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Abstract
Emotions represent a key aspect of human life and behavior. In recent years, automatic
recognition of emotions has become an important component in the fields of affective
computing and human-machine interaction. Amongmany physiological and kinematic signals
that could be used to recognize emotions, acquiring facial expression images is one of themost
natural and inexpensive approaches. The creation of a generalized, inter-subject, model for
emotion recognition from facial expression is still a challenge, due to anatomical, cultural and
environmental differences. On the other hand, using traditional machine learning approaches
to create a subject-customized, personal, model would require a large dataset of labelled
samples. For these reasons, in this work, we propose the use of transfer learning to produce
subject-specific models for extracting the emotional content of facial images in the valence/
arousal dimensions. Transfer learning allows us to reuse the knowledge assimilated from a
large multi-subject dataset by a deep-convolutional neural network and employ the feature
extraction capability in the single subject scenario. In this way, it is possible to reduce the
amount of labelled data necessary to train a personalized model, with respect to relying just on
subjective data. Our results suggest that generalized transferred knowledge, in conjunction
with a small amount of personal data, is sufficient to obtain high recognition performances and
improvement with respect to both a generalized model and personal models. For both valence
and arousal dimensions, quite good performances were obtained (RMSE= 0.09 and RMSE=
0.1 for valence and arousal, respectively). Overall results suggested that both the transferred
knowledge and the personal data helped in achieving this improvement, even though they
alternated in providing the main contribution. Moreover, in this task, we observed that the
benefits of transferring knowledge are so remarkable that no specific active or passive
sampling techniques are needed for selecting images to be labelled.
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1 Introduction

Emotions play a key role in how people think and behave. Emotional states affect how actions
are taken and influence the decisions. Moreover, emotions play an important role in human–
human communication and, in many situations, emotional intelligence, i.e. the ability to
correctly appraisal, express, understand, and regulate emotions in the self and others [58], is
crucial for a successful interaction. Affective computing researches aim to furnish computers
with emotional intelligence [51] to allow them to be genuinely intelligent and support natural
human-machine interaction (HMI). Emotion recognition has several applications in different
areas such as marketing [18], safe and autonomous driving [22], mental health monitoring
[17], brain-computer interfaces [65], social security [75], robotics [55].

Human emotions could be inferred by several modalities:

& physiological signals, including electroencephalogram (EEG), body temperature, electro-
cardiogram (ECG), electromyogram (EMG), galvanic skin response (GSR), respiration
[62];

& speech [35];
& body gestures, including facial expressions [32].

Among them, the facial expression is one of the most natural information to use and is the
main channel for nonverbal communication [30]. Moreover, RGB sensors for acquiring
images of the face cost significantly less than others and do not need to be worn, which
makes Facial Emotion Recognition (FER) a good candidate for commercial-grade systems.
Traditional FER approaches are based on the detection of faces and landmarks, followed by
the extraction of hand-crafted features, such as facial Action Units (AUs) [3]. Machine
learning algorithms, such as Support Vector Machines (SVMs), are then trained and employed
on these features. In contrast, deep learning approaches aim to provide an end-to-end learning
mechanism, reducing the pre-processing of input images [33]. Among deep learning models,
Convolutional Neural Networks (CNNs) are particularly suited for facial image processing and
allow to highly reduce the dependence on physics-based models [78]. Moreover, recurrent
nets, in particular Long Short Term Memory (LSTM), could take advantage of temporal
features if the recognition is performed on videos instead of single images [9].

FER can be formulated as a classification or a regression problem. The distinction mainly
depends on the emotional model employed for representing emotions. In categorical repre-
sentations, emotions consist of discrete entities, associated with labels. Ekman observed six
basic emotions (anger, disgust, fear, happiness, sadness, and surprise) characterized by
distinctive universal signals and physiology [11]. Tomkins characterized nine biologically
based affects: seven that can be described in couples (interest-excitement, enjoyment-joy,
surprise-startle, distress-anguish, anger-rage, fear-terror, shame-humiliation), representing the
mild and the intense representation, plus dissmell (a Tomkins’ neologism) and disgust [71]. In
contrast with discrete representations, dimensional models aim to describe emotions by
quantifying some of their features over a continuous range. Russell developed a circumplex
model suggesting that emotions can be represented over a two-dimensional circular space,
where axes correspond to valence and arousal dimensions [57]. The circumplex model could
be extended by adding axes, in order to describe complex emotions: Mehrabian proposed the
Pleasure-Arousal-Dominance (PAD) model, where the Dominance-Submissiveness axis rep-
resents the how much one feels to control versus to be controlled by the emotion [45]; Trnka
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and colleagues developed a four-dimensional model describing valence, intensity, controllabil-
ity, and utility [72]. Between discrete and dimensional models, Plutchik and Kellerman proposed
a hybrid three-dimensional model where 8 primary bipolar emotions are arranged in concentric
circles (equivalent to a cone in space), such that inner circles contain more intense emotions [52].
Which model is more suitable for emotions representation and the universality of facial
expressions of emotions are still debated [2, 12, 21, 23, 38, 41]. Our article steps back from
these debates and focuses on the usability of the models. We decided to adopt the dimensional
model, in particular the Valence-Arousal (VA) approach, because we observed that most of the
datasets that rely on discrete emotions do not refer to the same emotion labels, thus making it
difficult to conduct experiments that involve multiple datasets. Conversely, almost all available
datasets based on the dimensional representations are compatible with each other, after normal-
izing values if needed, and the VA model represents their common denominator.

Independently of the model used to represent emotions, building a general FER model is
still a challenge. The “one-fits-all” approach requires the predictor to be able to generalize
acquired knowledge to unseen data, but this is prevented by subjects’ differences in anatomies,
cultures, and variable environment setups [59]. A possible solution could be the creation of
subject/environment-specific models, but, on the other hand, it would require a considerable
amount of labelled data to train the predictor. Therefore, it could be infeasible in practice since
emotional labelling is an expensive process that has to be performed by expert annotators [47].

In this work, we propose a transfer learning approach to work around the problem of
training a high-capacity classifier over a small, subject-specific dataset. First, we trained a
general-purpose CNN, namely AlexNet [36], over the AffectNet (Affect from the InterNet)
database [47], and then we exploited the assimilated knowledge to perform fine-tuning over
small personal datasets of images extracted from videos, obtained from the AMIGOS dataset
[46]. Our approach belongs to the category of transductive transfer learning since the source
and target domains are different but related (since AffectNet images are not acquired in a
controlled environment such as for AMIGOS) and source and target tasks are the same [49].
Our results show that transfer learning in this domain helps in improving the emotion
recognition performance with respect to both personal models (i.e., trained on a subject-
specific data) and generalized models (i.e., trained on all the subjects). Moreover, they show
that for the considered dataset, while the valence dimension is more generalizable from
different subjects, arousal depends more on individual characteristics.

Additionally, we investigated if it would be possible to reduce the number of samples
needed for fine-tuning the net. To this aim, we trained the net with sets of increasing size. We
observed that a very small amount of personal data is needed to achieve quite good perfor-
mance, regardless of the strategy employed to select, from the whole set, the samples to be
labelled. Our test employed both active and passive sampling techniques developed for
regression, namely Greedy Sampling (GS) [79] and Monte-Carlo Dropout Uncertainty Esti-
mation (MCDUE) [73], to select samples characterized by higher uncertain that have to be
added to the training set. Tested approaches rely on the assumption that there is an unlabeled
dataset from which some samples must be selected and labeled (pool-based sampling). Passive
sampling techniques explore the input space of unlabeled samples, while active sampling
approaches also take into account a previously trained regression model to estimate sample
uncertainty. In particular, the GSx variant of GS is passive, while GSy, iGS, and MCDUE
follow the active sampling paradigm. Our results show that the error of the trained model
decreases very fast with respect to the size of the training set so that there are no significant
differences between using random sampling and active/passive sampling.
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The rest of the paper is structured as follows: Section 2 discusses related work and recent
results in FER from literature; Section 3 describes our approach; Section 4 exhibits and
discusses the results; Section 5 contains conclusions and future developments.

2 Related work

Quite a large effort has been spent in FER during the last decades, both by employing
traditional machine learning and deep learning methods. The work by Ko and colleagues
[33] offers a recent and comprehensive review of this topic. Here, we report some of the most
significant methods and results, also summarized in Table 1.

Among the traditional machine learning approaches, Shan and colleagues [61] extracted
Local Binary Pattern (LBP) to be used as features for SVM. The authors tested the method in a
cross-dataset experiment, involving Cohn-Kanade (CK) [29], Japanese Female Facial Expres-
sion (JAFFE) [43], and M&M Initiative (MMI) [50] datasets and achieving 95.1% of accuracy
(6 classes) on CK. In [10], the authors proposed the use of Kernel Subclass Discriminant
Analysis (KSDA), classifying 7 basic and 15 compound emotions based on a Facial Action
Coding System (FACS). Average accuracy was 88.7% for basic emotions and 76.9% for
compound emotions. Suk and Prabhakaran [66] classified seven emotions with 86.0% accu-
racy employing SVM on data from extended Cohn-Kanade dataset (CK+) [42]. Features were
obtained by using Active Shape Model (ASM) fitting landmarks and displacement between
landmarks. The same dataset was used in [15], where 95.2% and 97.4% of accuracy was
obtained by AdaBoost and SVM with boosted features, respectively. In [82], Multiple Kernel
Learning (MKL) for SVM was used to combine multiple facial features, a histogram of
oriented gradient (HOG), and local binary pattern histogram (LBPH). The authors evaluated
the proposed approach on multiple datasets, outperforming many of the state-of-the-art
algorithms.

FER was addressed with a deep learning approach by Jung and colleagues [27] that
combined two deep networks that extract appearance features from images (using
convolutional layers) and geometric features from facial landmarks (using fully connected
layers), obtaining 97.3% of accuracy on CK+ data. In [28] authors showed that a hybrid CNN-
RNN architecture can outperform simple CNNs. Hasani and Mahoor [19] combined two well-
known CNN architectures [68, 69], in a 3D Inception-ResNet, followed by an LSTM layer, to
extract both spatial and temporal features. Arriaga and colleagues [1] implemented a CNN,
with four convolutional levels and a final level of global average pooling with a soft-max
activation function. They classified images from The Facial Expression Recognition 2013
(FER-2013) database [16], achieving 66% of accuracy.

The previously mentioned approaches deal with the classification of categorical emotions.
In general, the literature offers much more contributions regarding the classification of
categorical emotions than the regression of emotional dimension. For this task, visual data
are often employed also for improving the recognition power of multi-modal approaches [5,
64].

Using a dimensional model, Khorrami and colleagues [31] obtained a Root Mean Squared
Error (RMSE) equal to 0.107 in predicting valence, by using a CNN-RNN architecture over
the AV+ EC2015 (Audio/Visual+Emotion Challenge) dataset [54]. In [47], authors employed
the AlexNet CNN [36] to classify and regress emotions from AffectNet [47] dataset, that
contains images collected by querying internet search engines, annotated both with the
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Table 1 FER related works from literature. For each article, we report: employed datasets; adopted approach
(both in terms of selected features and recognition algorithms); emotional model; numerical results expressed by
means of accuracy, RMSE or Concordance Correlation Coefficient (CCC)

Reference Datasets Approach Emotion
Recognition

Results

Shan et al. (2009)
[61]

CK, JAFFE, MMI LBP + SVM 6 expressions Accuracy 95.1%
6 expressions +

neutral
Accuracy 91.4%

Du et al. (2014)
[10]

Images from 230
subjects

FACS + KSDA 7 basic
expressions

Accuracy 88.7%

15 compound
expressions

Accuracy 76.9%

Suk and
Prabhakaran
(2014) [66]

CK+ ASM+ SVM 7 expressions Accuracy 86.0%

Ghimire and Lee
(2013) [15]

CK+ Facial Landmarks +
AdaBoost + SVM

6 expressions Accuracy 97.4%

Zhang et al. (2015)
[82]

CK+, MMI,
GEMEP-FERA [74]

(HOG &
LBPH) +MKL +
SVM

6 expressions Accuracy 95.5%
(CK+)

7 expressions Accuracy 93.6%
(CK+)

Jung et al. (2015)
[27]

CK+ Facial Landmarks +
Deep Networks

7 expressions Accuracy 97.3%

Kahou et al. (2015)
[28]

TDF [67], FER-2013 CNN-RNN 7 expressions Accuracy 52.9%

Hasani and Mahoor
(2017) [19]

MMI, CK+,
GEMEP-FERA,
DISFA [44]

CNN-LSTM 5 expressions
(GEMEP--
FERA)

Accuracy 77.4%

6 expressions
(MMI)

Accuracy 77.5%

7 expressions
(CK+)

Accuracy 93.2%

Arriaga et al. (2019)
[1]

FER-2013 CNN 7 expressions Accuracy 66.0%

Khorrami et al.
(2016) [31]

AV + EC2015 CNN-RNN Valence
estimation

Valence RMSE
0.107

Mollahosseini et al.
(2017) [47]

AffectNet CNN 8 expressions Accuracy 64.0%
- 68.0%

Valence and
arousal
estimation

Valence RMSE
0.394

Arousal RMSE
0.402

Li et al. (2017) [40] Aff-Wild MM-Net Valence and
arousal
estimation

Valence RMSE
0.134

Arousal RMSE
0.088

Chang et al. (2017)
[4]

Aff-Wild FATAUVA-Net Valence and
arousal
estimation

Valence RMSE
0.123

Arousal RMSE
0.095

Hasani and Mahoor
(2017) [20]

Aff-Wild DRC-Net Valence and
arousal
estimation

Valence RMSE
0.161

Arousal RMSE
0.094

Ng et al. (2015)
[48]

FER-2013
EmotiW [8]

CNN (transfer
learning)

7 expressions Accuracy 55.6%

Chu et al. (2016)
[7]

CK+, GEMEP-FERA,
RU-FACS [3],

GFT [60]

SVM (transfer
learning)

5 expressions
(GEMEP--
FERA)

Accuracy 86.5%
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categorical and the dimensional models. They achieved accuracy between 64.0% and 68.0% in
classification (on balanced sample sets) and an RMSE of 0.394 and 0.402 for valence and
arousal, respectively. In the context of the Aff-Wild (Valence and Arousal In-The-Wild
Challenge) [80], other methods have been proposed. MM-Net [40], a variation of the deep
convolutional residual neural network, achieved RMSE values of 0.134 and 0.088 for valence
and arousal, respectively. In FATAUVA-Net [4], AUs were learned from images, in a
supervised manner, and then employed for estimating valence and arousal (RMSE equal to
0.123 and 0.095). Lastly, DRC-Net [20] was based on Inception-ResNet variants and achieved
RMSE values of 0.161 (valence) and 0.094 (arousal). In this work, we started from the
classification approach proposed by Mollahosseini and colleagues [47], since our aim is to
take advantage of the knowledge learned from AffectNet. In this sense, the choice of AlexNet
is motivated by the promising results achieved on such dataset.

However, to the best of our knowledge, the effect of transfer learning on FER has
been poorly investigated and has mainly focused on categorical emotions recognition
and AU detection [6, 7, 48, 81]. The work by Feffer and Picard [13] addressed the
personalization of deep neural networks for valence and arousal estimation. The
authors proposed the use of a Mixture-of-Experts (MoEs) technique [24]. In MoEs
frameworks each expert represents a subnetwork trained on a subset of available data,
thus tuned for a specific context. A gating network weights the contribution of experts
in the inference step. In [13], a ResNet architecture was followed by an experts’
subnetwork, where each expert corresponded to a different subject of the training set.
A supervised domain adaptation approach [26] was adopted to fine-tuning the expert
network to unseen subjects. Results obtained on the RECOLA dataset [53] demon-
strated the efficacy of the proposed approach.

3 Materials and methods

3.1 Datasets preparation

We used two datasets of emotionally labeled images. AffectNet is a database of facial
expressions in the wild, i.e. images are not acquired in a controlled environment of a
laboratory. AffectNet contains more than 1 million samples collected by querying internet
search engines, by using emotion-related keywords (Fig. 1 shows an example set of images).
Images have been preprocessed to obtain bounding boxes of faces and rescaled to a common
resolution. About half of the dataset has been manually annotated, both with respect to the
categorical model (seven basic emotions) and the dimensional model (valence and arousal).

Table 1 (continued)

Reference Datasets Approach Emotion
Recognition

Results

7 expressions
(CK+)

Accuracy 96.4%

Feffer and Picard
(2018) [13]

RECOLA MoEs (supervised
domain adaptation)

Valence and
arousal
estimation

Valence CCC
0.86

Arousal CCC
0.85

Multimedia Tools and Applications



The remaining images are not annotated and are not provided in order to be used for future
challenges. Hence, in this work, we employed just the annotated subset.

AMIGOS (A dataset for Multimodal research of affect, personality traits, and mood on
Individuals and GrOupS) [46] is a dataset consisting of multimodal signals recording of 40
participants in response to emotional fragments of videos. Signals include EEG, ECG, GSR,
frontal and full-body videos, depth camera videos. All participants took part in a first
experimental session, in which they watched short video fragments (<250 s), while some of
them participated in a second session, where they had to watch long videos (>14 min),
individually or in groups. The dataset also contains emotional annotations both by three
external annotators and by the participants themselves. We included in our study individual
frontal videos from 10 participants recorded during the first experiment and, since participants
could be unreliable at reporting on their own emotions or willing to hide them [63], we
considered the related external annotations of valence and arousal. For each short video, we
extracted a frame every 4 s, obtaining about 1000 frames for each subject. We manually
removed frames where the participant’s face was not visible. Each frame has then been
preprocessed, by using a pre-trained Cascade Classifier (CC) [76] to extract the bounding
box of the user’s face and resize it (see Fig. 2). Labels associated with each frame have been
computed as the average of external annotators’ scores.

Fig. 1 Samples from AffectNet dataset

Fig. 2 Preprocessing steps shown for a sample frame from AMIGOS dataset
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3.2 CNN architecture and training

AlexNet [36] is a famous CNN designed for general-purpose image classification and local-
ization. It won the ImageNet LSVRC-2012 [56] with a large margin both in Task 1
(Classification) and in Task 2 (Localization and Classification). The neural network consists
of five convolutional layers (the first, the second, and the fifth are followed by max-pooling
layers) and three globally connected layers. AlexNet takes advantage of using Rectifier Linear
Unit (ReLU), instead of hyperbolic tangent function (tanh) as activation, to introduce non-
linearity. To reduce overfitting in the globally connected layers, hidden-unit dropout [77] is
also employed. In its original form, AlexNet was developed to perform a classification
between 1000 classes (a 1000-way softmax layer produces the output). Here, we built two
twin CNNs, by adding a single unit with a linear activation function (to perform regression).
CNNs were trained to estimate valence and arousal separately. AffectNet images have been
split into training (60%) and validation (40%) sets. We selected mean square error (MSE) as
loss function and trained the net by using Mini-Batch Gradient Descent (MBGD) [39], with
batch size set to 16, learning rate equal to 0.001 and Nesterov momentum equal to 0.9.
Training iterated for 50 epochs over the whole training set. The net achieved RMSE values of
0.279 and 0.242 for valence and arousal, respectively, over the validation set.

3.3 Fine-tuning

After the CNNs were trained over a large dataset, we could take advantage of two aspects: a)
the features extraction capability of the nets (i.e. the pre-trained convolutional layers) and b)
the current setting of the task-related (dense) layers that could be used as starting guess for the
fine-tuning phase to ease the convergence. To this aim, we applied the following steps to each
CNN. First, we split the net in its convolutional (including the flatten layer) and dense parts.
From this point on, we operated just on the dense layers, treating them as a new net, except for
the previously computed weights that were used as initialization for the fine-tuning training.
This allowed to “freeze” the learning of the convolutional part and perform further experiments
changing weights and bias just in the dense part. The frozen convolutional part is so used to
obtain the features of each sample. Figure 3 shows the procedure.

3.4 Pool-based sampling techniques

3.4.1 Greedy sampling

GS [49] basic algorithm, GSx, is based on the exploration of the feature space of the unlabeled
pool. It is the only passive sampling approach we tested in this work. Its counterpart, GSy,
follows the same steps, but it is aimed to explore the output space of the pool (starting from a
pre-trained regression model inferred by samples selected by means of GSx). We employed a
simplified version of the latter since a) our aim was to update the regression model only after
the selection of all the samples that had to be queried and b) in the fine-tuning scenario the pre-
trained regression model is already available. The algorithms steps are described in the pseudo-
code shown in Table 2. The idea at the base of these methods is the exploration of the feature
and the output spaces, respectively, by computing the Euclidean distances between samples.
The initialization phase selects the starting element to be placed in the output set (labeled set),
as the one closest to the centroid of the set of elements to be labeled. Then, the iterative phase
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chooses, at each step, the element furthest from the labeled set, by computing the minimum
distance from the labeled set of each candidate sample and selecting that with the maximum
computed value (see Fig. 4 for a graphical representation of the strategy).

GSx and GSy can be combined in a further method (iGS) that takes advantage of the
knowledge from both the feature and the output spaces (see Table 3 for the pseudo-code). iGS
computes the minimum of the element-wise product of the distances calculated considering the
feature and the output. This implies that the search is couple oriented, i.e. the best candidate
would be the one that has the same labeled element very close in both spaces.

3.4.2 Monte-Carlo dropout uncertainty estimation

MCDUE [73] is based on a popular regularization technique for neural networks, namely
Dropout [77]. Dropout randomly “turns off” some of the hidden layer neurons, so that they
will output 0 regardless of their input. Dropout can be used as an active sampling technique too
since it is a method for computing samples uncertain [14], starting from a pre-trained neural
network. For each sample, this is obtained by iteratively (T times) muting a set of neurons
(basing on a Dropout probability π) and predicting the regression output. Starting from the
assumption that the Standard Deviation (STD) of the predictions could be used as a metric of
the sample’s uncertainty, samples with the larger STD are selected to be queried. Table 4

Fig. 3 Net splitting procedure for fine-tuning. Separating convolutional and dense layers allowed us to freeze the
training of the first, maintaining the features extraction capability of the net. Note that two different networks are
trained, one for valence and one for arousal
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describes the steps of the procedure. In our experiment, we set T and π to 50 and 0.5,
respectively.

4 Results

In order to observe how our approach affects the performance of the recognition of a specific
subject, we tested three conditions: in the first, used for comparison, the un-trained CNN
(including the convolutional layers) was trained just on subject-specific data from AMIGOS,
thus no transfer learning was performed (“No Transfer” label in Fig. 5); in the second
condition, the net was pre-trained on AffectNet data, but no personal data were employed
during training (“Transfer 0% Labeling” label in Fig. 5); in the third condition the net, pre-
trained on AffectNet, was fine-tuned by using the whole available personal training set
(“Transfer 100% Labeling” label in Fig. 5).

For each subject from AMIGOS, we performed training and testing in a k-fold cross-
validation framework [34]. In k-fold cross-validation, the choice of the k parameter often
represents a trade-off between bias and variance of the model. k is usually set to 5 or 10, but
there is no formal rule [25, 37]. In our specific case, k = 5 and k = 10 would lead to a fold’s size
of about 200 and 100 samples, respectively. We opted for k = 5 in order to obtain a test set
better representing the variability in the underlying distribution. Results are averaged on the 10
selected subjects.

Table 2 GSx and GSy pseudocode
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Results show that there is a substantial difference between valence and arousal. For valence,
the first test obtained poor results (average RMSE = 0.37), meaning that learning valence only
by subjective data is a hard task. The pre-trained net (Transfer 0% Labeling) obtained better
results (average RMSE = 0.14), suggesting that the network trained on the AffectNet database
(the transferred knowledge) allowed us to create quite a good model able to generalize positive
and negative valence among all the subjects. Conversely, for arousal, the net fed with subject-
specific data achieved a better initial performance (average RMSE = 0.22), while the pre-
trained net performed very poorly meaning that the correct recognition of arousal levels is
more dependent on the specific subject and so more difficult to be generalized. Indeed, these
differences can be explained by the intrinsic characteristics of valence and arousal and by the
different nature of data used for the training. In general, learning from subject-specific data
seems harder for valence than for arousal (see “No Transfer” scenario). Moreover, while
moving from an in the wild context to a controlled environment does not negatively affect the
learning process for valence, it is indeed quite confounding for arousal.

For both dimensions, the proposed method (Transfer 100% Labeling) improved recognition
performances. This can be observed from the third scenario results, where quite good performances
were obtained (RMSE= 0.09 andRMSE= 0.1 for valence and arousal, respectively). Overall results
suggested that both the transferred knowledge and the personal data helped in achieving this
improvement, even though they alternated in providing the main contribution.

To assess how many instances are needed by the fine-tuning process for developing an
accurate personal model, for each fold, we considered different percentages of the training,
from 5% (meaning that ~40 samples were used to fine-tuning) up to 90% (~720 samples) have
been selected. Moreover, we were also interested in discovering if, in the context of FER, it
would be convenient to adopt “smart” sampling techniques, in order to further reduce the
number of samples. To this aim, we tested the different sampling techniques and we compared
results with those obtained by random sampling the set of available instances.

Results obtained testing the considered sampling techniques and random sampling at
several steps of the training set size, further highlight little differences between valence and

Fig. 4 Greedy iterative selection scheme: white and black circles stand for unlabeled and labeled samples,
respectively. Samples are shown in a 2-dimensional space, representing the feature (or the output) space. Dashed
lines indicate the minimum distance from each unlabeled point and the points from the labeled set. Tick line is the
maximum minimum distance and corresponds to the next selected sample
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arousal (Fig. 6). We observed a rapid decrease in the error in both dimensions, which makes it
impossible to appreciate significant differences between sampling approaches, including
random sampling. Surprisingly, the higher slope corresponds to valence, even if it started with
a lower RMSE in the “Transfer 0% Labeling” case, with respect to arousal.

Finally, in Fig. 6, the presence of an elbow point is evident, both in valence (20%) and in
arousal (30%), meaning that querying from ~240 to ~320 personal samples is enough to obtain
quite good results with RMSE values that are comparable with the results obtained in the
Transfer 100% Labeling case (~800 instances). These results are in support of the creation of
personal models for FER since the improvement in performance is obtained with a limited
required number of labelled data.

Table 3 iGS pseudocode
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5 Conclusions

In this paper, we addressed the FER challenge, proposing a transfer learning approach for
regression, to exploit information learned by a CNN (AlexNet) on a large in the wild dataset
(AffectNet) and then create a subject-specific model.

In summary, the contribution of this work is the following:

Table 4 MCDUE pseudo-code

Fig. 5 Average transfer learning results (RMSE) between subjects for valence and arousal, in three different
transfer-learning settings
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& the transfer learning and fine-tuning approach, that has been proven to be very effective on
CNNs architectures [70], has been tested in the FER domain where, to the best of our
knowledge, it has been poorly explored, especially in relation with dimensional emotional
models [6, 7, 13, 48, 81];

& we conducted experiments in order to quantify the performance of transfer learning with
respect to personal and generalized models;

& we conducted experiments to quantify the amount of personal data required for tuning the net;
& the impact of smart sampling techniques [73, 79] for the personal dataset has been

evaluated.

The results suggested that both transfer learning and subject-specific data are needed, as
demonstrated by the fact that the value of RMSE obtained with transfer learning is far better
both than the value obtained by simply evaluating the pre-trained network on AffectNet and
than the value obtained by training the network, with random initialization of weights, just on
the user’s images. Interestingly, valence and arousal exhibited quite different behaviors,
probably due to intrinsic differences between them. Arousal demonstrated to be less general-
izable between subjects, but easier to detect by using few personal data, with respect to
valence. This difference between valence and arousal could also be affected by the differences
between datasets (in the wild with respect to controlled environments). Moreover, by consid-
ering these results together with the RMSE slope in performance, while changing the number
of personal samples in the training, it is evident that for arousal very few samples are enough to
fine-tune the network. This confirms the need but also the feasibility of training personal
models for efficient Facial Emotion Recognition. Moreover, this different behavior and impact
on the emotion recognition performance of the valence and arousal could be highlighted only
by considering a dimensional approach instead of a categorical one.

Finally, in order to learn a solid single-subject model with minimum demand for new target
data, we evaluate different active learning algorithms for regression. The experiment showed
that our approach can significantly improve recognition performance with a limited number of
target samples, regardless of the sampling techniques employed for querying samples. In
particular, it would be sufficient to have a number of samples between ~240 and ~ 320, which
is very low if we consider that the annotation in the subjective dataset was performed once for
an entire videoclip. Moreover, taking into account that the dataset used external annotations,
the process could be automatized, by using pre-annotated stimuli, thus sparing the user to

Fig. 6 Average learning results between subjects at different training set sizes, for valence and arousal. The
dashed lines represent the RMSE value obtained by using the whole training set
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annotate data by himself. This could be extremely useful in situations where the number of
images accessed by a single person is few or one wants to optimize interaction with the user.
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