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Abstract The internal resonances between the longi-
tudinal and transversal oscillations of a forced Timo-
shenko beam with an axial end spring are studied in
depth. In the linear regime, the loci of occurrence of
1 : ir , ir ∈ N, internal resonances in the parameters
space are identified. Then, by means of the multiple
time scales method, the 1 : 2 case is investigated in
the nonlinear regime, and the frequency response func-
tions and backbone curves are obtained analytically,
and investigated thoroughly. They are also compared
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with finite element numerical simulations, to prove
their reliability. Attention is paid to the system response
obtained by varying the stiffness of the end spring,
and it is shown that the nonlinear behaviour instanta-
neously jumps from hardening to softening by crossing
the exact internal resonance value, in contrast to the sin-
gular (i.e. tending to infinity) behaviour of the nonlin-
ear correction coefficient previously observed (without
properly taking the internal resonance into account).
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1 Introduction

The dependence of the nonlinear transversal behaviour
of beams on different axial boundary conditions is
an interesting topic that has been studied by various
authors. In [1], it was shown that a beam is hardening
if the axial displacement is constrained at the boundary
and is softening if the boundary is free to move axially.
These findings were confirmed in [2], where a refined
reduced order model analysis was performed, and the
effect of the axial inertia and inextensibility was inves-
tigated.

A fully continuous model was considered in [3],
where the multiple time scales method is applied
directly to the partial differential equations of motion.
The results were also compared with some experi-
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ments. On the same line of investigation, [4] considered
an axial (i.e. parametric) excitation, and developed the
asymptotic analysis up to the fifth order, i.e. one order
more than what is usually done. Also some experimen-
tal results were reported.

In fact, it is known that axial inertia contributes
to softening, while the geometrical stiffness, which is
strongly affected by the axial constraint, contributes to
hardening. Thewhole behaviour depends onwhich one
of these two opposite phenomena predominates. Thus,
it is possible to foresee that introducing at the boundary
a spring, of stiffness κ , which allows us to regulate the
axial constraint and thus the geometrical nonlinearity,
permits to control the hardening/softening behaviour,
passing from softening when κ = 0 (no constraint) to
hardening when κ → ∞ (full constraint), that are the
limit cases reported in the earlier literature [1,2].

Although a boundary axial spring is present in [3]
and [4], its effect on the softening/hardening behaviour
is not fully investigated there. This has been done,
instead, in [5], where the dependence of the nonlin-
ear correction coefficient ω2 (ω2 > 0 gives hardening,
ω2 < 0 provides softening) upon κ is deeply investi-
gated. There, also the effects of the axial and rotational
inertia have been studied, as well as those of the shear
stiffness and slenderness. A Timoshenko beam model
was considered to have reliable results also for thick
beams.

Starting from [6], where the equations of motions
were firstly derived and initially analyzed by means of
the Poincaré–Lindstedt method, and [5], the authors
have done many studies on this topic. In [7], the
approximate analytical results have been compared
with numerical simulations to check their reliability.
In these papers, attention was focused on the transver-
sal oscillations, and the axial vibrations are set equal
to zero to the first order and appear only to the sec-
ond order because of the nonlinear coupling. Actually,
this hypothesis has been relaxed in [8], where the axial
vibrations to the first order have been considered, too,
and the coupling between axial and transversal oscilla-
tions is deeply investigated. Interesting, and complex,
behaviour charts have been reported, showing that cou-
pled and uncoupled solutions can coexist or not, both
being hardening or softening.

The difference obtained by considering alternative
definitions of the curvature (geometric, i.e. dθ

dS , vs
mechanical, i.e. dθ

dZ , dS and dZ being the infinitesimal

elements of the deformed and undeformed configura-
tions, respectively) in the constitutive behaviour has
been the subject of [9] and [10]. It has been shown that
the difference is of the order of some percents for thick
beams and is totally negligible for slender beams.

While in the previous authors’ work free vibra-
tions have been considered, in [11] and [12] the forced
vibrations have been investigated. In [11], the mul-
tiple time scales method has been used, and again
the attention was focused on the dependence of the
hardening/softening response on the spring stiffness κ .
Analytical results have been compared with numerical
(FEM) results, showing a good agreement up tomoder-
ately largedisplacements, according to the fact that ana-
lytical solution is valid only up to the third order. The
appearance of some superharmonic and internal reso-
nances has been observed in the numerical simulations.
Still in the forced regime, the comparison between
numerical and experimental resultswas instead the goal
of [12], where a very goodmatching has been observed.

The frequency response curves of higher order res-
onances have been discussed in [13], where, among
other, it has been stressed that the nonlinear behaviour
may strongly depend on the mode order, for example
the first mode can be hardening and the second soften-
ing.

Within this wide body of research, one aspect has
not yet been investigated, namely the internal reso-
nance between axial and transversal modes. Indeed, in
[8] it was assumed that axial and transversal modes
were far away from internal resonance, so that the
axial–transversal coupling was only due to the nonlin-
ear effects occurring in kinematically non-condensed
structural models (e.g. [14]). Here, on the contrary, this
hypothesis is relaxed, and the internal resonance is fully
investigated, both in the linear and nonlinear regimes.
In addition to its theoretical and practical effects, this
also permits to explain a singularity of the nonlinear
correction coefficient observed in [5] and in [11]. As
discussed in more detail in Sect. 2.1 forward, a similar
singular behaviour of the nonlinear correction coeffi-
cient, associated with the transition from hardening to
softening and due to an internal resonance, has been
earlier highlighted in shallow cables [15,16] and in
shells [17,18], where only transversal dynamics have
been studied.

A transition fromhardening to softening, due to 1 : 2
internal resonance and not necessarily related to a sin-
gular behaviour, has been observed also in a pipe con-
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veying fluid [19], where the varying parameter was the
fluid velocity, and in a double beam with a tip coupling
spring andmagnetic interaction [20], where the driving
parameters were the amplitude of the excitation and the
damping.

Internal resonance, or modal interactions [21], have
been deeply investigated in the past [22–24], since
this event can be dangerous (if not properly detected
[25]) or useful (if properly exploited, for example in
the field of energy harvesting [26]). However, it seems
that few attention has been paid to the internal reso-
nance between longitudinal and flexural modes. Axial–
transversal internal resonances of cables have been
investigated, for example, in [27,28], ofmoving belts in
[29], while for beams this phenomenon has been inves-
tigated in [30], again in the field of axially moving sys-
tems. Very few investigations of internal longitudinal–
transversal resonance seem to be available for non-
moving beams [31].

The paper is organized as follows. The mechanical
model is illustrated in Sect. 2, including a summary
of previous results (Sect. 2.1) where the singularity of
the nonlinear frequency ω2 is highlighted. The occur-
rence of various axial–transversal internal resonances
in the slenderness-spring stiffness parameters space is
investigated in Sect. 3 in the linear regime. Then (Sect.
4), attention is focused on 1:2 internal resonance, but
now a nonlinear dynamic analysis is developed with
the multiple time scales method. The main results are
reported in Sect. 5, while a comparison of analytical
and numerical outcomes is presented in Sect. 6. The
paper ends with some conclusions and suggestions for
further developments (Sect. 7).

2 The mathematical model

We consider the Timoshenko beam illustrated in Fig. 1.
Its rest configuration is rectilinear, along the Z direc-
tion, it is made of a linearly elastic and homogeneous
material, and its cross section is constant. W (Z , T ),
U (Z , T ) and θ(Z , T ) are the axial and transversal dis-
placements of the beam axis, and the rotation of the
cross section. Z is the spatial coordinate in the refer-
ence (straight) configuration, measuring the physical
distance from the left boundary, and T is the time.

The axial, shear and bending stiffnesses are E A,GA
and E J , respectively. The axial and transversal mass
per unit length is ρA, while the rotational inertia is ρ J .

Fig. 1 Timoshenko beam with axial end spring

κ is the stiffness of the linear spring at the right-end
of the beam (Fig. 1), which acts in the Z (axial) direc-
tion. CW , CU and Cθ are the (linear) damping coef-
ficients along the respective directions. The beam is
excited by a dead load PU (Z , T ) = F(Z , T ) acting in
the X direction, which is perpendicular to Z . Introduc-
ing axial, PW (Z , T ), and rotational, Pθ (Z , T ), loads is
conceptually easy but will not be pursued to limit the
computational efforts.

The kinematically exact equations of motion have
been derived in [6] (see also [5,8,11]) and are given
by:

{
E A[

√
(1 + W ′)2 +U ′2 − 1] 1 + W ′√

(1 + W ′)2 +U ′2

+GA

[
θ − arctan

(
U ′

1 + W ′

)]
U ′√

(1 + W ′)2 +U ′2

}′

= ρA Ẅ + CW Ẇ ,{
E A[

√
(1 + W ′)2 +U ′2 − 1] U ′√

(1 + W ′)2 +U ′2

−GA

[
θ − arctan

(
U ′

1 + W ′

)]
1 + W ′√

(1 + W ′)2 +U ′2

}′

= ρA Ü + CUU̇ + F(Z , T ),[
E J

θ ′√
(1 + W ′)2 +U ′2

]′

− GA

[
θ − arctan

(
U ′

1 + W ′

)] √
(1 + W ′)2 +U ′2

= ρ J θ̈ + Cθ θ̇ , (1)

where the prime denotes derivative with respect to Z
and dot derivative with respect to T .

The boundary conditions in the transversal direction
are:

U (0, T ) = 0, M(0, T ) = 0,

U (L , T ) = 0, M(L , T ) = 0, (2)
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where M is the bending moment,

M = E J
dθ

dS
= E J

dθ

dZ

dZ

dS

= E J
θ ′

S′ = E J
θ ′√

(1 + W ′)2 +U ′2 , (3)

i.e. the geometrical curvature is considered. A possible
alternative is to use themechanical curvature, assuming
M = E J dθ

dZ [9,10].
The boundary conditions in the axial direction are:

W (0, T ) = 0, Ho(L , T ) + κW (L , T ) = 0, (4)

where Ho(Z , T ) is the internal horizontal force in the
Z direction and is given by

Ho = E A

√
(1 + W ′)2 +U ′2 − 1√

(1 + W ′)2 +U ′2 (1 + W ′)

+GA
θ − arctan

(
U ′

1+W ′
)

√
(1 + W ′)2 +U ′2U

′. (5)

2.1 Previous results

By applying the Poincaré–Lindstedt method (in [5,6])
and the multiple time scales method (in [11]), and by
considering only the transversal displacements up to
the first order, the following approximate solution was
previously obtained for the free oscillations:

W (Z , T ) = 0 + · · · ,

U (Z , T ) = Ua sin

(
n π Z

L

)
sin(ω f T ) + · · · ,

θ(Z , T ) = Ua

L

(
n π − ω2

0

n π z l2

)

× cos

(
n π Z

L

)
sin

(
ω f T

) + · · · , (6)

where Ua is the amplitude of the transversal motion,
n ∈ N the mode number, and where, most importantly,

ω f = ω f 0 +
(
Ua

L

)2

ω f 2 + · · ·

= 1

L2

√
E J

ρA

[
ω0 +

(
Ua

L

)2

ω2 + · · ·
]

(7)

is the nonlinear frequency of the free motion.
In (7), ω0 is the dimensionless natural (linear) fre-

quencyof the transversalmotion,whileω2 is the dimen-
sionless nonlinear correction coefficient, also known as
“nonlinear frequency correction”, whichmeasures how
the nonlinear frequency is affected by the amplitude
of the motion. It was the most important result, since
it summarizes the nonlinear behaviour of the system:
hardening for ω2 > 0, softening for ω2 < 0.

For the boundary conditions (2), it is possible to
compute

ω0 = l

2

√
zl2 + n2π2(1 + z) −

√
z2l4 + 2zn2π2(1 + z)l2 + n4π4(1 − z)2, (8)

where n ∈ N is the order of the transversal (flexural)
natural frequency and the following three dimension-
less parameters are introduced:

l = L

√
E A

E J
, z = GA

E A
= 1

2(1 + ν)χ
, κh = L3

E J
κ,

(9)

(l is the slenderness of the beam, ν the Poisson coeffi-
cient and χ the shear correction factor) so that

E A = E J

L2 l
2, ρ J = ρA L2

l2
, GA = E J

L2 l
2z. (10)

κh is the dimensionless stiffness of the axial spring at
Z = L , that will be used in the rest of the paper. We
consider ν = 0.3 and χ = 1.17, namely z = 0.3287,
so that the unique parameters are l and κh, together with
the order n of the natural frequency.

For the sameboundary conditions, the nonlinear cor-
rection coefficient is

ω2 = c1ω2a + c2 sin (2ω0/ l) ω2b + ω2c

ω2d
, (11)

where the parameters appearing in (11) are reported in
“Appendix”.

For κh = 50 and n = 1, the function ω2(l) is plotted
in Fig. 2, which corresponds to Fig. 10b of [5].
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Fig. 2 The function ω2(l) for κh = 50 and n = 1

For the scope of the present work, the most relevant
property of Fig. 2 is that ω2(l) has a singular point for
lsing = 8.149112. It has also a zero point at lzero =
11.379729. When crossing these points, the sign of ω2

changes, and, for increasing l, we pass from hardening
to softening and again to hardening.

The singular and zero points are not specific of the
considered value of κh, but they persist, as shown in
Fig. 3, corresponding to Fig. 12c of [5].

In [5], eq. (27), looking at the expressions of ω2, it
was noted that the singular points occur when

κh = −2 l ω0
cos (2ω0/ l)

sin (2ω0/ l)
, (12)

namely when the denominator of c2 is zero. This phe-
nomenon was also observed in [11], and in [32] it
is mentioned that it is due to an internal resonance
between axial and transversal modes. Confirming this
property in the considered mechanical system, and
studying in depth the internal resonances, is the main
goal of this paper.

Before to proceed, we note that the singular points
in Fig. 3 occur for quite low values of the slenderness
(thick beams, but still compatible with the Timoshenko
beam theory). Actually, for n = 2 the singular points
happen for larger values of l (in the realm of slender
beams), as shown by the example of Fig. 4, which cor-
responds to Fig. 3 of [11] (but note that a different

Fig. 3 The zero (continuous line) and singular (dash line) values
of ω2 for n = 1. The dots are the points corresponding to Fig. 2,
where κh = 50

Fig. 4 The function ω2(κh) for l = 10
√
12 = 34.6410 and

n = 2

rescaling of the spring stiffness is used there) and to
a beam with square cross section and length equal to
10 times the thickness. Here, κh,sing = 1661.24 and
κh,zero = 2122.32.

For n = 2, the zero and singular points are reported
in Fig. 5. Note that in this parameters window there are
two singularities and zeros. The lowest zero and sin-
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Fig. 5 The zero (continuous lines) and singular (dash lines) val-
ues of ω2 for n = 2. The dots are the points corresponding to
Fig. 4, where l = 10

√
12 = 34.6410

gular curves almost coincide. If one would enlarge the
view, more singular and zero branches would appear.

Although the motivation of the present paper comes
mainly from the authors’ previous work summa-
rized above, it is worth mentioning that the singular
behaviour of the nonlinear correction coefficient in cor-
respondence of internal resonances, and in particular
1 : 2 internal resonance, has been previously observed
for different mechanical systems in the framework of
the reduction methods evaluation.

In [15], the singularity has been reported for the first
in-plane (vertical) mode of a suspended cable. Here,
the varying parameter is an elasto-geometric parameter
taking into account stiffness and sag-to-span ratio, and
the singularity is due to the breakdown ofmodal expan-
sions not explicitly considering the internal resonance.
For the same structure, a similar, but deeper, analysis
has been reported in [16], where also the out-of-plane
behaviour has been considered. Here, it is shown that
discretized approaches, where the Galerkin reduction
method is applied before theMTS, fail to detect the sin-
gular behaviour if a sufficiently large number of modes
is not considered.

Using nonlinear normal modes to highlight harden-
ing/softening behaviour of nonlinear systems [33], the
singular behaviour of the nonlinear correction coeffi-
cient for a free-edge shallow spherical shell has been

shown in [17], where the driving parameter is the aspect
ratio, which is governed by the geometrical properties
of the system. Within a study of the effect of the num-
ber of retained modes in a Galerkin reduction, many
curves similar to Figs. 2 and 4 have been reported. It
is remarked that only 1 : 2 internal resonance of cer-
tain modes are able to generate the singular behaviour,
while other modes and other resonances (e.g. 1 : 3)
do not have this effect. In [18], it has been shown
that the addition of damping will smooth the singular
behaviour, while keeping the large (but finite) values
of ω2 for small values of damping.

In the previous papers, the singular behaviour, and
the 1 : 2 internal resonance lurking in the background,
have been reported. However, a detailed asymptotic
expansion considering the internal resonance is not car-
ried out. This analysis has been done in [19,20], where,
however, no singular behaviour is observed in the back-
ground. In the present work, we complete, and some-
how connect, the two groups of works, while referring
to the longitudinal–transverse coupling in the mechan-
ical system of our interest.

3 Longitudinal–transversal internal resonance:
linear analysis

The occurrence of the longitudinal–transversal internal
resonance in the parameters space (κh,l) can be detected
in the linear regime, where the two modal problems
are independent from each other (since the beam is
rectilinear). This constitutes the aim of this section. The
nonlinear coupling in the neighbourhood of internal
resonances will be investigated in the next section.

The transversal natural frequency ω f 0 is given (in
dimensionless form) by (8). The axial natural frequency
ωa0, the solution of

E Aw′′(Z) + ω2
a0 ρAw(Z) = 0,

w(0) = 0, E Aw′(L) + κ w(L) = 0, (13)

can be easily computed by standard methods (see also
Sect. 4.1) and is given by

ωa0 = x

L

√
E A

ρA
= x l

L2

√
E J

ρA
, (14)

x being the solution of
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x l2 cos(x) + sin(x)κh = 0. (15)

The associated mode shape is w(Z) = sin(x Z/L).
Note that for very small values of κh/ l2 the solutions of
(15) are xm ∼= π/2+(m−1)π ,m ∈ Nbeing the order of
the axial natural frequency, while for very large values
of κh/ l2 the solutions of (15) are xm ∼= mπ . Thus,
for varying κh/ l2 ∈ [0,∞[ the following bounds hold:
π/2 + (m − 1)π ≤ xm ≤ mπ .

The expression (15) can be rewritten as

κh = −l2 x
cos(x)

sin(x)
. (16)

When x = 2ω0/ l, namely when ωa0 = 2ω f 0, equa-
tion (16) is identical to (12), and this clearly shows that
the singular points of ω2 are due to the 1 : 2 internal
resonance between transversal and axial modes.

Reasoning in a similar fashion, it is not difficult to
foresee that singular points of ω4 (the next term in the
development (7)) will be due to a 1:4 internal resonance
between transversal and axial modes and so on. This
aspect will not be pursued here and is left for future
works.

To generalize the previous considerations, we inves-
tigate the 1 : ir internal resonances, those such that
ωa0

ω f 0
= ir, ir ∈ N. (17)

The study of other internal resonances, for example
2ωa0 = ω f 0, is left for future works.

Combining (7), (8), (14), (16) and (17), it is easy to
obtain

κh,ir (l) = −l ir ω0
cos(ir ω0/ l)

sin(ir ω0/ l)
. (18)

For ir = 1; 2; 3, the loci of internal resonance in the
parameter space (κh, l) are reported in Fig. 6, where n
is the order of the transversal natural frequency, see
(8). To understand the order m of the axial frequency,
for each considered value of l, the lowest value of κh
is associated with the first axial mode, the next to the
second and so on. For example, for ir = 1 (Fig. 6a) and
for l = 20 we have that for κh = 75.0464380 (point
A) there is a 1:1 internal resonance between the second
(because n = 2) transversal mode and the first axial
mode (so that m = 1); for κh = 829.704872 (point
B) there is 1:1 internal resonance between the fourth

(because n = 4) transversal mode and the second axial
mode (so that m = 2).

In Fig. 6b, the pointC corresponds to the case of Fig.
2: here, we have a 1 : 2 internal resonance between the
first (n = 1) transversal mode and the first axial mode
(m = 1). The point D corresponds to the case of Fig.
4: here, we have a 1 : 2 internal resonance between
the second (n = 2) transversal mode and the first axial
mode (m = 1). Note that, for the same value of κh,
there is another 1 : 2 internal resonance between the
second transversal mode and the first axial mode on the
lower n = 2 curve, for l = 5.7977.

Wenotice that internal resonances aremore sensitive
to the slenderness l than to the spring stiffness κh. In
fact, at least in the considered range of parameters and
irrespective of the value of ir , internal resonances occur
only for “fixed” values of l (or in narrow intervals of l),
and there are large intervals of l (sort of “band gaps”)
without internal resonances.On the contrary, theyoccur
for every value of κh.

To end this section, we note that by varying the
transversal boundary conditions (for example assum-
ing fixed instead of hinged left boundary condition,
θ(0, T ) = 0 instead of M(0, T ) = 0 in (2)), the axial
frequencies do not change, while the transversal ones
are shifted. This permits to conclude that the same inter-
nal resonances observed in this section are expected to
exist also for other boundary conditions, and they are
only translated in the parameters space. The check of
this guess is left for future work.

4 1 : 2 internal resonance: nonlinear analysis

In this section, we study, in the nonlinear regime, the
1 : 2 internal resonance illustrated in Fig. 6b, via
an asymptotic analysis up to second order. In addi-
tion to its interest in explaining the singularities of the
nonlinear correction coefficient ω2, it has an interest
“per se”, since this resonance has interesting dynami-
cal behaviours, as we will see. The detailed nonlinear
investigations of other internal resonances can be done
analogously.

Themultiple time scales (MTS)method [34] is used,
by considering to the first order both axial and transver-
sal modes. Also, in [11] the MTS was used, but there
only the transversal mode is considered to the first
order, so precluding the possibility to detect internal
resonance (that was not the goal of that paper, indeed).
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(a) (b)

(c) (d)

Fig. 6 The loci of internal resonance. a ir = 1 (i.e. ω f 0 : ωa0 = 1 : 1), b ir = 2 (i.e. ω f 0 : ωa0 = 1 : 2), c and d ir = 3 (i.e.
ω f 0 : ωa0 = 1 : 3). n is the order of the transversal frequency. (Color figure online)

Axial and transversal modes to the first order are also
considered in [8], but there it is implicity assumed that
they are not in internal resonance, since the aim was
to detect the axial–transversal nonlinear coupling in a
general fashion, and not only around specific values of
the parameters where internal resonance occurs.

With the MTS method, the solution is sought after
in the asymptotic form

W (Z , T ) = εW1(Z , T0, T1) + ε2W2(Z , T0, T1) + · · · ,

U (Z , T ) = εU1(Z , T0, T1) + ε2U2(Z , T0, T1) + · · · ,

θ(Z , T ) = εθ1(Z , T0, T1) + ε2θ2(Z , T0, T1) + · · · , (19)

where ε is a bookeeping small parameter introduced
to stress that we are studying moderate displacements
and rotation around the rest position. T0 = T is the
physical (fast) time, and Ti = εi T , i ≥ 1 are the slow
times.

123



Longitudinal–transversal internal resonances in Timoshenko beams

It is further assumed that the excitation is harmonic
in time (with frequency 
), and that damping and load
scale according to

CW = εcW , CU = εcU ,

Cθ = εcθ , F(Z , T ) = ε2 f (Z) cos(
T ). (20)

Inserting the expressions (19)–(20) in the asymp-
totic expansion of the governing equations (1), and
equating to zero the coefficients of εi , a sequence of
linear problems is derived. They are investigated in the
next subsections.

4.1 First-order problem

The first-order equations read

E AW ′′
1 − ρA

∂2W1

∂T 2
0

= 0,

GA(θ ′
1 −U ′′

1 ) + ρA
∂2U1

∂T 2
0

= 0,

E J θ ′′
1 − GA(θ1 −U ′

1) − ρ J
∂2θ1

∂T 2
0

= 0, (21)

and the related boundary conditions are (the depen-
dence on time is omitted for simplicity)

W1(0) = 0, E AW ′
1(L) + κ W1(L) = 0,

U1(0) = 0, θ ′
1(0) = 0,

U1(L) = 0, θ ′
1(L) = 0. (22)

The solution of (21), (22) is given by (the over bar
stands for complex conjugate and I is the imaginary
unit)

W1(Z , T0, T1) = W1a(Z)[B(T1)e
Iωa0T0

+ B̄(T1)e
−Iωa0T0 ],

U1(Z , T0, T1) = U1a(Z)[A(T1)e
Iω f 0T0

+ Ā(T1)e
−Iω f 0T0 ],

θ1(Z , T0, T1) = θ1a(Z)[A(T1)e
Iω f 0T0+

+ Ā(T1)e
−Iω f 0T0 ], (23)

where the functions W1a(Z), U1a(Z) and θ1a(Z) are
reported in “Appendix”, and A(T1) and B(T1) are com-
plex amplitudes of the transversal and axial oscilla-
tions, respectively. ωa0 is given by (14) (with x given

by (15)), while ω f 0 is given by (7) with ω0 given by
(8).

Note that in [5–7,9,11], but not in [8], itwas assumed
W1a(Z) = 0.

4.2 Second-order problem

The second-order equations read

E AW ′′
2 − ρA

∂2W2

∂T 2
0

= cW
∂W1

∂T0
+ 2 ρA

∂2W1

∂T0T1

−
[
(E A/2 − GA)U ′2

1 + GAU ′
1θ1

]′
,

GA
(
θ ′
2 −U ′′

2

) + ρA
∂2U2

∂T 2
0

= −cU
∂U1

∂T0
− 2 ρA

∂2U1

∂T0T1
+ f (Z) cos(
T0) + (E A − GA)(U ′

1W
′
1)

′,

E J θ ′′
2 − GA(θ2 −U ′

2) − ρ J
∂2θ2

∂T 2
0

= cθ

∂θ1

∂T0

+ 2 ρ J
∂2θ1

∂T0T1
+ GAW ′

1θ1 + E J (W ′
1θ

′
1)

′, (24)

and the related boundary conditions are (the depen-
dence on time is omitted for simplicity)

W2(0) = 0, E AW ′
2(L) + κ W2(L)

= −(E A/2 − GA)U ′2
1 (L) − GAU ′

1(L)θ1(L),

U2(0) = 0, θ ′
2(0) = 0,

U2(L) = 0, θ ′
2(L) = 0. (25)

It is now necessary to introduce the 1 : 2 internal
resonance condition,

ωa0 = 2ω f 0 + εσi → ωa0T0 = 2ω f 0T0 + σi T1, (26)

together with the external resonance,


 = ω f 0 + εσe → 
T0 = ω f 0T0 + σeT1, (27)
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where σi and σe are the detuning parameters measuring
the distance (in the frequency) from the perfect internal
and external resonances, respectively. Note that, com-
bining (26) and (27), we have

2
 = ωa0 + ε(2σe − σi ), (28)

so that the detuning between 2
 and ωa0 is given by
(2σe − σi ).

The particular solution of (24) is given by

W2(Z , T0, T1) = W2a(Z , T1)e
Iωa0T0

+ W̄2a(Z , T1)e
−Iωa0T0

+ W2b(Z , T1),

U2(Z , T0, T1) = U2a(Z , T1)e
Iω f 0T0

+ Ū2a(Z , T1)e
−Iω f 0T0

+U2b(Z , T1)e
3Iω f 0T0

+ Ū2b(Z , T1)e
−3Iω f 0T0 ,

θ2(Z , T0, T1) = θ2a(Z , T1)e
Iω f 0T0

+ θ̄2a(Z , T1)e
−Iω f 0T0

+ θ2b(Z , T1)e
3Iω f 0T0

+ θ̄2b(Z , T1)e
−3Iω f 0T0 . (29)

It is worth to note that the homogenous solution of (24),
that adds to (29), is not needed in this work.

Inserting (29) in (24), and in the boundary condi-
tions, we obtain the following problems for W2a(Z),
U2a(Z) and θ2a(Z):

E AW ′′
2a + ω2

a0 ρAW2a

= − f ′
We−Iσi T1 A(T1)

2

+ Iωa0W1a

[
2ρA

dB

dT1
(T1) + cW B(T1)

]
,

W2a(0) = 0, E AW ′
2a(L) + κW2a(L)

= − fW (L)e−Iσi T1 A(T1)
2,

− GA(U ′
2a − θ2a)

′ − ω2
f 0 ρAU2a

= − f ′
Ue

Iσi T1 Ā(T1)B(T1)

− Iω f 0U1a

[
2 ρA

dA

dT1
(T1) + cU A(T1)

]
+ f (Z)

2
eIσeT1 ,

E Jθ ′′
2a + GA

(
U ′
2a − θ2a

)
+ ω2

f 0 ρ J θ2a

= [ f ′
θ + GAW ′

1a θ1a)]eIσi T1 Ā(T1)B(T1)

+ Iω f 0 θ1a

[
2 ρ J

dA

dT1
(T1) + cθ A(T1)

]
,

U2a(0) = U2a(L) = θ ′
2a(0) = θ ′

2a(L) = 0, (30)

where the functions fW , fU and fθ are reported in
“Appendix”.

4.3 Frequency response curves

The solvability conditions for the second-order prob-
lems (30) are

Iωa0

[
2 ρA r1

dB

dT1
(T1) + cW r1B(T1)

]
+ r2 e

−Iσi T1 A(T1)
2 = 0,

Iω f 0

[
2 (ρA r3 + ρ J r4)

dA

dT1
(T1)

+ (cU r3 + cθ r4) A(T1)

]
+ r5 e

Iσi T1 Ā(T1)B(T1) = r6e
IσeT1 , (31)

where theparameters r1, . . . , r6 are reported in “Appendix”.
Note that the load is accounted for in r6. Remembering
that x = x(κh, l,m), we observe that the other coeffi-
cients depend on l, κh, z (that is kept fixed in this work)
and the order of transversal (n) and axial (m) natural
frequencies.

As customary [34], the solution of (31) is sought
after in the polar form

A(T1) = a(T1)

2
e−I [σeT1+βa(T1)],

B(T1) = b(T1)

2
e−I [(2σe−σi )T1+βb(T1)], (32)

where a(T1) and b(T1) are real value amplitudes of the
transversal and axial (first order) motions, respectively,
and βa(T1) and βb(T1) are real value phase differences.
In fact, rearranging (23) we obtain

W1 = b(T1) cos[2
T + βb(T1)]W1a(Z),

U1 = a(T1) cos[
T + βa(T1)]U1a(Z),

θ1 = a(T1) cos[
T + βa(T1)]θ1a(Z). (33)

Inserting (32) in (31) and separating real from imag-
inary parts, we obtain, after some algebra,

123



Longitudinal–transversal internal resonances in Timoshenko beams

da

dT1
= −1

2

cU r3 + cθ r4
ρA r3 + ρ J r4

a

+ r5 sin (2βa − βb)

4ω f 0(ρA r3 + ρ J r4)
a b

− sin(βa)

ω f 0(ρA r3 + ρ J r4)
r6,

dβa

dT1
= −σe + r5 cos(2βa − βb)

4ω f 0 (ρA r3 + ρ J r4)
b

− cos(βa)

ω f 0 (ρA r3 + ρ J r4)

r6
a

,

db

dT1
= −1

2

cW
ρA

b − r2 sin (2βa − βb)

4ωa0 ρA r1
a2,

dβb

dT1
= −2σe + σi + r2 cos (2βa − βb)

4ωa0 ρA r1

a2

b
. (34)

that are commonly known as modulation equations.
Here, the dependence on T1 is omitted for brevity.

Because of (33), steady oscillations of the beam cor-
respond to equilibrium points of (34). Setting equal to
zero the derivatives in (34), we obtain an algebraic sys-
tem in the four unknowns a, b, βa and βb, that are now
constant.

From the third and fourth equations, we obtain

b = r2

2ωa0r1
√
4(2 σe − σi )2(ρA)2 + c2W

a2,

tan (2 βa − βb) = − cW
2(2σe − σi )ρA

. (35)

Using (35) in the first and second equations of (34),
we obtain

tan(βa) =
4(cU r3 + cθ r4)ω f 0 + r2 r5cW

ωa0r1
[
4(2 σe−σi )

2(ρA)2+c2W
]a2

8 (ρA r3 + ρ J r4) σeω f 0 − 2 r2 r5ρA
ωa0r1

[
4(2 σe−σi )

2(ρA)2+c2W
]a2 .

(36)

and the equation

r22 r
2
5

64 r21ω2
a0

[
4(2 σe − σi )2(ρA)2 + c2W

]a6
− r2 r5 ω f 0 [4ρA σe (2σe − σi ) (ρA r3 + ρ J r4) − cW (cU r3 + cθ r4)]

8 r1ωa0[4(2 σe − σi )2(ρA)2 + c2W ] a4

+ ω2
f 0

[
4 σ 2

e (ρA r3 + ρ J r4)2 + (cU r3 + cθ r4)2
]

4
a2 = r26 , (37)

which is third order in the unknown y = a2,
so that its closed form solution is known. Once
a(l, κh, n,m, cW , cU , cθ , r6,
) has been determined,
b,βa andβb can be computed from (35) and (36).When
all parameters are fixed, and only the external excitation

 is varied, the searched frequency response curves
(FRCs) are obtained.

Equation (37) is cubic in a2. Thus, there always
exists a real solution. Furthermore, it may happen that
three real solutions exist. This occurs in particular in
the neighbourhood of resonance, as we will see in the
following.

In the very special case of perfect internal (σi = 0)
and external (σe = 0) resonances, i.e. ωa0 = 2ω f 0 =
2
, Eq. (37) reduces to

a

∣∣∣∣ 116 r2 r5 a2

r1cWω f 0
+ 1

2
ω f 0(cU r3 + cθr4)

∣∣∣∣ = |r6|. (38)

In this case, the asymptotic development of the solution
with respect to cW is given by

a = 3

√
16 r1 r6 ω f 0

r2 r5
3
√
cW + · · · ,

b = 3

√
4 r2 r26

r1 r25 ω f 0

1

cW
+ · · · , (39)

which shows that for cW → 0 we have b → ∞. This
highlights the role played by cW in the resonance.

The stability of the solutions previously obtained
can be determined by computing the eigenvalues of the
Jacobian of the right-hand side of (34) at each equilib-
rium point. If all the four eigenvalues have negative real
part, the solution is stable; otherwise, it is unstable. In
particular, if there is a real positive eigenvalue, the solu-
tion is a saddle, while if there is a complex eigenvalue
with positive real part, the solution is a source.
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By varying the parameters, if a real eigenvalue
passes from negative to positive, we have a saddle–
node bifurcation, while if a complex eigenvalue passes
from negative real part to positive, we have a Neimark–
Sacker, or secondary Hopf, bifurcation, and a quasi-
periodic solution is born in the mechanical system.
Because of their geometrical properties, saddle–node
bifurcations can be detected by looking for the zeros of
the discriminant of Eq. (37), where we pass from 1 to
3 real solutions.

4.4 Backbone curves

In the absence of excitation, r6 = 0, and damping,
cW = cU = cθ = 0, the beam undergoes a freemotion,
of frequency 
 (see 33). In this case, (37) simplifies to

r22 r
2
5

256 r21ω2
a0 (2 σe − σi )

2 (ρA)2
a6

− r2 r5 ω f 0 σe (ρA r3 + ρ J r4)

8 r1ωa0(2 σe − σi )ρA
a4

+ ω2
f 0 σ 2

e (ρA r3 + ρ J r4)
2a2 = 0, (40)

which can be rewritten as

a2
(

r2 r5
16 r1 ωa0 (2 σe − σi ) ρA

a2

−ω f 0 σe (ρA r3 + ρ J r4)
)2 = 0. (41)

Thus, excluding the trivial solution a = 0, we have

a2 = 16
r1 ρA (ρA r3 + ρ Jr4)

r2 r5
ωa0 ω f 0σe (2 σe − σi ) ,

(42)

and then (the sign function is sign(y) = y/|y|)

b = 4
ρA r3 + ρ J r4

r5
ω f 0 σe sign (2 σe − σi ) . (43)

They represent the analytical expressions for the so-
called BackBone Curves (BBCs) of coupled oscilla-
tors, which give the amplitudes of the oscillation as a
function of the vibration frequency 
. As it happens
for the BBCs of uncoupled oscillators [34], they are
also the loci of maximum points of frequency response
curves, as we will see in the next section.

When all parameters but
 are fixed, only σe is vary-
ing in (42) and (43), so that a(σe) ∼ √

σe(2 σe − σi )

and b(σe) ∼ σe sign(2 σe − σi ), this being a prop-
erty that helps to understand the behaviour of the
BBCs. In particular, we note that a(σe) exists only
when σe /∈ [min{0, σi/2};max{0, σi/2}], and locally
it behaves like a square root. b(σe) exists in the same
range, where it is (piecewise) linear.

In the very special case of perfect resonance, σi = 0
and ωa0 = 2ω f 0, the previous expressions simplify to

a = 8

√
r1 ρA (ρA r3 + ρ Jr4)

r2 r5
ω f 0 |σe|,

b = 8
(ρA r3 + ρ J r4)

r5
ω f 0|σe|, (44)

and both curves become proportional to |σe| (see forth-
coming Fig. 9d).

5 Results

Although the analysis of the solution can be done in
dimensionless form, to refer to a real case and to com-
pare the results with those obtained by numerical sim-
ulations, we prefer to deal with a dimensional case.

We choose a beam of 0.05 × 0.05 m2 square cross
section,made of steel (E = 2.1×1011 N/m2,ρ = 7850
kg/m3, ν = 0.3), of length L = 0.5 m. We then have
l = 10

√
2 = 34.6410 and z = 0.3287, so that we

are exactly in the case of Fig. 4. We also have ω f 0 =
11089.77 rad/s (the period is 5.66 × 10−4 sec) and
ωa0 = 10344.39 x rad/s. For this case, the perfect 1 :
2 internal resonance between the second transversal
mode (n = 2) and the first axial mode (m = 1) is
obtained at κh,ir = 1661.24, see point “D” in Fig. 6b.
We will vary κh around this value.

We further assume CW = CU = 50 N sec/m2 and
Cθ = 1.5 N sec. The load is a concentrated force Q
applied at L/4 (in order to excite the second transversal
mode), so that r6 = Q sin(n π/4)/2 = Q/2 N (since
n = 2). Any other distribution of load providing the
same r6 is equivalent to the present one. For comparison
with the forthcoming dynamical case, we note that the
transversal static displacement in the point where the
force is applied is,within the small displacements linear
theory, U (L/4) = (3/256)(Q L3/E J ) = 0.0134 mm
for Q = 1000 N.
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Fig. 7 Frequency response
curves for κh = 1620 and
for Q = 300 (bottom
curve); 600; 800; 1000;
1200 (top curve) N.
Continuous black lines are
stable solution branches, red
dashed lines are unstable
saddle-type solution
branches, blue dashed lines
are unstable source-type
solution branches. Green
dashdot lines are the
backbone curves. (Colours
in the online version)

(a) (b)

The FRCs Umax(L/4) = a(
)U1a(L/4) and
Wmax(L/4) = b(
)W1a(L/4), and the related BBCs
are obtained by varying the external frequency 


around ω f 0. Here, “max” means maximum in time,
and only the first-order terms (33) are considered.

5.1 The effect of the excitation amplitude

We start with by considering the effect of the excitation
amplitude Q for the fixed value κh = 1620. Here, we
have

r1 = 0.3029 m, r2 = 1.6007 × 1010 N/m2, r3 = 0.25 m,

r4 = 32.7957 m−1, r5 = 3.1115 × 1010 N/m2, (45)

and

ωa0 = 22082.20 rad/s, κ = 1.4175 × 109 N/m.

(46)

Note that, according to (14) and (15), ωa0 depends on
κh, and thus, it slightly varies when κh varies from the
value 1620.TheFRCs and theBBCsare reported inFig.
7, which shows how the excitation amplitude increases
the amplitude of the response, as expected, but not in
a linear way. The dynamic transversal displacement in
correspondence of the peak is about 100 times larger
than the static one.

The stability of each branch is determined as illus-
trated at the end of Sect. 4.3. For example, for Q =
1000 N and 
 = 11120 rad/s we have the following
equilibrium points and associated eigevalues:

a1 = 0.8685mm (stable) :
μ1,2 = −3.2191 ± 116.5082I ;
μ3,4 = −4.1747 ± 10.9506I ;
a2 = 0.7832mm (unstable) :

μ1,2 = −3.5693 ± 115.6535I ;
μ3 = 7.4617; μ4 = −15.1108;
a3 = 0.1309mm (stable) :

μ1,2 = −1.8670 ± 37.7398I ;
μ3,4 = −5.5268 ± 74.2153I. (47)

Overall there are two unstable solution branches of
saddle-type (reported in red), that are bounded by two
saddle–node (SN) bifurcations each, and an unstable
solution branch, of source-type (reported in blue), that
is bounded by two Neimark–Sacker (NS) bifurcations,
that are seen in Fig. 7. For Q = 1000 N, the maxi-
mum real part of the eigenvalues is reported in Fig. 8
for each branch, from which we clearly see the stable
(maxRe(λ) < 0) and the unstable (maxRe(λ) > 0)
solution branches. The bifurcation points are where
these curves cross the abscissa axes ((maxRe(λ) =
0)), that happens for


SN1 = 11006.2178 rad/s,


SN2 = 11034.6418 rad/s,


NS1 = 11034.9573 rad/s,


NS2 = 11041.0995 rad/s,


SN3 = 11113.6530 rad/s,


SN4 = 11134.2210 rad/s. (48)
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Fig. 8 The maximum real part of the eigenvalues for κh = 1620
and Q = 1000 N. Continuous black lines are stable solution
branches, red dashed lines are unstable saddle-type solution
branches, blue dashed lines are unstable source-type solution
branches. (Colours in the online version)

The source-type unstable solution branch is quite nar-
row. For low values of the load (Q = 300 N), there is
a unique stable solution branch, having peaks in corre-
spondence of the resonances.

5.2 The transition from hardening to softening

The transition from hardening to softening is illus-
trated in Fig. 9 to show what really happens through
the (apparent) singularity of Fig. 4. For κh quite below
κh,ir (Fig. 9a),we are far from the internal resonance. In
correspondence of ωa0/2, there is no amplification on
U , because the excitation is not in primary resonance
with the transversal mode, while we have a classical
resonance curve in W , which is practically vertical.
Here, the resonance mechanism is the following: (1)
the external excitation induces small vibration on the
transversal displacement; (2) the weak nonlinear cou-
pling from U to W , illustrated in [8], induces small
oscillations on the axial displacement; (3) since the
external excitation is just in order-2 superharmonic res-
onance with the axial mode, there is a resonance ampli-
fication, linear because the transversal mode transfers
only a small amount of energy to the axial one. In turn,
around ω f 0, the FRC of U is hardening (in agreement

with ω2 > 0 in Fig. 4), and that of W behaves simi-
larly, due again to the mere nonlinear coupling away
from internal resonance [8]. Note that the transversal
displacement (directly excited) is about 15 times larger
than the axial one.

Increasing κh (Fig. 9b), the major change is that a
softening resonance curve is observed in bothW andU
around ωa0/2. The meaningful nonlinear effect of the
internal resonance is apparent in the left peaks, the W
one beingmuchmore important than the corresponding
hardening peak aroundω f 0 which represents the nearly
unchanged effect from U to W due to the nonlinear
coupling. Note also the clearly visible piecewise linear
behaviour of the BBCs of b in Fig. 9b2.

By further increasing κh (Fig. 9c), thus getting closer
to the exact internal resonance, the softening FRC
around ωa0/2 becomes more important, both in terms
of U and W . In W , a third peak appears exactly at
ωa0/2, suggesting a further second-order coupling-
induced effect fromU toW ; however, this peak belongs
to the unstable solution branch. The hardening branch
of the FRC around ω f 0 is still practically unchanged.

For κh = 1660 (Fig. 9d), i.e. practically in the per-
fect resonance, the left softening and the right hard-
ening cusps become symmetrical with respect to the
line 
 = ω f 0 = ωa0/2, and thus, they reach the same
importance. The third, unstable,W -peak is clearly evi-
dent in Fig. 9d2. Here, the coupling due to the inter-
nal resonance is maximum, and the two BBCs, one
hardening and one softening, ensue from ω f 0, and are
piecewise linear, as found in (44).

The increment of κh (Fig. 9e) implies that the FRC
branch associatedwithω f 0 becomes the left one,which
is softening, while its hardening branch (associated
with ωa0/2) becomes slightly less important in terms
of U , but more important in terms of W . Indeed, note
that Fig. 9e is “specular” to Fig. 9c. This trend is con-
firmed by Fig. 9f, which is “specular” to Fig. 9d, and
by Fig. 9g, which is “specular” to Fig. 9a.

The conclusion is that, taking properly into account
the internal resonance, there is no singularity in the
hardening to softening transition by varying κh. There
is, instead, a sudden (discontinuous) jump, of finite
magnitude, from hardening to softening, and in the dis-
continuity point κh,ir , where exact internal resonance
occurs, the BBCs are linear instead of proportional to
a square root.

Finally, we report in Fig. 9h the behaviour for much
larger values of κh, away from internal resonance, to
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 9 Frequency response curves for Q = 1000N and different
values of κh. Continuous black lines are stable solution branches,
red dashed lines are unstable saddle-type solution branches, blue

dashed lines are unstable source-type solution branches. Green
dashdot lines are the backbone curves. (Colours in the online
version)
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(d1) (d2)

(e1) (e2)

(f1) (f2)

Fig. 9 continued

123



Longitudinal–transversal internal resonances in Timoshenko beams

(g1) (g2)

(h1) (h2)

Fig. 9 continued

show how the softening behaviour decreases (the U
curve becomes almost vertical, and thus, the nonlinear
correction coefficient almost zero). This is in agreement
with the behaviour illustrated in Fig. 4, and it is some-
how surprising, since the present analysis is expected
to be reliable only in a rather strict neighbourhood of
κh,ir .

5.3 An isolated branch of solution

The born of the left resonance curve (see Fig. 9b) is
actually more involved than expected, and interesting.
An isolated branch of solution, also termed as “isola”,

is born at about κh = 1580 (Fig. 10a, b). By increasing
κh , this closed branch enlarges (Fig. 10c, d) and finally
touches, at about κh = 1591.5 (Fig. 10d, e), the non-
resonant, small amplitude, branch. Then, a classical
resonant (softening) FRC is observed (Fig. 10f). The
same phenomenon has been observed, for example, in
[35] (see their Fig. 6) and in [36] (see their Fig. 2).

It is just for isolated branches that analytical meth-
ods, even approximate, are necessary: here multiple
time scales are used, but in other papers (e.g., [37]) iso-
las havebeendetectedby the harmonic balancemethod.
In fact, they cannot be obtained by a path following
algorithm starting from themain solution branch unless
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 10 Frequency response curves for Q = 1000 N and dif-
ferent values of κh. Continuous black lines are stable solution
branches, red dashed lines are unstable saddle-type solution

branches, blue dashed lines are unstable source-type solution
branches. Green dashdot line is the backbone curve ensuing from
ωa0/2. (Colours in the online version)

123



Longitudinal–transversal internal resonances in Timoshenko beams

(d1) (d2)

(e1) (e2)

(f1) (f2)

Fig. 10 continued
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varying another parameter (for example, the stiffness
of the spring), besides the excitation frequency, which
may allow to reach isolas in an extended parameter
space. If varying only the excitation frequency, they
can be found numerically only via a suitable and lucky
choice of initial values in either the original governing
equations or the reduced (e.g., modulated) ones, and
then possibly characterized systematically by build-
ing basins of attraction, which is however difficult and
demanding, especially for high dimensional systems.

Detecting stable isolated solutions is not only impor-
tant from a theoretical point of view. In fact, even if
these attractors may have a small basin of attraction,
and thus be considered “minor” or “rare”, itmayhappen
that their basins strongly erode, by fractality, the basin
of the main attractor (the one used in applications), that
thus loses robustness and reduces its safety, leading to
instability for moderately large perturbations, even if
the attractor is stable in the Lyapunov sense [38].

6 Numerical simulations

To confirm the previous analytical findings, finite ele-
ments method (FEM) simulations are performed. The
same beam illustrated in Sect. 5 is considered.

The commercial software Abaqus_CAE © is used.
The beam is discretized using 100 B21-type elements.
An explicit direct time integration is used, with time
step �T = (2π)/(
 × 80) sec and, to give up the
transient vibration, each excitation lasts 2500 periods.
Furthermore, in the solver a double precision is used
together with full nodal output precision.

Relatively small changes in 
 (1 rad/s) are used in
the frequency sweeping (both forward and backward),
and the solution (shape deformation and rotation angle)
obtained in the previous step is used as initial condition,
as done in [11].

Axial and transversal dampings proportional to the
mass matrices are considered, with the same values of
the damping coefficients used in Sect. 5.

To further confirm our results, we have done com-
putations also with another commercial software,
Midas_GEN©, but since the outcomes are comparable
we do not report these simulations.

First, the axial and transversal natural frequencies
have been computed in the linear regime, verifying
that they perfectly match those computed analytically.
Then, the FRCs have been obtained in the geometri-

cally nonlinear regime, i.e. with large displacements.
Since a brute force following algorithm has been used
to determine the numerical FRC, for increasing and
decreasing frequencies, only the stable branches have
been detected. To draw also the unstable branches, a
continuation algorithm should have been used, which
is, however, out of the scope of the present work.

The comparison between analytical and numerical
results is reported in Fig. 11, for a fixed value of κ and
for increasing values of Q. We conclude that an excel-
lent agreement is obtained on the main (i.e. primary
resonance) stable solution branches. Surprisingly, the
peaks of the numerical curves are higher than those of
the analytical ones, this being likely due to a differ-
ent fine tuning of the damping, that has large effects on
the peak value. Note that no tuning of damping is done,
and the nominal values are considered in numerical and
analytical simulations.

Around ωa0/2, we observe that the numerical solu-
tion is not able to catch the upper, resonant, stable
branch. This is due to the source-type unstable solution
branch that breaks the main resonant solution branch
and leads to a jump of the theoretical solution. The
numerical jump is not observed, likely because the solu-
tions have very small basins of attraction.

Keeping Q = 1000 N fixed, and varying the
spring stiffness, the comparison between analytical and
numerical results is reported in Fig. 12. In addition
to the overall excellent agreement, with some minor
quantitative differences on W (which can be reduced
by tuning the damping), the most important result is
that through the Neimark–Sacker bifurcation a quasi-
periodic attractor is born, according to what the theory
predicts for this event [39]. It is highlighted by the cloud
of points obtained for each frequency by sampling the
maximum amplitudes of the last 500 periods of the
excitation, to give rid of the transient behaviour.

This is a further confirmation of the reliability of the
proposed analysis.

7 Conclusions and further developments

The internal resonance between axial and bending
modes in a Timoshenko beam with a boundary axial
spring has been investigated, with the aim (1) of study-
ing the ensuing modal interaction in a further mechani-
cal system, (2) of explaining a singular behaviour previ-
ously reported in the literature, and (3) of investigating

123



Longitudinal–transversal internal resonances in Timoshenko beams

(a)

0

1.6

1120010950 rad/sec

U
(L
/4
)

m
ax

[m
m
]

(b)

0

0.4

1120010950 rad/sec

W
(L
/4
)

m
ax

[m
m
]

(c)

0

1.6

1120010950 rad/sec

U
(L
/4
)

m
ax

[m
m
]

(d)

0

0.4

1120010950 rad/sec

W
(L
/4
)

m
ax

[m
m
]

(e)

0

1.6

1120010950 rad/sec

U
(L
/4
)

m
ax

[m
m
]

(f)

0

0.4

1120010950 rad/sec

W
(L
/4
)

m
ax

[m
m
]

Fig. 11 Comparison of numerical (circles) and analytical (continuous lines) FRCs for κh = 1620 (κ = 1.4175 × 109 N/m). In this
case, ωa0/2 = 11041.10 rad/s is slightly lesser than ω f 0 = 11089.77 rad/s. a, b Q = 800 N; c, d Q = 1000 N; e, f Q = 1200 N

the transition from softening to hardening through the
1 : 2 internal resonance by varying the axial spring
stiffness.

It has been shown that internal resonance, while
structurally unstable, is a robust phenomenon, since it

occurs for all values of the end stiffness, and for “any”
value of the resonance ratio ir . It is only needed to
properly select the beam length.

Attention has then been paid to the nonlinear
behaviour around the 1 : 2 internal resonance. The fre-
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Fig. 12 Comparison of numerical (circles) and analytical (con-
tinuous lines) FRCs for Q = 1000 N. a, b κh = 1650.7 (κ =
1.4444 × 109 N/m), so that ωa0/2 = 11077.46 rad/s and ω f 0 =

11089.77 rad/s; c, d κh = 1659.4 (κ = 1.4520 × 109 N/m), so
thatωa0/2 = 11087.65 rad/s andω f 0 = 11089.77 rad/s, namely
we are practically in exact internal resonance

quency response curves, and the associated backbone
curves, have been obtained analytically by the mul-
tiple time scales method. It has been shown that, by
varying the spring stiffness across the resonance value,
the frequency response curves of the internally reso-
nant axial and transversalmodes intersect and exchange
with eachother, leading to an instantaneous, butnot sin-
gular, jump from hardening to softening of the flexural
mode, thus explaining an apparent singularity previ-
ously reported when internal resonance is not taken
into account.

A detaching of an isolated solution branch from the
frequency response curves, similar to others previously
reported in the literature, has been observed, too.

Finally, the analytical frequency response curves
have been compared with their counterparts obtained
byfinite element numerical simulations.Overall, a very

good agreement has been observed for the considered
values of the parameters.

As far as further developments are concerned, at
least the following ones can be mentioned:

• To explain possible singular behaviour of higher
order nonlinear correction coefficient ω4 in terms
of 1:4 internal resonance;

• To study other internal resonances, including a
combination one, between axial and transversal
modes, both in linear and nonlinear regimes;

• To consider different boundary conditions;
• To exploit the investigated internal resonance for
practical purposes (e.g. energy harvesting) and
engineering design;

• To perform experimental investigations tailored
around internal resonance;
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• To demonstrate that the coupled backbones tend to
their uncoupled counterparts when getting far from
the resonance.
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Appendix

In this appendix, we report some formulas which are
referred to in the text.

Parameters used in (11):

c1 = −n2π2l2

8

2 zα1 − 2 z + 1

l2 + κh
,

c2 = n2π2l2

8

× (2 zα1 − 2 z + 1)
(
π2l2n2 − 2ω2

0

)
(
π2l2n2 − ω0

2
)
[2 cos (2ω0/ l) l ω0 + sin (2ω0/ l) κh]

,

α1 = l4z

π2l2n2 + l4z − ω0
2 ,

ω2a = −32 l2π2n2
(
π2n2α2

1

− α2
1 l

2z + l2z − l2
) (

π2n2l2 − ω2
0

)
,

ω2b = 16 l4π2n2
[
π4n4α2

1

− (
α2
1 z − z + 1

) (
π2n2l2 − 2ω2

0

)]
,

ω2c = −π4n4l2
{
6π2n2

(
α3
1 z

2 − α2
1 z

2

− α2
1 z − α1z

2 + z2 + z − 1
)
l4+

+ [− (
4α3

1 z
2 − 4α2

1 z
2 − 7α2

1 z − 4α1z
2

− 2α1z + 4z2 + 9z − 7
)
ω2
0+

+ 6π4n4α2
1 (α1z − z + 1)

]
l2

− π2n2α2
1ω

2
0 (4α1z − 4z + 5)

}
,

ω2d = 64ω0(π
2n2l2 − ω2

0)(π
2n2α2

1 + l2). (49)

Functions used in (23):

W1a(Z) = sin

(
x Z

L

)
,

U1a(Z) = sin

(
n π Z

L

)
,

θ1a(Z) = 1

L

(
n π − ω2

0

nπ zl2

)
cos

(
nπ Z

L

)
. (50)

Functions used in (30):

fW =
(
E A

2
− GA

)
U ′2
1a + GAU ′

1aθ1a,

fU = (GA − E A)U ′
1aW

′
1a,

fθ = E J θ ′
1aW

′
1a . (51)

Parameters used in (31):

r1 =
∫ L

0
W 2

1adZ = L

2

x − sin(x) cos(x)

x
,

r2 =
(
E A

2
− GA

) ∫ L

0
W ′

1aU
′2
1adZ

+ GA
∫ L

0
W ′

1aU
′
1aθ1adZ =

= E J

L4

sin(x)

2

(2n2π2 − x2)(n2π2l2 − 2ω2
0)

4n2π2 − x2
,

r3 =
∫ L

0
U 2
1adZ = L

2
,

r4 =
∫ L

0
θ21adZ =

(
n2π2l2z − ω2

0

)2
2Ln2π2l4z2

,

r5 = −(GA − E A)

∫ L

0
W ′

1aU
′2
1adZ

− E J
∫ L

0
W ′

1aθ
′2
1adZ + GA

∫ L

0
W ′

1aθ
2
1adZ
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= E J

L4

sin(x)

4n2π2 − x2

[
ω2
0

(
2n2π2l2z − ω2

0

)

× 2n4π4 − 2n2π2l2z + l2x2z

n2π2l4z2

−n2π2
(
2n4π4 − 2n2π2l2 + l2x2

)]
,

r6 = 1

2

∫ L

0
f (Z)U1a(Z)dZ . (52)
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