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Molecular and cytological characterization of the global
Musa germplasm collection provides insights
into the treasure of banana diversity
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Abstract Bananas (Musa spp.) are one of the main fruit crops grown worldwide. With the

annual production reaching 144 million tons, their production represents an important

contribution to the economies of many countries in Asia, Africa, Latin-America and Pacific

Islands. Most importantly, bananas are a staple food for millions of people living in the

tropics. Unfortunately, sustainable banana production is endangered by various diseases

and pests, and the breeding for resistant cultivars relies on a far too small base of genetic

variation. Greater diversity needs to be incorporated in breeding, especially of wild species.

Such work requires a large and thoroughly characterized germplasm collection, which also

is a safe depository of genetic diversity. The largest ex situ Musa germplasm collection is

kept at the International Transit Centre (ITC) in Leuven (Belgium) and currently comprises
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over 1500 accessions. This report summarizes the results of systematic cytological and

molecular characterization of the Musa ITC collection. By December 2015, 630 accessions

have been genotyped. The SSR markers confirmed the previous morphological based

classification for 84% of ITC accessions analyzed. The remaining 16% of the genotyped

entries may need field verification by taxonomist to decide if the unexpected classification

by SSR genotyping was correct. The ploidy level estimation complements the molecular

data. The genotyping continues for the entire ITC collection, including newly introduced

accessions, to assure that the genotype of each accession is known in the largest global

Musa gene bank.

Keywords Classification � Gene bank � Genetic diversity � ITC collection �
Microsatellites � Musa

Introduction

Bananas (Musa spp.) are one of the world’s major fruit crops that have been cultivated

since the dawn of agriculture (Denham et al. 2003). Their annual production has reached

144 million tons (FAOSTAT 2014) and different types of bananas are a staple and

nutritious food for hundreds of millions in the tropics and subtropics. Despite the impor-

tance of bananas for food security, there is insufficient knowledge and few tools are

available to counteract the negative impact of diseases and pests threatening production.

Currently, large plantations manage these threats with massive amounts of agrochemicals,

creating economically and ecologically unsustainable growing conditions; while small-

holders often use improperly characterized local cultivars and mostly cannot afford large

investments into agrochemicals.

Breeding new and resistant cultivars is hampered by virtual seed sterility of cultivated

clones (Ortiz and Swennen 2014). Most of the modern cultivars are believed to have

originated from natural inter- and intraspecific crosses of wild AA and BB diploids

(2n = 29 = 22) derived from Musa acuminata Colla (with genome A, D’Hont et al.

2012) and M. balbisiana Colla, respectively (with genome B, Davey et al. 2013). Musa

schizocarpa (S genome) and M. textilis (T genome) have also contributed to the origin of

some cultivars. Next to the seed sterility, parthenocarpy has played an important role in

formation of edible fruits, which were domesticated by early farmers. While M. acuminata

is thought to have originated in Malaysia or Indonesia (Simmonds 1962; Nasution 1991),

the centre of diversity for M. balbisiana was designated to India, Myanmar, Thailand and

Phillipines (Daniells et al. 2001), to where M. acuminata edible diploid and triploid cul-

tivars were brought by humans. This allowed natural hybridization of the two species,

resulting in various genomic combinations [diploid AB; triploid (2n = 39 = 33) AAB,

ABB; and less frequent tetraploid (2n = 49 = 44) AAAB, AABB; Simmonds and

Shepherd 1955]. Throughout the years of domestication process, many edible banana

varieties have arisen all around SE Asia. Migration of humans in the early days of agri-

culture have brought bananas to the secondary centers of diversity such as Africa (where

AAB Plantains and AAA East African Highland bananas arose) or Pacific Islands (with

today’s AAB Maoli/Popo’ulu and Iholena cultivars; De Langhe et al. 2009). Despite

enormous difficulties, Musa breeders have managed to produce successful hybrids

(Vuylsteke et al. 1993; Rowe 1998; Ortiz and Swennen 2014). One of the key steps in the

Musa breeding process is the development of agronomically-improved, disease-resistant
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diploid parental lines (Tenkouano et al. 2003), which can be used for producing synthetic

tetraploid hybrids (Rowe and Rosales 1996). However, little is known about the exact

ancestral genetic basis of domesticated banana cultivars (De Langhe et al. 2010), which

hampers the choice of suitable parents for crosses to produce new hybrids with plant and

fruit qualities comparable to the currently grown cultivars.

Yet, the genetic diversity of wild banana species is vast, and a rather restricted portion

of it seems to have been used during the initial domestication process through their semi-

fertile variants (De Langhe et al. 2009). Hence, there is a rich pool of genetic material

among the wild Musa species (Janssens et al. 2016) that still needs to be described,

collected, preserved and used in breeding.

The largest international ex situ collection of banana germplasm (International Transit

Centre, ITC) comprising 1518 accessions is maintained by Bioversity International and

hosted at the Catholic University in Leuven (KU Leuven), Belgium. The ITC collection

has a good overall representation of the groups of cultivated bananas. However, some

specific cultivated groups and subgroups from some geographical areas, as well as wild

species are still underrepresented in the collection. There are still an estimated 300–400

cultivars and wild specimens known to be missing in the collection, including unique AAB

plantains from the Congo-Basin, Fe’i bananas and wild species from the region of Papua

New Guinea, diploids from the East African region, M. balbisiana diversity from China

and India, Callimusa species from Borneo, and wild and cultivated bananas from Myan-

mar. The efficient management of such collection requires a strategy for thorough char-

acterization of the stored accessions. This is critical for the identification of duplicated and

mislabeled accessions, as well as accessions that may have undergone somatic mutations,

but particularly needed for efficient selection of germplasm for distribution and use in

breeding. Besides the precise morpho-taxonomic classification that, in Musa, is based on a

set of phenotypic characters (IPGRI-INIBAP/CIRAD 1996) and basic chromosome

number, a molecular-level characterization of these accessions has been providing com-

plementary information on diversity and relationships.

Bananas and plantains have traditionally been classified according to Cheesman (1947)

into four sections: Eumusa (x = 11), Rhodochlamys (x = 11), Australimusa (x = 10) and

Callimusa (x = 9, 10), later supplemented with the fifth section Ingentimusa (Argent

1976), containing a single species M. ingens (x = 7). The recent revision of the sectional

classification (Häkkinen 2013), supported by the results obtained using DNA markers and

phylogenetic analyses (e.g. Bartoš et al. 2005; Risterucci et al. 2009; Li et al. 2010;

Christelová et al. 2011; Hřibová et al. 2011) suggested a merger between Eumusa and

Rhodochlamys into the newly established Musa section and, similarly, all Australimusa

species are covered by the section Callimusa.

DNA markers proved to be useful for characterizing germplasm in various plant species

(Chin et al. 1996; Roder et al. 1998; Cregan et al. 1999; Hayden et al. 2007; Jing et al.

2010) and amongst others, microsatellites (simple sequence repeats; SSR) markers gained

special popularity thanks to their co-dominant inheritance, good reproducibility and high

abundance in plant genomes (Goldstein and Schlotterer 1999; Selkoe and Toonen 2006).

In, Christelová et al. (2011) established a standardized procedure for genotyping Musa

accessions with 19 SSR markers, which were selected from a larger set of SSR markers

developed by Crouch et al. (1998), Lagoda et al. (1998) and Hippolyte et al. (2010). This

resulted in the establishment of the Musa Genotyping Centre (MGC) in Olomouc, Czech

Republic, under the auspices of Bioversity International.

The systematic molecular characterization of the ITC collection (including the already

genotyped accessions as well as the newly introduced samples) requires a robust
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genotyping system which can handle large batches of samples as well as single accessions

sent for re-analysis, without compromising the comparability of results. The genotyping

technology evolves fast with high-throughput genotyping methods such as DArT or next-

generation sequencing based marker systems (Mason et al. 2015), some of which have

been applied to Musa research (e.g. Risterucci et al. 2009). Yet SSR markers are still used

as an effective tool in elucidating the genetic diversity in many plant species, including

bananas (Nicolai et al. 2013; Mbanjo et al. 2012; Gross-German and Viruel 2013; Liu et al.

2015; Kitavi et al. 2016). The main advantage of the SSR genotyping approach resides in

its capability of systematically adding new information to existing data sets. The newly

analyzed accessions can be added to the existing database of SSR profiles, while the

optimized and undemanding methodology assures comparability of results gathered over

different time points, at a reasonable cost.

The maintenance of genebanks of vegetatively propagated plants is expensive and time-

demanding. Therefore, it requires a rationalized approach dealing with properly charac-

terized germplasm and ensuring the management of true-to-type germplasm. This is par-

ticularly important in banana where somaclonal variation occurs more frequently due to the

in vitro culture process (Côte et al. 1993; Vuylsteke et al. 1996; Rodrigues et al. 1998). In

Musa, germplasm is usually conserved as in vitro proliferating meristems under limited

growth conditions (Van den houwe et al. 1995) complemented with cryopreservation to

minimize the risk of contamination or human error during subculturing, as well as to avoid

somaclonal variation (Panis et al. 2005; Panis 2009). In fact, Doleželová et al. (2005)

identified accessions in the ITC collection that contained plants of different ploidy (mixed

ploidy accessions) as well as accessions in which plants comprised cells with different

ploidy levels (mixoploid accessions). Although the origin of off-type plants is not

understood, chromosome number changes (polyploidy, aneuploidy) due to repeated in vitro

subcultures might have contributed to this phenomenon. Thus, as a part of the quality

management of the MGC, ploidy levels are ascertained via flow cytometry, a method

which excels in high throughput and precision (Doležel et al. 1994; Roux et al. 2003; Pillay

et al. 2006).

In the present study, we coupled flow-cytometric analysis of ploidy level with the

genotyping platform based on SSR markers and analyzed 630 accessions of the genus

Musa held at the ITC collection including 49 Reference DNA collection samples (http://

www.musanet.org/Musagenotypingcentre/genomicDNA), as well as 27 samples received

from Hawaii to enlarge the representation of individual Musa subgroups, and 38 samples

collected during the Bioversity International expedition to Indonesia (Sutanto et al. 2016).

The current work was undertaken (1) to improve the characterization of accessions held at

the ITC collection, (2) to identify problematic accessions at the ITC collection and reduce

duplicated entries, (3) to support theMusa research and breeding community by facilitating

proper evaluation of the available germplasm, and (4) to add new knowledge on Musa

genetic diversity.

Materials and methods

Plant material

Most of the plant material analyzed in this study (Online Resource 1) came from the

International Transit Centre (ITC, Leuven, Belgium) and was delivered in batches of
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in vitro rooted plantlets of about 50 accessions (five plantlets per accession), or as lyo-

philized leaf tissues. If fresh plant material was obtained, leaf tissues were lyophilized after

ploidy level analysis and kept for further use. In particular situations—if ploidy analysis

resulted in ambiguous results (1.2% of measured accessions), the plants were transferred to

soil and maintained in a greenhouse for chromosome analysis. Altogether, 695 accessions

were genotyped, including 327 diploids, 363 triploids and 5 tetraploids. Apart from the

accessions received from ITC and from the Musa Reference DNA collection (http://www.

musanet.org/Musagenotypingcentre/genomicDNA), 27 accessions from Hawaii were

provided by Dr. Angela Kay Kepler (Banana Specialist, Hawaii) to enlarge the repre-

sentation of individual Musa subgroups, and 38 accessions were obtained during two Musa

germplasm collecting expeditions in Indonesia (Sutanto et al. 2016), that are currently

being introduced into the ITC collection. The exploration expedition was confined to the

East-Indonesian triangle (formed by Halmahera Islands, Sulawesi and Lesser Sunda

Islands) and is henceforth referred to as ‘‘Indonesian Triangle’’. The samples from Hawaii

and from the ‘‘Indonesian Triangle’’ expedition were collected as fresh leaves from young

banana plants for ploidy level estimation and subsequently lyophilized for further use.

Ploidy level estimation

Ploidy level of each accession was estimated by flow cytometry according to Doležel et al.

(1997, 2007). About 30 mg of a young leaf tissue was chopped with a razor blade in a glass

Petri dish containing 500 ll Otto I solution (0.1 M citric acid, 0.5% v/v Tween 20). Crude

homogenate was filtered through a 50 lm nylon mesh. Chicken red blood cell nuclei

(CRBC), prepared according to Galbraith et al. (1998), were added to the suspension of

Musa nuclei as an internal reference standard. After 30 min incubation at room temper-

ature, 1 ml Otto II solution (0.4 M Na2HPO4) (Otto 1990) supplemented with 5 lM DAPI

and 3 ll/ml of 2-mercaptoethanol were added. The samples were analyzed using Partec

PAS or Sysmex-Partec CyFlow flow cytometers equipped with UV excitation and detec-

tors for DAPI fluorescence. The gain of the instruments was adjusted so that the peak of the

CRBC nuclei was positioned approximately at channel 100 on a 512 channel scale. Rel-

ative nuclear DNA content of Musa accessions was then determined by comparing peak

positions of CRBC nuclei and nuclei of the sample (Fig. 1). Every accession was repre-

sented by five individual plants and ploidy was estimated in each of them.

DNA extraction and PCR amplification

Genomic DNA was extracted from lyophilized leaf tissues of young banana plants using a

NucleoSpin Plant II kit (Macherey–Nagel, Düren, Germany) following the manufacturer’s

recommendations. Each of the accessions received from ITC collection was represented by

five individual plantlets. If there were no differences in ploidy among individual plants,

genomic DNA was extracted from a pooled sample containing lyophilized tissue from all

of them. If plants from the same accession displayed inconsistent results during ploidy

analysis, genomic DNA was extracted separately from each plant and individual plants

were treated as separate accessions. For the SSR analysis, the pipeline established by

Christelová et al. (2011) was used and is illustrated in Fig. 2. Briefly, 19 SSR loci (Lagoda

et al. 1998; Crouch et al. 1998; Hippolyte et al. 2010) that are well distributed across ten of

the eleven Musa genetic linkage groups (Hippolyte et al. 2010) were amplified using a set

of M13–tailed specific primers to allow universal labelling with fluorescent dyes. Although

new SSR markers are accessible thanks to the Musa genome sequence assembly
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completion (D’Hont et al. 2012; Martin et al. 2016), the hitherto used marker set was not

enlarged, as the reproducibility and comparability of results gathered until now would then

not be assured and a re-start of the whole genotyping effort would be inefficient. The PCR

reaction mix contained (in the final volume of 20 ll): 10 ng of template genomic DNA,

reaction buffer (consisting of 10 mM Tris–HCl (pH 8), KCl 50 mM, 0.1% Triton-X100

and 1.5 mM MgCl2), 200 lM dNTPs (each), 1 U of Taq polymerase, 8 pmol of the M13–

tailed locus specific forward primer, 6 pmol of the fluorescently labeled universal M13

forward primer, 10 pmol of the locus specific reverse primer. The cycling conditions were

set as follows; initial denaturation step at 94 �C for 5 min, followed by 35 cycles of

denaturation (94 �C/45 s), annealing at temperature corresponding to the locus–specific

primer (1 min) and extension (72 �C/1 min). The final extension was allowed for 5 min at

72 �C. Purification of the PCR products was performed by ethanol/sodium acetate pre-

cipitation. Two independent PCR reactions were performed in each accession to avoid

random errors of allele binning.

Fragment analysis

Purified PCR products were diluted 40-fold in Hi-Di formamide containing the internal

size standard (GeneScanTM-500 LIZ size standard; Applied Biosystems, Foster City, CA,

USA) and loaded onto a capillary electrophoresis DNA analyzer (ABI 3730xl, Applied

Biosystems) after 5 min denaturation (95 �C). Electrophoretic separation and signal

detection were carried out with default module settings. In order to reduce the cost and

increase throughput of the genotyping platform, samples were multiplexed for elec-

trophoretic separation. Up to fourfold multiplexing was applied by combining four PCR

products, labelled with four different fluorescent dyes (6-FAM, VIC, NED and PET) into a

single sample for loading. The resulting data were analyzed and called for alleles using

Fig. 1 Estimation of ploidy level inMusa accessions. Histograms of relative nuclear DNA content obtained
after simultaneous flow cytometric analysis of DAPI-stained nuclei isolated from fresh leaf tissues of Musa
and chicken red blood cell nuclei (CRBC). The gain of flow cytometer was adjusted so that the G1 peak of
CRBC, which served as an internal reference standard, was positioned on channel 100. Peaks appearing on
channels 200, 300, 400 and 500 correspond to doublets, triplets, etc. of CRBC nuclei. Ploidy of Musa
accessions was determined based on the ratio of G1 peak positions (Musa : CRBC), knowing that in diploid,
triploid and tetraploid plants, the ratio is *0.5, 0.75 and 1 respectively. a Simultaneous analysis of nuclei
isolated from a diploid accession (M. acuminata ssp. banksii, ITC0806) and CRBC. The ratio of G1 peak
means was *0.5. b Simultaneous analysis of nuclei isolated from a triploid accession (Itoke, ITC1554) and
CRBC. The ratio of G1 peak means was *0.75
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Fig. 2 SSR genotyping pipeline used in the study for the systematic characterization of Musa genebank
accessions (ITC collection)
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GeneMarker� v1.75 (Softgenetics, State College, PA, USA), manually checked and

implemented into marker panels (Christelová et al. 2011).

Genetic diversity analysis using distance-based methods

The extent of genetic diversity among all samples was evaluated using the Neís genetic

distance coefficient calculation (Nei 1973) and subsequent cluster analysis was done using

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA; Michener and Sokal

1957). To enable joint analysis of all ploidy levels (29, 39 and 49) the genotypic data was

converted into binary (coded by 1/0 = presence/absence) and analyzed as a dominant

marker’s record (Weising et al. 2005). Dendrograms were constructed based on the results

of UPGMA analysis and visualized in FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/

figtree/). The first dendrogram that comprised all analyzed samples (not shown) was used

to identify problematic accessions whose position in the dendrogram did not agree with

their current classification and were therefore not used to build the ‘‘core subset’’. The core

dataset comprised reliable accessions only, for which the clustering pattern agreed with the

classification based on morphological descriptors. The genotyping and evaluating pipeline

is shown in Fig. 2. The dissimilarity index threshold of 0.25 was used to assess the

grouping of the accessions on the dendrogram. Bootstrap support for individual branches

was calculated on 1000 replicates and values above 35% (0.35) were used to confirm the

fundamental subclustering pattern. To evaluate the informative power of individual SSR

loci, several characteristics were calculated, such as Polymorphism information content

(PIC; Botstein et al. 1980), allele number, observed heterozygosity (Ho, in the diploid

dataset) and major allele frequency using Powermarker v3.25 (Liu and Muse 2005).

Results and discussion

The significant role of genebanks and germplasm collections as essential resource for

breeders and researchers is often compromised by misclassification of some accessions.

This is more common than expected (Mason et al. 2015), as errors can occur at different

stages of handling the material, including the acquisition of new accessions, their delivery

to the collection and during maintenance at the genebank, especially if in vitro subculturing

is involved. It was shown for a number of plant species that SSR markers are useful to deal

with such cases and can help to highlight problematic misclassified or redundant acces-

sions in germplasm collections (e g. da Cunha et al. 2014; Fjellheim et al. 2015; Roy et al.

2016). The aim of this study was to systematically characterize a substantial portion of the

accessions held at the ITC collection and to interpret the genetic structure of the Musa

germplasm represented by the genotyped accessions. Nearly half of the ITC accessions

were genotyped by flow cytometric ploidy estimation and SSR analysis.

Ploidy level estimation

Flow cytometry was used to estimate the ploidy in all 495 accessions that were received as

fresh leaf tissues. The remaining accessions were received either as lyophilized leaf tissues

(151) or DNA samples from the Reference DNA collection (49; http://www.musanet.org/

Musagenotyping centre/genomicDNA). Ploidy of these later accessions was retrieved from

the Musa germplasm information system database (MGIS; http://www.crop-diversity.org/
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mgis/). For a majority of the samples, the expected ploidy was confirmed (Online Resource

1). However, some accessions e.g. Gebi (ITC0877) and Mwitu Pemba (ITC1545) reported

to be triploid AAB, were found to be diploid. Moreover, accessions Tongkat Langit Papua

(ITC1716) and M. borneensis (ITC1531) showed ambiguous results with DNA content

between diploid and triploid, or between triploid and tetraploid for accession Sar

(ITC0898) and SUP 1 (AAB, Indonesian Triangle mission 2). SSR analysis indicated

triploid status by the occurrence of three alleles at some loci. However, this observation

does not guarantee three complete chromosome sets, nor it excludes the possibility of

tetraploids status. Only chromosome counting would give a definite answer.

Out of 495 accessions analyzed by flow cytometry, two cases of mixoploidy were

found. The accession M. rosea-hybrid (ITC1598) comprised one mixoploid (29 ? 49)

plant out of the five analyzed plantlets. Mixoploid status (39 ? 69) was detected in three

out of five plants of the accession Malbhog (ITC1631). The remaining two plantlets were

either triploid or hexaploid. The presence of the hexaploid plant indicates that a shift to a

higher ploidy happened in vitro as hexaploid banana plants do not grow in the field and that

the classification of three plants as mixoploid was not an artifact due to accumulation of

cells in G2 phase of cell cycle, which is yet to be confirmed in the case of M. rosea-hybrid

ITC1598. In cases where the five plantlets differed in ploidy levels without showing a

mixoploid pattern (ITC1573, ITC1598), analysis of re-sent samples was carried out. No

incongruent results were obtained on the re-sent samples, which indicated that the prob-

lems detected in the first batch were caused by delivery error or mislabeling. This proved

the capability of the genotyping pipeline to detect mislabeled accessions and showed the

robustness of the method.

In the latest systematic effort to screen ploidy levels (Doleželová et al. 2005), 1150

entries deposited in the ITC collection by that time were analyzed. Since then, 381 new

accessions were introduced into the genebank, out of which 249 accessions (Online

Resource 1) had their ploidy level verified by flow cytometry for the first time in this study.

For the remaining accessions, repeated analyses provided a valuable feedback for the

conservation strategy. As demonstrated in some accessions, e.g., mixoploid ITC1631 and

18 samples listed in Online Resource 2, the ploidy determined in the present work did not

agree with previous results.

Distance-based genetic diversity analysis

The informative power of the 19 SSR loci used in the genetic diversity study (expressed as

the Polymorphism Information Content; PIC) ranged between 0.561 and 0.933 with an

average value of 0.789 (Table 1). The highest observed heterozygosity within the diploid

dataset was observed for the marker mMaCIR01 (Ho = 0.623), whereas the locus mMa-

CIR307 had the lowest Ho value (Ho = 0.250).

The UPGMA analysis of the dataset comprising all ploidy levels together grouped the

accessions into clusters, which in general conformed to the morphological traits-based

classification into subgroups (in 84% of accessions) as reported by germplasm donors to

the collection (Musa Germplasm Information System (MGIS), Bioversity International.

Accessed on February 15, 2016 at http://www.crop-diversity.org/banana/). However, in

16% of cases, the classification reported did not agree with the clustering observed in the

dendrogram. These accessions are listed in Online Resource 2 and the discrepancy between

the current classification and the results obtained here are possibly caused by mislabeling

or handling error, or due to misclassification before introduction into the genebank. This

set of 71 ‘‘to be verified’’ accessions was excluded from the dataset that was used for the
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final dendrogram construction. Furthermore, 24 accessions for which classification was

incomplete or not provided, and eight synthetic hybrid accessions were removed from the

dataset, in order to increase the resolution of the ‘‘core subset’’ tree. The remaining 591

accessions, representing only entries with coherent classification and genotyping data, were

used to construct a final SSR dendrogram. The representativeness of the subset with regard

to individual species/subspecies and subgroups of Musa is summarized in Table 2. We

considered this subset of accessions as the ‘‘core subset’’ to which any accession from the

excluded ones could be added in future and its potential true/more specific classification

could be proposed. However, only field verification which is carried out in parallel (Chase

et al. 2016) can provide conclusive results (examples included in Online Resource 2).

Our results indicate that the SSR markers covered well the genetic diversity of theMusa

genus as revealed by the clustering pattern on the dendrogram (Fig. 3, Online Resource 3).

The dendrogram reveals 48 sets of accessions separated at the Nei’s dissimilarity index

threshold of 0.25 (Table 3) with relatively significant bootstrap support for most of them

([35%). For the wild accessions, the sets and some singletons correspond to wild species

and subspecies, while at the triploid cultivar level, the sets correspond to subgroups, of

which the members are supposed to have derived as somatic mutants from an original

domesticate. At the diploid cultivar level, the situation has not yet been clarified, and the

sets may be composed of somatic mutants and accessions with different parentage.

Table 1 Frequency of the major allele, allele number, heterozygosity and informativeness (PIC) of the 19
microsatellite loci used for genotyping the set of Musa accessions

Marker Major allele frequency Allele number Observed heterozygosity PIC

mMaCIR01 0.113 42 0.623 0.933

mMaCIR03 0.402 14 0.423 0.684

mMaCIR07 0.179 24 0.590 0.894

mMaCIR08 0.418 17 0.520 0.760

mMaCIR13 0.291 29 0.508 0.840

mMaCIR24 0.430 20 0.379 0.742

mMaCIR152 0.395 12 0.188 0.744

mMaCIR214 0.482 11 0.226 0.619

Ma-3-90 0.235 18 0.516 0.884

mMaCIR39 0.316 26 0.583 0.856

mMaCIR40 0.346 31 0.459 0.831

mMaCIR45 0.366 15 0.377 0.749

mMaCIR150 0.386 17 0.429 0.738

mMaCIR164 0.266 37 0.281 0.882

mMaCIR196 0.340 14 0.327 0.801

mMaCIR231 0.308 22 0.537 0.854

mMaCIR260 0.345 17 0.401 0.712

mMaCIR264 0.144 32 0.562 0.912

mMaCIR307 0.584 11 0.250 0.561

Mean 0.334 21.5 0.430 0.789

The marker set used was identical to the panel applied in Christelová et al. (2011). (Original marker
references: Hippolyte et al. 2010; Lagoda et al. 1998; Crouch et al. 1998)

810 Biodivers Conserv (2017) 26:801–824

123



Table 2 Representativeness of the core subset with regard to the species, subspecies and subgroups of
Musa

Section Species/group Subspecies/subgroup No. of classified representativesa

Musa M. acuminata banksii 30

burmannica/burmannicoides 6

errans 1

malaccensis 12

microcarpa 1

sumatrana 1

truncata 1

var. acuminata 5

var. tomentosa 3

zebrina 2

M. balbisiana 18

M. itinerans 3

M. laterita 2

M. mannii 4

M. ornata 9

M. rosea 3

M. rubinea 1

M. rubra 1

M. schizocarpa 14

M. siamensis 3

M. velutina 2

AA cv. 116

AB cv. 9

AS cv. 6

BxT 1

AAA Ambon 2

Cavendish 16

Gros Michel 6

Ibota 3

Lakatan 3

Lujugira Mutika 22

Orotava 1

Red 6

Rio 2

Umg Bir 1

AAB Maoli/Popo’ulu 17

Mysore 10

Pisang Raja (h) 3

Plantain 117

Plantain-like (Iholena, Laknau) 17

Pome 19

Silk 12
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The 48 sets of accessions formed 13 clusters as denoted on Fig. 3 and in Table 3. The

diversity as revealed by the UPGMA clustering is further discussed by individual groups,

according to their classification as wild and cultivated diploids and edible triploid cultivars,

respectively.

Wild Musa species diversity

For the ease and clarity of the discussion regarding the diversity within the genus and to

illustrate the discussed accessions in all figures, we decided to retain the former classifi-

cation of genus Musa into sections Callimusa, Australimusa, Rhodochlamys and Eumusa.

The accessions formerly classified under section Rhodochlamys (cluster II) are now

considered as forming one assembly with the ex-section Eumusa, and entitled ‘‘Musa’’

(Häkkinen 2013). It may be worthwhile to revisit this naming as it creates confusion with

the name of the genus ‘Musa’. Similarly, the merger between the former sections Cal-

limusa and Australimusa (cluster IV) in the complex named Callimusa needs further study

Table 2 continued

Section Species/group Subspecies/subgroup No. of classified representativesa

ABB Bluggoe 14

Bontha 3

Kluai Teparod 5

Monthan 7

Ney Mannan 2

Pisang Awak 9

Saba 3

Callimusa M. barioensis 1

M. beccarii 3

M. borneensis 1

M. campestris 2

M. coccinea 2

M. jackeyi 1

M. maclayi 2

M. monticola 1

Fe’i 9

M. lolodensis 4

M. lutea 2

M. peekelii 1

M. salaccensis 1

M. textilis 2

M. troglodytarum 2

M. violascens 1

M. viridis 2

a Some of the accessions had no subgroup/subspecies classification reported from the donors, but their
refined classification was revealed after SSR cluster analysis. Such accessions are included in the total
number for each category

812 Biodivers Conserv (2017) 26:801–824

123



based on our results. The UPGMA tree (Online Resource 3) illustrates a distinct (and rather

geographical) order in the complex with four divisions along the range of accessions: (1)

Callimusa in Mainland South East Asia [from ITC1683 to ITC1532]; (2) Australimusa and

some Fe’i accessions in Southeast Indonesia [from AMB006 to Fe’i Aiuri S8]; (3) Cal-

limusa in Borneo [from ITC1568 to ITC1516B]; (4) Australimusa in the New Guinea

region and the Pacific [other Fe’i, from ITC0614 to ITC0917].

Representatives of M. ornata formed a distinct separate block (cluster VI) distantly

positioned from the other ex-Rhodochlamys entries (all in cluster II: M. velutina, M.

mannii, M. rosea, M. siamensis, M. rubra, M. laterita, M. sanguinea). This result may

indicate that M. ornata is a hybrid species, which was also suggested by Shepherd (1999),

who formulated his opinion on M. ornata being a naturalized hybrid of M. velutina

(Rhodochlamys) and M. flaviflora (a small species closely resembling M. acuminata).

Separate location of three well-represented subspecies of M. acuminata (burmannica,

malaccensis and banksii) on the SSR tree may have a genetically indicative value. The 31

accessions of ssp. banksii form a coherent block in the middle of the cluster XI (Fig. 3)

with more or less evident links to diploid AA cultivars. A comparable link for the block of

12 accessions of ssp. malaccensis in cluster III can be drawn. The block of seven acces-

sions of ssp. burmannica is grouped with a sole and morphologically quite different AA cv.

block (́Pisang Jari Buayá, cluster I). This observation may indicate participation of this

Fig. 3 Diversity tree of the core subset accessions. UPGMA dendrogram was constructed based on the
results of SSR analysis. Only accessions clustering in agreement with their previous classification were used
for the core subset diversity tree construction. Individual blocks of clustered accessions are named according
to Table 3 and differentiated by colored branches. Major clusters are marked I–XIII. Full version of the tree
including names of all accessions is shown in Online Resource 3
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Table 3 Table is accompanying the SSR dendrograms (Fig. 3; Online Resource 3) that were constructed
from the core subset of accessions

Block of clustered
accessions (as denoted on
Fig. 3; Online Resource 3)

Boundaries of the blocks of accessions expressed by left
and right marginal accession labels (as displayed in
Online Resource 3)

Cluster (as
displayed on
Fig. 3)

Number Name of the
block

1 M. acuminata ssp.
burmannica

Ref22_ITC0283—ITC0249 I

2 AA cv. Pisang
Jari Buaya

BL16_1308–ITC0316 I

3* Unclassified ITC1192; ITC0610; SUP 1 I

4 Rhodochlamys ITC1330—ITC1575B II

5* M. acuminata ssp.
sumatrana

ITC1701 III

6 M. acuminata ssp.
malaccensis

ITC0712—Ref52 ITC1511 III

7 AAA Ibota ITC1707—ITC0662 III

8 AA cv. ISEA 1 ITC1693—ITC1193 III

9 Callimusa–
Australimusa
complex

ITC1683—ITC0917 IV

10 M. schizocarpa ITC0599—ITC1208 V

11 M. ornata BL6_0370—Ref51 ITC0637 ? ITC1690,ITC1744 VI

12* M. itinerans ITC1571 (?ITC1526, ITC1523 further on) n/a

13 ABB Klue
Teparot

ITC0647—Ref9_ITC0652 VII

14 M. balbisiana ITC0246—BL1_0080 VII

15 AAB Mysore ITC1734—ITC1651 VIII

16 ABB P. awak ITC1719—ITC1731 VIII

17 AB Ney poovan ITC1635—Ref23_ITC0245 VIII

18 AB kunnan ITC1752—ITC1751 VIII

19 AAB silk ITC1550B—ITC1553 VIII

20 AAB pome Ref46_ITC0243—ITC1640 IX

21 AA cv. P. Tongat ITC0685—ITC0446 IX

22 AAA/AA
Orotava

ITC1646; ITC1694; Ref14_ITC0420 IX

23 AA cv.
IndonTriNG

MLU_001—MDO_007 IX

24 AAA red Dwarf Red S10—SUP 3 IX

25 AAA hetero ITC0671—Ref19_ITC1064 IX

26 AAA cavendish ITC0557—ITC1373 IX

27 AA cv. African ITC1561– ITC1223 IX

28 AAA Gros
Michel

ITC1478—ITC1480B IX

29 AA cv. ISEA 2 ITC0437—ITC1150 IX

30 AAA Lakatan Ref55_ITC1287—S18 IX

31* AAA Umg Bir ITC1743 X

814 Biodivers Conserv (2017) 26:801–824

123



subspecies in the origin of AA cultivars to a much lesser extent, and conforms to Sim-

mond’s (1962) findings that the subspecies does not seem to possess parthenocarpic genes.

The weakly represented East-Indonesian acuminata taxa, var. tomentosa and var.

acuminata (Nasution 1991), as well as ssp. errans are spread over the ‘‘banksii sensu lato’’-

block in cluster XI, and are discussed further below.

Proportion of shared SSR-alleles and the proximity between ssp. zebrina, and African

‘‘AAA Mutika-Lujugira block’’ within the cluster X supports the previous reports on the

contribution of zebrina and banksii subspecies to the formation of this triploid subgroup

(Carreel et al. 2002; Boonruangrod et al. 2008; Risterucci et al. 2009; Hippolyte et al.

2012) and based on our results, the zebrina contribution is predominant.

Table 3 continued

Block of clustered
accessions (as denoted on
Fig. 3; Online Resource 3)

Boundaries of the blocks of accessions expressed by left
and right marginal accession labels (as displayed in
Online Resource 3)

Cluster (as
displayed on
Fig. 3)

Number Name of the
block

32 AAA Mutika-
Lujugira

ITC1760—ITC1557 X

33* AA cv. P. Sapon ITC0679 X

34 M. acuminata ssp.
zebrina

ITC0728—Ref37_ITC1177 X

35 AA cv.
IndonTriPh

ITC0434—MLU_13 X

36* M. acuminata ssp.
microcarpa

Ref 7_ITC0253 X

37 AxS ITC0859—ITC0822 X

38* ABB P. Kepok SUM 001 X

39* AB Raja Batu MLU 015 X

40 AAB P. Raja(h) ITC1703—Ref60_ITC0587 X

41 AA cv. banksii
sensu lato

Ref38_ITC1187—AMB 004 XI

42 M. acuminata ssp.
banksii

ITC0937—ITC0616 XI

43 AA cv. banksii
derivatives

ITC0818—ITC0949 XI

44 ABB Saba ‘saba’ S14—ITC1745 XII

45 ABB bluggoe–
monthan

ITC1607—ITC1636 XII

46 AAB Maoli-
Popo’ulu

ITC1327—Ref27_ITC0335 XII

47 AAB plantain-
linked

ITC0719—ITC0875 XIII

48 AAB plantain ITC1491—ITC1714 XIII

The table summarizes the groups of clustered accession and indicates boundaries of Musa accession blocks
that are referred to in the text. The ten AA cv. blocks are highlighted. Asterisk marks groups with bootstrap
support values lower than 0.35
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The position of the singletons ssp. microcarpa, and ssp. sumatrana (Fig. 3, white and

grey triangles) in the dendrogram seems unreliable with rather low bootstrap values for

corresponding branches (0.04 and 0.12, respectively). Increasing the sample representation

for each of the subspecies might be needed to produce a more robust position on the tree.

As shown in a number of molecular studies on bananas (e.g. Hippolyte et al. 2012; de

Jesus et al. 2013), the intraspecific diversity of M. balbisiana is low compared to M.

acuminata. This is reflected in our work by clustering all balbisiana accessions in a single

coherent block (Fig. 3, cluster VII) that contains morphologically distinct BB forms from

Mainland and Island SE Asia (‘Butuhan’, ‘P. Klutuk’ and ‘Pisang batu’) intermingled with

BBs of South Asian origin. Although genetic diversity within M. balbisiana has been

reported (Ude et al. 2002; Ge et al. 2005; Swangpol et al. 2007; Wang et al. 2007), it is

believed that the ITC collection does not cover enough balbisiana diversity to trace the

ancestral lineages of triploid cultivars comprising the B-genome (Hippolyte et al. 2012).

Another wild species, M. itinerans, ubiquitous from NE India in the west to Taiwan in

the east (Häkkinen et al. 2008) is morphologically a very distinct species with charac-

teristic long rhizomes, which was, however, not reflected by the cluster analysis. Indeed,

the three representatives of this species were scattered over the dendrogram instead of

being grouped in one block (black boxes on Fig. 3), which could be attributed to under-

representation of the sample in the present dataset or potential mislabeling. On the other

hand, it may also indicate the limitations of the 19 SSR marker set used. The selected 19

SSR markers proved to work very well for verifying classification of diploid and triploid

cultivars subgroups (as described further below), and for some M. acuminata subspecies

(see above). However, there seem to be limitations when it comes to certain

species/subspecies, such as M. itinerans, M. acuminata ssp. errans and others (see

Table 2), which are rather underrepresented in the dataset. As compared to the result of the

first study where the platform was applied (Christelová et al. 2011), the resolution has

greatly improved by enlarging the dataset, which is clearly demonstrated by the AA cv.

clusters, or triploid subgroups diversification (see further below). Only future results

comprising the whole diversity of the germplasm available for genotyping would give clear

answer and show the borders for the application of the platform.

Diploid cultivars

SSR analysis classified the large group of edible AA accessions into ten sets (highlighted in

Table 3) with distinct positions on the SSR tree (Fig. 3). This not only helps in classifi-

cation of these accessions, but also provides insights into the origin and putative pro-

genitors of some triploid cultivars. The clustering reflects geographical origins as well.

While the set of Island SE-Asian accessions (AA cv. ISEA 1) is connected to the

malaccensis subgroup and the dessert AAA ‘Ibota’ subgroup in cluster III, the second

ISEA block (AA cv. ISEA 2) co-localizes with a large spectrum of dessert AAAs within

the cluster IX, suggesting that some of its members may have played a role in the con-

stitution of cultivated AAAs. The great majority of these AA cvs. have sweet taste and are

usually eaten raw.

The AA cv. African set in cluster IX contains AA cultivars found in East Africa and

nearby islands of the Indian Ocean. It has been proposed that progenitors of this set (which

most probably originated in the area between New Guinea, Borneo and Java and was

brought to the East African coast through human migration; Perrier et al. 2009) were the

diploid parents of the subgroups AAA ‘Cavendish’ and AAA ‘Gros Michel’ (Hippolyte

et al. 2012). Our results support this notion. Similarly, the small group of Tongat AA cv.
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may be the source of another diploid ancestor of AAA ‘Cavendish’ or ‘Gros Michel’

(Hippolyte et al. 2012).

The AA cv. IndonTriNG group of cultivars, in cluster IX, originated in New Guinea and

within the Triangle shaped by the islands in Eastern Indonesia Halmahera (NE), Sulawesi

(NW) and Sunda (South), that was recently explored for wild and edible bananas (Sutanto

et al. 2016). The set contains a number of new accessions, of which some could have

played a role in the formation of less known AAA cultivars. Three specimens from the

Indonesian Triangle expedition clustered in a block of AA cultivars, which contains three

Philippine cultivars (therefore called AA cv. IndonTriPh block in the cluster X). Its

members produce bunches that vaguely resemble those of the AAB ‘Plantain’ (e.g. Roa

Cakalang, strongly resembling the French plantain bunch) and ‘Plantain-linked’ (strikingly

for Guyod and GabaGaba Putih; Sutanto et al. 2016).

Diploid AA cultivars that share the banskii background appear into two sets on the tree

(Fig. 3, cluster XI). The first of them called the AA cv. banksii derivatives is on the same

clade as the wild M. acuminata ssp. banksii and seems to contain direct/pure derivatives of

the subspecies, all coming from New Guinea. The second block is termed AA cv. ‘banksii

sensu lato’ and contains several wild AAs which are geographically proximal to ssp.

banksii and ssp. errans in the Philippines, var. acuminata in Western New Guinea and

Maluku and var. tomentosa in Sulawesi. The possibility that AA cultivars from this set are

domesticated products/hybrids of these wild acuminatas with banksii deserves to be

investigated. The AA cv. ‘Pisang Jari Buaya’ set (in cluster I) is separated from other

edible AAs. This cultivar is used in breeding as a well-known source of resistance to pests

i.e. burrowing nematodes (Wehunt et al. 1978; Marin et al. 1998; Ray 2002), resistance to

Fusarium tropical race 4 disease and tolerance to black Sigatoka (Rowe 1998). However,

based on our SSR analysis, its genetic affinity to wild and edible AA is unclear and

deserves special attention. The AA cv. ‘Pisang Sapon’ singleton appears to be remotely

linked to subspecies zebrina only, which could point to its being an edible derivative of

zebrina rather than an inter-subspecies hybrid. However, low statistical support for this

particular clade does not allow for conclusive remarks. The interspecific AS (acuminata x

schizocarpa) hybrids are grouped on a separate clade within cluster X, closely linked to the

banksii-dominant cluster XI (Fig. 3). M. schizocarpa (Cluster V) is sympatric with M.

acuminata ssp. banksii (Cluster XI) in New Guinea and hybrids have been observed, but

these are probably transient F1’s, except if maintained by vegetative propagation. Indeed,

several members of this subcluster show the banksii morphology except for the split fruit

peels typical for schizocarpa (Daniells et al. 2001).

Indian AB cultivars ‘Ney Poovan’ and ‘Kunnan’ were clearly differentiated in this work

by SSR analysis, but no conclusion could be reached on the contribution of particular A

genomes to the origin of this subgroup. On the other hand, three AB cultivars, ‘Muku

Bugis’, ‘Mu’u Seribu’ and ‘Mu’u Pundi’ (collected in the Indonesian Triangle expedition;

Sutanto et al. 2016) were located in the ‘Plantain-linked’ set of cluster XIII (see Online

Resource 3), hence at a remote distance from the previous ABs ‘Ney Poovan’ and

‘Kunnan’. Therefore we wonder whether they may have delivered the B-genome to AA

cultivars to form AABs such as ‘Laknau’ and ‘Iholena’.

Triploid cultivars

The UPGMA clustering analysis separated the commonly recognized accessions into

distinct clusters scattered over the tree with blocks of triploid edible accessions located

among clusters of wild and cultivated diploids (Fig. 3, Online Resource 3). The clustering
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pattern reflects the proportion of shared SSR-alleles between the accessions. Thus, the

probable ancestral relationships among diploid progenitors and edible triploids can be

hypothesized. Using a similar set of SSR markers, Hippolyte et al. (2012) showed the

African ‘Mlali’ subgroup to be the closest 2n donor for ‘Cavendish’ and ‘Gros Michel’

subgroups. Our results confirm this concept as illustrated by the position of the block of

African AA cv. (Fig. 3, cluster IX) within the clade of ‘Cavendish’ and ‘Gros Michel’

subgroups. At a broader scope, this clade is loosely linked with the AAB ‘Pome’ subgroup

that was also proposed to share the eastern ancestry with the diploid African cv. ‘Mlali’

(Perrier et al. 2011). Moreover, M. acuminata ‘Pisang Pipit’, that was proposed to be

related with the n-gamete donor of Cavendish bananas (Hippolyte et al. 2012) is part of the

cluster, supporting its potential role in the ancestral relationships.

Similarly, our results support the conclusion of Hippolyte et al. (2012), that the AAA

‘Ibota’ subgroup (cluster III) originated from malaccensis subspecies (but missing the

banksii contribution; Perrier et al. 2009) and further substantiate it with AA cultivars from

Island SE Asia (AA cv. ISEA 1) as potential contributors to the formation of this triploid

subgroup. Another AAA subgroup ‘Lakatan’ also called ‘Pisang Berangan’ (cluster IX)

suggests the contribution of ISEA 2 edible AA cultivars. The poorly defined AAA ‘Oro-

tava’ seems to be loosely connected with Vietnamese AA cvs ‘Ayam’ and ‘Chuoi La

Rung’.

While for the AAA subgroups ‘Pisang Ambon’, ‘Leite’ and ‘Rio’ (AAA Hetero on

Fig. 3, cluster IX) no clear donors of the 2n and n-gamete were identified previously, our

results suggest that their putative progenitors may come from the AA cvs. from the

Indonesian Triangle including New Guinea (AA cv. IndonTriNG, Fig. 3). Moreover, our

analysis proved that the AAA ‘Pisang Ambon’ subgroup (cluster IX; Online Resource 3 for

details) is genetically distinct from the ‘Gros Michel’ subgroup, while the opposite has

been suggested based on its morphological appearance and from the analysis of mito-

chondrial and plastid DNA (Carreel et al. 2002). Although for the ‘Red’ subgroup a

malaccensis background was proposed (Perrier et al. 2009), our results (cluster IX, Fig. 3)

do not support this assumption.

The four morphologically distinctive clone-sets of the African AAA ‘Lujugira/Mutika’

subgroup (Nfuuka, Musakala, Nakabululu, Nakitembe; Karamura 1998; Karamura and

Pickersgill 1999) form a single coherent block in the cluster X of the SSR dendrogram. The

existence of a previously assumed fifth clone set (Mbidde), containing only bananas for

beer making, has recently been abandoned (Kitavi et al. 2016), its cultivars being mor-

phologically and genetically indistinguishable from one or other of the aforementioned

clone sets. Our results are in line with Kitavi et al. (2016) findings that the four clone sets

are part of a single subgroup stemming from a single original AAA hybrid that has

probably been formed in eastern Indonesia (Perrier et al. 2011) and diversified subse-

quently by multiple somatic mutations. A similar conclusion can be made for the subgroup

of AAB ‘African Plantains’ that is subdivided into three clone types: Horn, False Horn and

French, based on inflorescence morphology (De Langhe et al. 2005). Their phenotypic

differentiation is not reflected by SSR analysis (cluster XIII, Fig. 3). The fact that these

clone types cannot be separated into different subsets on the tree despite their striking

morphological differentiation (Vuylsteke et al. 1996; Daniells et al. 2001) seems to confirm

the fact that the differences are due to epigenetic changes, or resulted from somatic

mutations occurring along the centuries of cultivation (Simmonds 1966; De Langhe et al.

1995; Crouch et al. 2000; Noyer et al. 2005).

The same cluster XIII contains subgroups ‘Iholena’ and the Philippine ‘Laknau’, with a

bunch morphology reminding that of AAB Plantains, which are hence assembled under the
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name AAB Plantain-linked. The ‘Iholena‘originated in mainland New Guinea (Perrier

et al. 2009; Kagy et al. 2016), but its place in the ‘Plantain-linked’ set with accessions from

eastern Indonesia points to a broader area of origin. Because of the proved banksii genetic

background of both A genomes in the plantain AAB subgroup (Lebot et al. 1993; Carreel

et al. 2002; Kagy et al. 2016), it is proposed that the Plantain-linked cultivars have the

same A-background.

Interestingly, the AAB subgroup ‘Maoli-Popo’ulu’ is grouped together with the ABB

subgroup ‘Saba’ and the ABB ‘Bluggoe-Monthan’ accessions within the cluster XII. This

could point to the presence of the same A (presumably banksii) or B genome across all

these accessions and indicates a need for more detailed investigation. Although the two

components of the ‘Bluggoe-Monthan’ complex are considered to belong to different

subgroups, their members are part of a single set on the tree. We therefore adopt the term

‘complex’ rather than ‘subgroup’. No genetic ground was obtained to differentiate between

‘Maoli’ and ‘Popo’ulu’ clone sets through the SSR analysis.

Similarly the cluster VIII contains a heterogeneous set of different genome-combina-

tions. Representatives of the ABB triploid subgroup ‘Pisang Awak’ and the Indian AAB

‘Silk’ subgroup were reported to share the malaccensis A-genome (Perrier et al. 2009), but

this conclusion is weakly supported by our results. Interestingly, two supposedly Silk

accessions—verified triploids cultivated in East Africa—are on the same branch as AB

‘Kunnan’. The possible genotypic relation between ‘Silk’ and ‘Kunnan’ warrants further

examination.

’Pisang Raja(h)’ is the only AAB set in cluster X and its position may point to the

dominant presence of banksii in its A genomes. However, the name ‘Raja’ is frequently

applied to cultivars with different morphology as a mark of superior quality characteristics,

hence a much larger number of candidate ‘P. Raja(h)’ cultivars should be analyzed to

examine this and exclude potential mislabeling.

Conclusions

Recently, plant genetic diversity has been frequently assessed with high-throughput next-

generation sequencing methods, such as Genotyping by Sequencing (GBS) or SNP-based

DNA chips (e.g. DArT or DArTSeq). Although such methods are powerful and offer low

costs per data-point, they may not be suitable for long-term projects in which entries need

to be analyzed in batches, or even one by one over extended periods of time. The com-

parability of results gathered at different time points cannot be assured unless the whole set

of accessions is analyzed again, which may not be economical. In contrast, SSR geno-

typing allows processing even single samples over time. Moreover, with each new

accession, new alleles may be added into the dataset thereby increasing the resolution of

the analysis and improving the classification. The results of the present large-scale

molecular characterization effort are essential for the management and conservation of the

global Musa germplasm collection and will facilitate its efficient use by the banana

research and breeding community. The genotyping platform used in this work identified

potentially problematic accessions for which field or other verification were deemed

necessary and it has also helped in proposing subgroup classification for corrections.

Coupled to the flow cytometric estimation of ploidy level, this genotyping system presents

the new standard for molecular characterization of Musa genebank accessions. Moreover,

the results of the study provide a detailed picture of genetic diversity of available Musa
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germplasm and lay a solid basis for a more focused molecular and morphological evalu-

ation of certain, until now less studied groups.
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Doležel J, Lysák MA, Doleželová M, Roux N (1997) Use of flow cytometry for rapid ploidy determination
in Musa species. InfoMusa 6:6–9

Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry.
Nat Protoc 2(9):2233–2244. doi:10.1038/nprot.2007.310
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Häkkinen M, Hong W, Ge XJ (2008) Musa itinerans (Musaceae) and its intraspecific taxa in China. Novon

18(1):50–60. doi:10.3417/2006162
Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2007) Application of multiplex-

ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breeding 21(3):271–281.
doi:10.1007/s11032-007-9127-5

Hippolyte I, Bakry F, Seguin M, Gardes L, Rivallan R, Risterucci AM, Jenny C, Perrier X, Carreel F, Argout
X, Piffanelli P, Khan IA, Miller RNG, Pappas GJ, Mbéguié-A-Mbéguié D, Matsumoto T, De
Bernardinis V, Huttner E, Kilian A, Baurens FC, D’Hont A, Cotel F, Courtois B, Glaszmann JC (2010)

Biodivers Conserv (2017) 26:801–824 821

123

http://dx.doi.org/10.1007/s10709-014-9786-1
http://dx.doi.org/10.1186/1471-2164-14-683
http://dx.doi.org/10.1186/1471-2229-13-41
http://dx.doi.org/10.1007/s00606-005-0346-0
http://dx.doi.org/10.17348/era.7.0.165-177
http://dx.doi.org/10.1093/aob/mcq187
http://dx.doi.org/10.1126/science.1085255
http://dx.doi.org/10.1126/science.1085255
http://dx.doi.org/10.1038/nature11241
http://dx.doi.org/10.1007/BF02920930
http://dx.doi.org/10.1007/BF02920930
http://dx.doi.org/10.1038/nprot.2007.310
http://faostat3.fao.org/home/index.html
http://dx.doi.org/10.2135/cropsci2014.12.0825
http://dx.doi.org/10.1111/j.1365-294X.2005.02467.x
http://dx.doi.org/10.1007/s11295-012-0577-5
http://dx.doi.org/10.1007/s11295-012-0577-5
http://dx.doi.org/10.3417/2006162
http://dx.doi.org/10.1007/s11032-007-9127-5


A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among
bananas. BMC Plant Biol 10:65. doi:10.1186/1471-2229-10-65

Hippolyte I, Jenny C, Gardes L, Bakry F, Rivallan R, Pomies V, Cubry P, Tomekpe K, Risterucci AM, Roux
N, Rouard M, Arnaud E, Kolesnikova-Allen M, Perrier X (2012) Foundation characteristics of edible
Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109(5):937–951. doi:10.
1093/aob/mcs010
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