1 = NV 2

V ∗
V 2(t →∞) =

(G2/G1)
3

1 + (G2/G1)
3 (43)

Eq. (43) is plotted in Fig. 4. If G1 = G2 then V ∗
V 2(t → ∞) = V ∗

V 1(t → ∞) = 0.5. It can be
seen that for G2/G1 = 2, reaction 2 overwhelms reaction 1, V ∗

V 2(t → ∞) = 0.89. Therefore, even
this highly simplified example shows an interesting result: for equal number of nuclei per unit of
volume growth rates differences over a factor of about 2 would lead to the reaction with the higher
growth rate overwhelming the other.
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Figure 3: Mean volume density plotted as a function of time. The overall reaction,VV , is represented
by the solid line. V ∗

V 1 and V ∗
V 2 are represented by the dotted line and by the dashed line, respectively.

For both reactions nucleation is site saturated and they have the same number of nuclei per unit
of volume. The boundary velocity of reaction 2, is 1.5 times the boundary velocity of reaction 1.
As a consequence reaction 2 takes place much faster and constitutes the major part of the total
fraction transformed.

Similar expressions may be obtained for the interfacial area densities. ¿From Eq. (26)

S∗V 1(t) = (1− VV 2(t))SV 1(t) = 4πNV 1G
2
1t

2 exp
(
−4π

3
(NV 1G

3
1 + NV 2G

3
2)t

3

)
(44)
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Figure 4: Experimental mean volume density of reaction 2,V ∗
V 2(t → ∞), at the end of the trans-

formation as a function of the ratio of the velocities of reaction 2, G2, and 1, G1. For both
reactions nucleation is site saturated and they have the same number of nuclei per unit of volume.
For G2/G1 = 1 each reaction transforms 0.5 of the total transformation. It can be seen that for
G2/G1 = 2, reaction 2 overwhelms reaction 1, V ∗

V 2(t →∞) = 0.89.

SV can be obtained from Eq. (20)

SV (t) = 4π(NV 1G
2
1 + NV 2G

2
2)t

2 exp
(
−4π

3
(NV 1G

3
1 + NV 2G

3
2)t

3

)
(45)

and

S∗V 1(t) =
NV 1G

2
1

NV 1G2
1 + NV 2G2

2

SV (t) (46)

G can be obtained from Eq. (16)

G =
NV 1G

3
1 + NV 2G

3
2

NV 1G2
1 + NV 2G2

2

(47)

For NV 1 = NV 2 and G2 = 1.5G1 the overall velocity, G ≈ 1.35G1, as expected closer to G2

than to G1 because reaction 2 dominates the overall kinetics.
The microstructural path gives an interesting result

SV (t) = (36π)1/3 NV 1G
2
1 + NV 2G

2
2(

NV 1G3
1 + NV 2G3

2

)2/3
(1− VV (t))

(
ln

1
(1− VV (t)

)2/3

(48)

The microstructural path corresponding to reactions 1 and 2(see Fig. 3) are plotted in Fig. 5.
In Fig. 5 the microstructural path for the overall reaction(VV , SV ) is represented by the solid line,
for reaction 1(V ∗

V 1, S
∗
V 1) by the dotted line and for reaction 2(V ∗

V 2, S
∗
V 2) by the dashed line. The

(V ∗
V 1, S

∗
V 1) curve( and similarly the (V ∗

V 2, S
∗
V 2) curve) is a parametric plot of Eqs. (42) and (44). It

is interesting that the peaks in S∗V 1, S
∗
V 2 and SV take place at different mean volume densities of

the overall reaction.

13
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Figure 5: Mean interfacial area density as a function of mean volume density time for
the overall reaction(VV , SV )(solid line), for reaction 1(V ∗

V 1, S
∗
V 1)(dotted line) and for reaction

2(V ∗
V 2, S

∗
V 2)(dashed line). For both reactions nucleation is site saturated and they have the same

number of nuclei per unit of volume. The boundary velocity of reaction 2, is 1.5 times the bound-
ary velocity of reaction 1. As a consequence reaction 2 takes place much faster and constitutes the
major part of the total fraction transformed. For this reason, the microstructural path of reaction
2 extends up to V ∗

V 2 = 0.77.

It is worthy of note that the microstructural path, Eq. (48) depends on G1 and G2. This
behavior is a consequence of the simultaneous reactions. It is well known that for a single site-
saturated reaction the microstructural path is independent of the velocity [26]. Indeed for a single
reaction, the microstructural path is often used to estimate the number of nuclei per unit of volume
[34]. Therefore, one must be careful when using the microstructural path for this purpose if there
is the possibility of simultaneous reactions. One particular transformation in which this could be a
problem is recrystallization. If there are more than one texture component with distinct velocities
and if the transformation is analysed as if it were a single reaction, then estimating number of
nuclei per unit of volume from the microstructural path is going to yield erroneous values.

This example shows that, given the theoretical expressions for the two reactions, one may
obtain expressions for all experimental quantities. Conversely, from the experimental quantities it
is possible to determine the theoretical quantities.

5.2 Two sequential reactions

Yet another possibility would be that reactions 1 and 2 take place sequentially. So, reaction 1
initiates at t = t1s and reaction 2 starts at t = t2s > t1s.

A numerical example is given here concerning the effect of the incubation time. The incubation
time for reaction 1 is supposed to be equal to zero, t1s = 0, but reaction 2 has t2s > 0. All other
quantities are supposed to be the same for both reactions. So, NV 1 = NV 2 = 105nuclei/mm3 and

14



G1 = G2 = 10−5mm/s. From Eq. (30) the mean volume density is

VV 1(t) = ṼV 1(t) = 1− exp
(
−4π

3
10−10t3

)
(49)

VV 2(t) = ṼV 2(t− t2s) = 1− exp
(
−4π

3
10−10 (t− t2s)

3

)
, for t > t2s (50)

and by superposition, Eq. (32),

VV (t) = 1− exp
(
−4π

3
10−10

(
t3 + (t− t2s)

3 1[t2s,∞)(t)
))

(51)

Using Eq. (37)

V ∗
V 1(t) =

∫ t

0
4π10−10t2 exp

(
−4π

3
10−10

(
u3 + (u− t2s)

3 1[t2s,∞)(u)
))

du (52)

where for t < t2s, V ∗
V 1(t) = VV 1(t). This integral can be evaluated numerically.

Fig. 6 shows the plot of mean volume density against time for the situation in which reaction 2
starts at t2 = 496.6s. This incubation time means that reaction 2 started when V ∗

V 1(t2 = 496.6) =
0.05. The overall reaction, VV , is represented by the solid line. V ∗

V 1 and V ∗
V 2 are represented

by the dotted line and by dashed the line, respectively. It can be seen that the volume fraction
transformed of reaction 1 was still relatively small, 0.05,when reaction 2 started. Notwithstanding,
reaction 1 constitutes the major part of the overall transformation. A better overview of the
effect of the incubation time may be achieved by plotting the final volume fraction of reaction
2, V ∗

V 2(t → ∞), as a function of the incubation time for reaction 2, t2s. This plot is shown in
Fig. 7. The corresponding mean volume volume density of reaction 1 at which reaction 2 starts,
V ∗

V 1(t2) is shown on the top horizontal axis. Relatively small mean volume densities of reaction
1 present at the start of reaction 2 , i. e. V ∗

V 1(t2) about 0.05 − 0.1, are enough to give reaction
1 an overwhelming advantage over reaction 2. In a way the effect is similar to the velocity effect
discussed in the previous example. Unless reaction 2 has some compensating feature, such as,
higher number of nuclei per unit of volume or higher boundary velocity than reaction 1, reaction 1
will constitute the major part of the fully transformed product.
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Figure 6: Mean volume density plotted as a function of time. The overall reaction,VV , is represented
by the solid line. V ∗

V 1 and V ∗
V 2 are represented by the dotted line and by dashed the line, respectively.

For both reactions nucleation is site saturated and they have the same number of nuclei per unit of
volume. The boundary velocities are the same for each reaction. Reaction 2 starts at t2 = 496.6s.
This incubation time means that reaction 2 started when V ∗

V 1 = 0.05. Reaction 1 dominates the
overall transformation.
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Figure 7: Experimental mean volume density of reaction 2, V ∗
V 2(t → ∞), at the end of the trans-

formation as a function of incubation time, t2s. The corresponding mean volume volume density
of reaction 1 at which reaction two starts, V ∗

V 1(t2) is shown on the top horizontal axis. For both
reactions nucleation is site saturated and they have the same number of nuclei per unit of vol-
ume. The boundary velocities are the same for each reaction. Therefore if both reactions start
at the same time each will have a final fraction transformed equal to 0.5. It can be seen that
for V ∗

V 1(t2 = 496.6) = 0.05 the final fraction transformed by reaction 2 is significantly reduced,
V ∗

V 2(t →∞) = 0.21.
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5.3 Two reactions described by the Avrami equation

The present methodology places no restriction on the function that describes the theoretical quan-
tities, VV i(t, x). The term “theoretical” is used rather to emphasize its difference from the “ex-
perimental” or “visible” quantities. It does not mean that the function VV i(t, x) must be derived
theoretically from some arbitrary assumptions. On the contrary, VV i(t, x) may be obtained empiri-
cally from the study of the kinetics of the reaction in isolation. It is worthy of note to mention that
no requirement was placed on the reaction path. The transformations need not to proceed isother-
mally but may take place during heating or cooling or along some more complex time-temperature
path.

Quite often VV i(t, x) is represented by an equation that is known to describe reasonably well
a large number of transformations, that is, the so called Avrami equation(See ref. [35] for an
explanation of the reason why this equation takes this name.)

VV i(t) = 1− exp (−kit
ni) (53)

where ki and ni are adjustable parameters. The procedure here would be exactly the same that
was carried out in the previous examples. So for two simultaneous reactions

VV (t) = 1− (1− VV 1(t))(1− VV 2(t)) = 1− exp (− (k1t
n1 + k2t

n2)) (54)

V ∗
V 1(t) =

∫ t

0
(1− VV 2(t))

dVV 1(s)
ds

ds =
∫ t

0
k1n1s

n1−1 exp (− (k1s
n1 + k2s

n2)) ds (55)

Eq. (55) cannot in general be integrated by analytical methods. Mean interfacial area densities
may be also determined if equations for SV i(t) corresponding to Eq. (53) are available. The
procedure is analogous for sequential reactions.

5.4 Final remarks

Finally, it is worthy to discuss how the present methodology relates to previous work [11, 12]. In
the case that VV i(t) = 1− exp(−VEi(t)) is valid(see Rios and Villa [25] for more details), then Eq.
(27) reduces to

dV ∗
V i(t) = (1− VV (t))dVEi(t) (56)

where VEi(t) is the so-called mean extended volume density of reaction i or more informally the
“extended volume”of reaction i.

Eq. (56) was used in previous work [11,12] and is a particular case of Eq. (27).
There are basically two advantages of Eq. (27) compared to Eq. (56). The first is that Eq. (27)

can handle position dependent nucleation. The second advantage is that Eq. (27) relates V ∗
V i(t, x)

directly to VV i(t, x). As a consequence, there is no need to resort to extended volumes. In fact it
is not desirable to use extended volumes because VV i(t) = 1− exp(−VEi(t)) is not generally valid.
For example, consider nucleation on random lines, on random planes [21] and in clusters [22]. In
all these three cases one obtains expressions of the form VV (t) = 1 − exp(−f(t)) but in all these
cases f(t) 6= VE(t). Moreover, when VV i(t, x) is represented by the Avrami equation, Eq. (53),
kit

ni cannot in general be identified with the extended volume.
The reason why it was possible to obtain more general expressions than in previous work lies not

only in the distinction between theoretical and experimental quantities but also in the application
of the superposition principle, Eq.(14), together with Eq. (23).
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6 Summary and Conclusions

• A new methodology to treat simultaneous and sequential transformations has been proposed
based on the distinction between theoretical and experimental quantities. The theoretical
mean volume density, VV i(t, x), is the mean volume density of a reaction if this reaction were
the only reaction to take place. In contrast the experimental mean volume density, V ∗

V i(t, x),
is the mean volume density of a certain reaction i that can actually be measured when more
than one reaction takes place simultaneously, see Figs. 1 and 2 for a schematic view and
Eqs.(17) and (18) for precise mathematical definitions.

• Based on the distinction between theoretical and experimental quantities general relation-
ships were obtained. The equations presented here are able to deal with position dependent
quantities and there is no need to rely on extended volumes.

• These relationships are suitable for model building, i. e. obtaining expressions for simulta-
neous and sequential transformations involving several reactions from models of the kinetics
of each reaction in isolation.

• Moreover, we have developed a methodology for relating theoretical quantities to experimen-
tally measured quantities. Quantities suitable for theoretical analysis may be obtained from
quantities measured experimentally. Conversely, experimentally measurable quantities may
be predicted from theoretical ones.

• For model building, i. e. to predict the overall kinetics quantities of simultaneous reactions
from the theoretical expressions for individual kinetics one may use Eqs. (14) and (15).

• The relationships between the theoretical and experimental quantities are given by Eqs.(23),(24)
and (26) to (29). These equations directly relate theoretical and experimental quantities.

• For sequential reactions, either overlapping or non-overlapping, the corresponding equations
are given in Section 4: Eqs. (32) to (37).

• Furthermore, it has been shown here that the equation previously used, Eq. (56), may be
derived as a particular case of the general equation obtained here, Eq. (27).
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7 Appendix

7.1 Proof of Eq. (23)

(23) repeated here for convenience:

Gi(t) =
1

S∗V i(t, x)
∂V ∗

V i(t, x)
∂t

The proof presented here needs to assume technical conditions [29] that are generally satisfied in
practical applications.
Let us notice that Θ∗t

i = Θt
i \

⋃
j 6=i Θ

∗t
j and that ∂Θt

i \
⋃

j 6=i Θ
t
j = ∂Θt

i \
⋃

j 6=i Θ
∗t
j ; as a consequence,

by similar arguments of Section 3.1 in [33], Eq. (23) holds if

lim
∆t↓0

E[νd((Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j ) ∩A)− νd((Θt

i \
⋃

j 6=i Θ
∗t
j ) ∩A)]

∆t

= Gi(t)E[νd−1(∂Θt
i \ (

⋃

j 6=i

Θ∗t
j ) ∩A)]

for any A ∈ BRd such that E[νd−1(∂Θt
i \ (

⋃
j 6=i Θ

∗t
j ) ∩ ∂A)] = 0.

The above equation holds if we prove that

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t
= Gi(t)νd−1(∂Θt

i \
⋃

j 6=i

Θ∗t
j ) P-a.s. (57)

So, let us prove the above equation. Without any other specification, the following equations are
meant to hold P-a.s. Since Θt

i is a finite union of balls for each i = 1, . . . , n, for all t ∈ R+, it is
well known that

lim
r↓0

νd((Θt
i⊕r

\Θt
i) ∩A)

r
= νd−1(∂Θt

i ∩A) (58)

for any Borel set A ⊂ Rd such that νd−1(∂Θt
i∩∂A) = 0, having denoted by Θt

i⊕r
the parallel set of Θt

i

at distance r, i.e. Θt
i⊕r

:= {x ∈ Rd : dist(x,Θt
i) ≤ r}. By noticing that νd−1(∂Θt

i ∩ ∂(
⋃

j 6=i Θ
∗t
j )) =

0, we have that

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t

≤ lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t

= lim
∆t↓0

νd((Θt+∆t
i \Θt

i) ∩ (
⋃

j 6=i Θ
∗t
j )c)

∆t

= lim
∆t↓0

νd((Θt
i⊕Gi(t)∆t

\Θt
i) ∩ (

⋃
j 6=i Θ

∗t
j )c)

∆t

= Gi(t) lim
r↓0

νd((Θt
i⊕r

\Θt
i) ∩ (

⋃
j 6=i Θ

∗t
j )c)

r
(58)
= Gi(t)νd−1(∂Θt

i ∩ (
⋃

j 6=i

Θ∗t
j )c),
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and so

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t
≤ Gi(t)νd−1(∂Θt

i \
⋃

j 6=i

Θ∗t
j ). (59)

Now, let G̃(t) := maxj 6=i Gj(t); then

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t

≥ lim
∆t↓0

νd(Θt
i⊕Gi(t)∆t

\ (
⋃

j 6=i Θ
∗t
j )⊕G̃(t)∆t

)− νd(Θt
i \

⋃
j 6=i Θ

∗t
j )

∆t

≥ lim
∆t↓0

νd((Θt
i⊕Gi(t)∆t

\Θt
i) ∩ ((

⋃
j 6=i Θ

∗t
j )⊕G̃(t)∆t

)c)

∆t

= Gi(t) lim
r↓0

νd((Θt
i⊕r

\Θt
i) ∩ ((

⋃
j 6=i Θ

∗t
j )⊕ G̃(t)

Gi(t)
r
)c)

r
.

By observing that for any R > 0 fixed,

νd((Θt
i⊕r

\Θt
i) ∩ ((

⋃

j 6=i

Θ∗t
j )⊕ G̃(t)

Gi(t)
r
)c) ≥ νd((Θt

i⊕r
\Θt

i) ∩ ((
⋃

j 6=i

Θ∗t
j )⊕R)c) ∀r ≤ Gi(t)

G̃(t)
R,

it follows that

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t

≥ Gi(t) lim
r↓0

νd((Θt
i⊕r

\Θt
i) ∩ ((

⋃
j 6=i Θ

∗t
j )⊕R))

r
= Gi(t)νd−1(∂Θt

i \ (
⋃

j 6=i

Θ∗t
j )⊕R) ∀R > 0. (60)

By taking now the limit for R ↓ 0 in (60), we obtain

lim
∆t↓0

νd(Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− νd(Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t
≥ Gi(t)νd−1(∂Θt

i \ (
⋃

j 6=i

Θ∗t
j )). (61)

Thus, (59) and (61) imply (57), and so the assertion follows.

7.2 Proof of Eq. (25)

From the definition of V ∗
V i in Eq. (17), and by Θ∗t

i = Θt
i \

⋃
j 6=i Θ

∗t
j , it follows that

V ∗
V i(t, x) = P(x ∈ Θt

i \
⋃

j 6=i

Θ∗t
j ),

and so

∂V ∗
V i(t, x)
∂t

= lim
∆t↓0

V ∗
V i(t + ∆t, x)− V ∗

V i(t, x)
∆t

= lim
∆t↓0

P(x ∈ Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− P(x ∈ Θt

i \
⋃

j 6=i Θ
∗t
j ))

∆t
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By proceeding similarly as above, we have that

lim
∆t↓0

P(x ∈ Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− P(x ∈ Θt

i \
⋃

j 6=i Θ
∗t
j ))

∆t

≤ lim
∆t↓0

P({x ∈ Θt+∆t
i \Θt

i} ∩ {x 6∈
⋃

j 6=i Θ
∗t
j })

∆t

= lim
∆t↓0

P({x ∈ Θt+∆t
i \Θt

i} ∩ {x 6∈
⋃

j 6=i Θ
t
j})

∆t

= P(x 6∈
⋃

j 6=i

Θt
j) lim

∆t↓0
P(x ∈ Θt+∆t

i \Θt
i)

∆t
(62)

and that

lim
∆t↓0

P(x ∈ Θt+∆t
i \⋃

j 6=i Θ
∗t+∆t
j )− P(x ∈ Θt

i \
⋃

j 6=i Θ
∗t
j )

∆t

≥ lim
∆t↓0

P({x ∈ Θt+∆t
i \Θt

i} ∩ {x 6∈
⋃

j 6=i Θ
∗t
j⊕G̃(t)∆t

})
∆t

= lim
∆t↓0

P({x ∈ Θt+∆t
i \Θt

i} ∩ {x 6∈
⋃

j 6=i Θ
t
j⊕G̃(t)∆t

})
∆t

= lim
∆t↓0

P(x 6∈
⋃

j 6=i

Θt
j⊕G̃(t)∆t

) lim
∆t↓0

P(x ∈ Θt+∆t
i \Θt

i)
∆t

(63)

= P(x 6∈
⋃

j 6=i

Θt
j) lim

∆t↓0
P(x ∈ Θt+∆t

i \Θt
i)

∆t

where Eq.(62) and Eq.(63) follow by the independence of the reactions.
Therefore

∂V ∗
V i(t, x)
∂t

= P(x 6∈
⋃

j 6=i

Θt
j) lim

∆t↓0
P(x ∈ Θt+∆t

i \Θt
i)

∆t
(64)

=
∏

j 6=i

(1− VV j(t, x))
∂VV i(t, x)

∂t

(14)
=

1− VV (t, x)
1− VV i(t, x)

Gi(t)SV i(t, x)
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