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Abstract
Assuming a favorable or an adverse outcome for every combination of a credit class and
an industry sector, a binary string, termed as a macroeconomic scenario, is considered.
Given historical transition counts and a model for dependence among credit-rating
migrations, a probability is assigned to each of the scenarios by maximizing a likeli-
hood function. Applications of this distribution in financial risk analysis are suggested.
Two classifications are considered: 7 non-default credit classes with 6 industry sectors
and 2 non-default credit classes with 12 industry sectors. We propose a heuristic
algorithm for solving the corresponding maximization problems of combinatorial
complexity. Probabilities and correlations characterizing riskiness of random events
involving several industry sectors and credit classes are reported.
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1 Motivation

Intuitively,migrations towardsmore secure credit classes should bemore frequent dur-
ing economic upturns and less frequent during downturns, while migrations towards
riskier states should exhibit the opposite pattern. With this observation in mind, we
analyze statistically the variety of economic conditions affecting different industries
and credit classes. Given the actually observed over a period of time credit-rating
migrations, we identify the most likely distribution D of upturns and downturns for
this period. We illustrate how the distribution can be used in financial risk analysis.

The two phases of a business cycle—a downturn or, more specifically, a contraction
and an upturn or an expansion—, affecting all debtors in the economy, render their
credit-rating migrations dependent. This mechanism of dependence is implemented
in several models. See among others Bangia et al. (2002), McNeil andWendin (2007),
Frydman and Schuermann (2008), Stefanescu et al. (2009), Xing et al. (2012). In the
same vein, Fei et al. (2012) consider three phases: an expansion, a mild recession and
a severe recession. The GDP dynamics is necessary for identifying the corresponding
time periods. Knowing them, the transition matrices, if discrete time is considered,
or the respective infinitesimal generator matrices, in a continuous time setting, are
estimated for each of the phases. In sum, the dependent credit-rating migrations are
modelled relying on the conventional business cycle theory or its extension to more
than two phases of a business cycle. As a consequence, the migration probabilities are
not industry specific. Therefore, neither are intensities of credit-rating events consid-
ered, nor their interdependence. In this paper we propose a novel model, where the
intensities as well as the interdependencies can be industry specific.

Consider a pool of debtors. Assume that there are M non-default credit classes and
S industry sectors. Let every debtor be completely characterized by a couple m ∈
{1, 2, . . . , M} and s ∈ {1, 2, . . . , S}. We postulate, first, that the economic conditions
affecting a debtor can be favorable or adverse and, second, that the conditions are
specific for every combination of a credit class and an industry sector. Then, keeping
1 for the favorable outcome and 0 for the adverse one, a state of the economy, or a
macroeconomic scenario, is encoded with a binary string having MS positions. There
are 2MS such strings. For a practically interesting choice of M and S, this can be a
huge number. The conventional setting, assuming just two phases of a business cycle
for the whole economy, has neither the sectoral classification nor the riskiness one.
Therefore, M and S takes value 1 and there are just two strings in this case, 1 and 0.

Given a model for the probabilistic dependence among individual credit-rating
migrations, a discrete time dynamic of the credit rating can be specified and the cor-
responding likelihood function can be written down. We formulate the model through
the conditional on a macroeconomic scenario transition probabilities. Then the likeli-
hood function depends upon a distribution D defined on the 2MS binary strings. Given
the actually observed migrations, the maximum likelihood principle allows to identify
the most likely D. Should the support of this distribution contain just two sample
points—the binary string formed by 1 repeated MS times and the binary string with 0
at allMS positions—this setting would reduce to the conventional model with just two
phases of a business cycle. In fact, all industries and credit classes would be affected
by the same economic conditions in this case. Otherwise, if there are more than two
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sample points in the support, analyzing the distribution D and its moments can, on
the one hand, shed light on hidden, because the corresponding market outcomes are
at most partly observed, dependencies among credit events in different credit classes
and industry sectors and, on the other hand, imply more specific and precise, because
the sectoral classification is taken into account, estimates of the risk associated with
a particular portfolio. In sum, the classical two-phases regime can emerge for some
input data. However, the estimates given below show that the support of D contains
typically more than two sample points. Consequently, a fine-grained differentiation of
the phases of a business cycle is possible. We present several new numerical estimates
of financial risk factors based on this more general view of a business cycle.

Within our approach, the sectoral classification is not the only one possible. In
particular, the model can be reformulated classifying debtors according to their cap-
italization level. Such a specification is typical for some macroeconomic risks factor
models. See Aretz et al. (2010), Boons (2016), Fama and French (2017), Cooper and
Maio (2019),Goncalves et al. (2020) amongothers.On the onehand, they employmore
particular than the phases of a business cycle macroeconomic indicators—exchange
rate, employment, inflation rate, GDP, etc.—, on the other hand, their predictions
address the whole economy rather than a credit class. In other words, conceptually
such models are richer, but, ceteris paribus, our analysis is more fine-grained.

For testing the approach, we use the same S&P’s dataset as Boreiko et al. (2017).
See https://doi.org/10.1371/journal.pone.0175911.s001. Two couples of M and S are
considered: M = 7 with S = 6 and M = 2 with S = 12. Since 242 and, respectively,
224 macroeconomic scenarios are involved, the number of unknownparameters greatly
exceeds the number of available observations. A heuristic algorithm is suggested
for solving the corresponding likelihood maximization problems of combinatorial
complexity.

A numerical technique for evaluating the risk factors contingent on the dependence
among credit-rating migrations is the main contribution of the paper. The key element
is an estimate of the hidden distribution that shapes the migrations.

In the next sessionwe specify the probabilistic dependence among individualmigra-
tions, the corresponding likelihood function and the non-linear programming problem
for estimating the unknown parameters. A heuristic algorithm for solving this problem
with a combinatorial number of unknowns is described in Sect. 3. Several new risk
estimates are suggested in Sect. 4. A detailed characterization of the input data and
the heuristic solutions is presented in Sect. 5. Section 6 contains the main results of
the paper—several risk estimates based on the distribution D. Section 7 concludes.
Auxiliary technicalities are given in Appendix 1. Appendix 2 contains some statistical
characteristics of the input data.

2 Dependencemodel and optimization problem

Modeling credit-ratingmigrations as trajectories of time-homogeneousMarkov chains
has a long tradition in financial risk analysis. It is implemented in CreditMetrics, a
toolkit for understanding and managing credit risk. See Gupton et al. (1997). In the
model considered next, a time-homogeneous discrete-timeMarkov chain is aswell one
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of the two components governing credit-rating migrations. This component is termed
as idiosyncratic because, should it be the only driver of the credit rating migrations,
they would not depend on each other and the resulting dynamic would be Markovian.

Let us formulate precisely the assumptions regarding the credit-rating dynamics.
Consider a portfolio involving debtors classified into S ≥ 1 industry sectors. There
are M + 1 levels of creditworthiness. Non-default credit classes are numbered in
descending order of creditworthiness: the most secure assets are labelled by 1, while
the next to default credit class is indexed by M . Defaulted debtors receive the index
M + 1. They will never return to business.

Denote by {0, 1}MS the set of binary strings (or vectors) V with MS positions
(or coordinates). They encode all possible macroeconomic scenarios in the economy.
We need a rule for assigning coordinates of a binary vector V to industries and credit
classes. To this end, let the coordinateVM(s−1)+m characterize the economic conditions
affecting the credit class m of the industry s. That is, the industries occupy blocks of
M coordinates each. The blocks are numbered in ascending order of s. Within a block,
the credit classes are listed in ascending order of m.

Let X(t) be the credit rating of a debtor at time t = 1, 2, . . .. The rating randomly
changes in time, becoming X(t + 1) at t + 1, while the assignment to an industry
remains the same. We postulate that X(t + 1) is a weighted sum of an idiosyncratic
ξ t and a common ηt component:

X(t + 1) = δtξ t + (1 − δt )ηt . (1)

First, we characterize distributions of the random variables δt , ξ t and ηt . Let the
debtor belong to an industry s and let X(t) = m for some m ≤ M . Then:

• δt stands for a Bernoulli random variable whose probability of success equals
Qm,s . The M × S matrix Q with entries Qm,s is not known. It has to be estimated.

• Migrations in industry s that cannot be attributed, at least directly, to market mech-
anisms are characterized by an M × (M + 1) migration matrix P(s). It is known.
Its entry P(s)

i, j equals the probability that a debtor moves from a credit class i to a
credit class j in one time instant. The distribution of ξ t is:

P{ξ t = j} = P(s)
m, j , j = 1, 2, . . . , M + 1.

• The conditional on VM(s−1)+m distribution of ηt reads:

P(s)
m, j (1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P(s)
m, j

P(s)
m

if j < m,

�m,s P
(s)
m,m

P(s)
m

if j = m,

0 if j > m;

P(s)
m, j (0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P(s)
m, j

1−P(s)
m

if j > m,

(1−�m,s )P
(s)
m,m

1−P(s)
m

if j = m,

0 if j < m.
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Here, P(s)
m = P(s)

m,1 + P(s)
m,2 + . . .+�m,s P

(s)
m,m . The M × S matrix � with elements

�m,s ∈ [0, 1] is not known. It has to be estimated.

Then the conditional on a macroeconomic scenario V distribution of X(t + 1) can be
written down in the following way:

Qm,s P
(s)
m, j + (1 − Qm,s)P

(s)
m, j (VM(s−1)+m), j = 1, 2, . . . , M + 1. (2)

Note that, defining the conditional migration probabilities, our model does not require
identification of the time periods corresponding to the phases of a business cycle.
Consequently, no GDP dynamics is necessary to estimate the probabilities. There are
several possibilities to relate the trend of credit rating migrations to the phases of a
business cycle. In the simplest case, it is required that the probabilities of migrating
towards more secure credit classes are higher for economic upturns than for down-
turns. Incorporating such linear inequality constrains into a likelihood maximization
problem, two migration matrices, one for upturns and the other for downturns, are
estimated as well as the probability of an upturn. For survey analysis, this approach
was used in Hölzl et al. (2019).

Second, let us characterize the dependence among the random variables involved
in (1). For a fixed time instant t :

• for every debtor, the random variables δt , ξ t and ηt are independent;
• the random variables δt , ξ t are independent across debtors, while the random vari-
ables ηt are conditionally, given a macroeconomic scenario, independent across
debtors;

• δt , ξ t and ηt do not depend upon their realizations in the past.

Considering a period of observation from t = 1 to t = T , these assumptions imply
the following likelihood function:

L(D, Q,�) =
T∏

t=1

∑

V∈{0,1}MS

D(V )

S∏

s=1

M∏

m1=1

M+1∏

m2=1

F(s, V ,m1,m2, Q,�)I
t (s,m1,m2),

where

F(s, V ,m1,m2, Q,�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qm1,s + (1 − Qm1,s )
�m1,s

P(s)
m1

if m1 = m2, VM(s−1)+m1 = 1;

Qm1,s + (1 − Qm1,s )
1−�m1,s

1−P(s)
m1

if m1 = m2, VM(s−1)+m1 = 0;

Qm1,s + 1−Qm1,s

P(s)
m1

if m1 > m2, VM(s−1)+m1 = 1;

Qm1,s + 1−Qm1,s

1−P(s)
m1

if m1 < m2, VM(s−1)+m1 = 0;
Qm1,s otherwise.

In the formula for L we ignore the multiplier

T∏

t=1

S∏

s=1

M∏

m1=1

M+1∏

m2=1

[P(s)
m1,m2

]I t (s,m1,m2)
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that does not contain the unknown parameters.
Transition counts I t (s,m1,m2) for the period of observation is the only input

required. By I t (s,m1,m2) we denote the number of debtors in the industry s that
migrated from the credit class m1 to the credit class m2 in the period t . (The industry-
specific Markovian migration matrices P(s) are estimated from these counts as time
averages.)

All the unknowns have to satisfy the box constraints: D(V ) ∈ [0, 1], Qm,s ∈ [0, 1]
and �m,s ∈ [0, 1]. Since D is a probability distribution, the following equality has to
be satisfied:

∑

V∈{0,1}MS

D(V ) = 1. (3)

The value Qm,s determines the impact of the idiosyncratic component in (1). In
particular, Qm,s = 1 implies that migrations of debtors belonging to the credit classm
and the industry s are independent onmigrations of other debtors. The existing models
assume that �m,s = 1 for all possible m and s. See Kaniovski and Pflug (2007),
Wozabal and Hochreiter (2012) or Boreiko et al. (2017). Suggesting more general
formulas for the conditional probabilities and estimating �m,s , we attempt to test
empirically this assumption. All other things being equal, a larger�m,s implies smaller
probabilities P(s)

m, j (1), j < m, and larger probabilities P(s)
m, j (0), j > m. Consequently,

the known models may overestimate the default rates P(s)
m,M+1(0).

The conditional distribution of Xn(t +1) defined by (2) typically deviates from the
m-th row of the corresponding P(s). To guarantee that the unconditional distribution
of Xn(t + 1) in (1) equals P(s)

m, j , j = 1, 2, . . . , M + 1, the following equalities have
to be satisfied:

∑

V∈{0,1}MS

VM(s−1)+mD(V )−�m,s P
(s)
m,m = P̄(s)

m , m=1, 2, . . . , M, s = 1, 2, . . . , S.

(4)

Here, P̄(s)
m = P(s)

m,1 + P(s)
m,2 + . . . + P(s)

m,m−1.
The natural logarithm of L is maximized subject to the linear equality constraints

(3) and (4). There are 2MS + 2MS parameters to estimate: MS probabilities Qm,s ,
MS probabilities �m,s and 2MS probabilities D(V ).

Having a distribution D, probabilities of fine-grained macroeconomic events asso-
ciated with the phases of a business cycle can be estimated. For example, probabilities
of adverse for a combination of credit-classes and industries events. Since a time
period in the past is considered, frequencies is a more precise denomination for such
values. Numerical characteristics other than probabilities can be evaluated as well.
In particular, correlations between the economic factors affecting different industries
and credit classes.

In what concerns credit risk, our approach, accounting for the sectoral dimension,
implies a more specific and, consequently, precise analysis of credit events. In fact, the
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migration matrices are industry-specific and, in the course of a business cycle, they
are adjusted according to the industry-specific economic conditions.

Assessing how likely is a contagion in the financial sector, probabilities of adverse
events affecting several credit classes can be used. Unlike the majority of models
addressing systemic risk, our estimates do not require any information regarding
interconnections in the banking sector. See Glasserman and Young (2016) for a com-
prehensive review of systemic risk models.

Let us show that, under natural assumptions regarding the migration matrices P(s),
the feasible set defined by the linear relations (3) and (4) is not empty. Since the prob-
abilities Qm,s are not involved in these relations, it is enough to indicate a distribution
D and probabilities �m,s satisfying (3) and (4).

Let p = maxs,m P̄(s)
m and p = mins,m(P̄(s)

m + P(s)
m,m).

Proposition If p ≤ p, then the feasible set defined by (3) and (4) is not empty.

Proof Consider the binary vectors (1, 1, . . . , 1) and (0, 0, . . . , 0). Let D((1, 1, . . . , 1))
= P̄ and let D((0, 0, . . . , 0)) = 1− P̄ . Then equality (3) holds true, while constraints
(4) read:

P̄ − �m,s P
(s)
m,m = P̄(s)

m , m = 1, 2, . . . , M, s = 1, 2, . . . , S,

or

�m,s P
(s)
m,m = P̄ − P̄(s)

m , m = 1, 2, . . . , M, s = 1, 2, . . . , S. (5)

If p ≤ P̄ ≤ p, then 0 ≤ P̄− P̄(s)
m ≤ P(s)

m,m implying that there are always�m,s ∈ [0, 1]
satisfying equalities (5). In other words, the feasible set is not empty. ��

Typically, every probability P(s)
m,m to retain the current credit rating m does not fall

below 1
2 . Then p ≥ 1

2 . If P
(s)
m,m ≥ 1

2 , then P̄(s)
m does not exceed 1

2 . Therefore, p ≤ 1
2 .

In sum, p ≤ p. This argument implies, since P(s)
m,m > 1

2 for all combinations ofm and
s in the migration matrices quoted in Appendix 2, that the assumptions of Proposition
hold true for our input data.

Since quarterly P(s)
m,m typically do not fall below, all other things being equal, their

annual counterparts, verification of assumptions of Proposition is easier dealing with
quarterly transition counts.

Even if concavity of ln L cannot be established, its derivatives are known and, apart
from the box constraints, there are just linear equality constraints. If 2MS is not too
large, a standard solver can be used for finding a solution. Restarting the algorithm for
different initial points, the solution can be improved.

This course of action was implemented by Boreiko et al. (2017) for M = 2 and
S = 6. The Interior Point (IP) method was used. (Postulating that all �m,s are equal
to 1, the model in Boreiko et al. (2017) is slightly simpler.) On the one hand, this
approach looks like a classical optimization technique. In fact, the classification inGilli
and Schumann (2012) requires for such a technique “at least well-behaved objective
functions” so that a kind of gradient descent can be implemented. See p. 130. On the
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other hand, a heuristic—restarting the gradient descent fromdifferent initial points—is
used because concavity of the likelihood function cannot be guaranteed. (As a matter
of fact, all of the restarts implied the same solution.) In sum, a combination of a
classical technique and a heuristic is applied even in this simplest case.

A more detailed analysis of credit-rating migrations considers two non-default
credit classes as well, but the number of industries is doubled. Therefore, the total
number of unknowns becomes 24 + 212. This level of computational complexity
requires special algorithms. We suggest and test one of such methods.

Maximizing ln L , there are two challenges. First, the number 2MS of unknown
probabilities D(V ) is typically combinatorial for a practically interesting choice of M
and S. Second, the estimated distribution D can be nested in too many sample points.
In such a case, it is difficult to analyze the corresponding macroeconomic scenarios.

Confronting with a large MS, the sample space {0, 1}MS can be split into smaller
parts so that the likelihoodmaximization problemcould be solved for each of themwith
a standard algorithm. Since there can be toomany such subsets, instead of analyzing all
of them, a random sample can be used. Passing from one of the subsets to the next one,
we need a rule for identifying the sample points that are retained. In sum, there are two
optimization processes: a continuous space search for inputs Q, � and D maximizing
the likelihood function defined on a subset of {0, 1}MS and a discrete space search
for a subset of {0, 1}MS with a greater maximum likelihood value. According to the
classification given in Gilli and Winker (2009), this is a combination of a local search
method and a constructive method. See p. 87. A heuristic algorithm based on these
principles is described next.

3 Heuristics

The heuristic search for a better solution relies on several concepts. Let us explain and
motivate them.

We beginwith characterizing the subsets that can be used in a partition of the sample
space. We call V ⊆ {0, 1}MS a suitable set, if there exists a probability distribution
DV such that the support of DV belongs to V and the relations

∑

V∈V
VM(s−1)+i DV(V ) − �i,s P

(s)
i,i = P̄(s)

i , i = 1, 2, . . . , M, s = 1, 2, . . . , S,

(6)

hold true for some �i,s ∈ [0, 1]. Note that every extension V′ of a suitable set V, that
is a subset of {0, 1}MS containing V, is suitable as well. In fact, let

DV′(V ) =
{
DV(V ) if V ∈ V,

0 if V ∈ V′ \ V.

Keeping the values �i,s unchanged, relations (6) for V′ will hold true with this distri-
bution DV′ .
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Next, let us describe a continuous space optimization problem for identifying opti-
mal inputs Q, � and D corresponding to a given suitable set. Consider a suitable set
V, the likelihood function

LV(D, Q,�) =
T∏

t=1

∑

V∈V
D(V )

S∏

s=1

M∏

m1=1

M+1∏

m2=1

F(s, V ,m1,m2, Q,�)I
t (s,m1,m2),

and the constraints

∑

V∈V
VM(s−1)+i D(V ) − �i,s P

(s)
i,i = P̄(s)

i , i = 1, 2, . . . , M, s = 1, 2, . . . , S,

(7)
∑

V∈V
D(V ) = 1. (8)

That is, our analysis is restricted now to the distributions D that are nested in V.
Ceteris paribus, the values of L and LV coincide for such a D. Since V is a suitable
set, the feasible set defined by the linear equations (7) and (8) is not empty. In fact,
the distribution DV involved in the definition of V, see relations (6), satisfies these
constraints.

If the cardinality of V is low enough, maximizing ln LV subject to the linear con-
straints (7) and (8), the corresponding optimal distribution D∗

V can be estimated. A
standard solver can be used, say the IP method. Since all unknowns are probabilities,
the box constraints for Qi,s , �i,s and D(V ) are necessary as well. Restarting the
algorithm from different initial points, the solution can be improved.

If D∗
V(V ) is sufficiently small, the macroeconomic scenario encoded by V is not

(statistically) significant and, therefore, it can be ignored passing from V to its exten-
sion V′. A heuristic for retaining significant elementary outcomes is described next.

For a practical numerical search algorithm in {0, 1}MS , consider a threshold ε ∈
(0, 1) and the ε-support Vε of D∗

V:

Vε = {V ∈ V : D∗
V(V ) > ε}.

Note that
∑

V∈Vε
D∗
V(V ) ↑ 1 as ε decreases and D∗

V satisfies constraints (7) and (8).
Therefore, Vε is a suitable set for all sufficiently small ε. In fact, the linear constraints
(6) and (8), where V and D are substituted with Vε and D∗

V, can be satisfied with any
precision.

If ε decreases, the number of binary strings inVε can increase. In fact, if the strings
were equally probable, the total number of them would grow as ε−1. A non-negligible
D∗
V(V\Vε) can be another effect of a sparse D∗

V. In particular, D∗
V(V \ Vε) > ε.

Keeping the threshold ε constant, the following heuristic can be used to obtain a more
concentrated than D∗

V optimal distribution. As a measure of concentration, we require
that the total probability of the significant macroeconomic scenarios exceeds 1 − ε.
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To this end, consider

L̄V(D, Q,�) = ln LV(D, Q,�) + R
∑

V∈V
D2(V ).

We interpret R ≥ 0 as a penalty parameter. It determines the relative importance of
the two components in L̄V. Let us maximize L̄V subject to the linear constraints (7)
and (8). For a sufficiently large R, we expect that the optimal distribution D̄V obtained
in this way should be more concentrated than D∗

V. (The latter corresponds to R = 0.)
As a heuristic argument supporting this intuition, observe that the function of N

variables

N∑

k=1

x2k

attains its maximum value 1 under the constraints

xk ≥ 0, k = 1, 2, . . . , N , and
N∑

k=1

xk = 1,

if one of the addends equals 1. (Its minimum value obtains if all of them are equal.)
Adding such a term to ln L , we expect, given the box constraints and (8), to get a more
concentrated than D∗

V optimal distribution D̄V. Since the weight of the second term
in L̄V increases in R, we expect the same for D̄V(V̄ε). Therefore, D̄V(V̄ε) > 1 − ε

for all sufficiently large R. By V̄ε we denote the ε-support of D̄V.
Now the rule for identifying the significant macroeconomic scenarios can be for-

mulated more precisely. Fix a maximum mismatch in the linear constraints (7) and
(8). Denote this value by ε. The set V̄ε such that D̄V(V̄ε) > 1− ε is a suitable set. In
fact, substituting V̄ε and D̄V instead of V and DV into the linear constraints (7) and
(8), the maximum error will not exceed ε. Therefore, for this numerical precision, V̄ε

is a suitable set.
The structure of our discrete space search is as follows:

1. At the beginning, a suitable set V with a low cardinality has to be identified and a
threshold value ε has to be chosen.

2. Solve the optimization problem for specifying Vε . Decrease ε ifVε is not suitable.
Keep ε as large as possible. If Vε contains too many elements or/and DV(V \
Vε) ≥ ε, consider the corresponding L̄V and identify V̄ε . Increasing R, achieve
that D̄V(V̄ε) > 1 − ε. Keep R as small as possible.

3. Better solutions (in terms of the likelihood value) can be found by extending V̄ε to
a larger set. Since any set containing a suitable set is also suitable, the extension
preserves suitability. LetV′ = V̄ε ∪Ṽ, where Ṽ is a subset of {0, 1}M×S \V. This is
a suitable set, an extension of V̄ε . Ṽ should not be too large so that the optimization
problem with V′ instead of V could be solved.

4. We repeat steps 1.–3. with V replaced by V′ and keep on doing extensions.
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There are two clarifications. First, we can always argue about an extension of V̄ε .
In fact, Vε = V̄ε for R = 0. Second, since V′ ⊃ V̄ε , the extension cannot lead to a
smaller maximum value of L .

If the assumptions of Proposition hold true, every set V ⊆ {0, 1}MS containing
the string with 1 at all positions and the string with 0 at all positions is suitable.
Consequently, the discrete space search can always be initiated.We suggest a particular
extension process exploiting the interpretation of a binary string as a macroeconomic
scenario.

Let us describe this particular scheme for generating extensions. Initially,we assume
that every industry is affected by the same economic conditions. The corresponding
binary MS-string is termed as a block-structure. In a block-structure, all binary M-
substrings allocated to different industries coincide. There are 2M block-structures.
Containing the macroeconomic scenario favorable for all industries and credit classes
as well as the macroeconomic scenario adverse for them all, the set V of all block-
structures is suitable.

Solve the optimization problem for identifying D∗
V. This is not a hard task. In

fact, just 2MS + 2M unknowns are involved. Let V k, k = 1, 2, . . . , K , be the block-
structures whose probabilities D∗

V(V k) exceed ε. It is convenient to number them in
descending order of the probabilities. In order to reduce K , the modified objective
function L̄V can be used instead of LV. Denote by vk the binary M-substring such
that V k is formed by S copies of vk . We call vk a block.

A scheme for generating new macroeconomic scenarios as mutations of the block-
structures V k, k = 1, 2, . . . , K , is motivated by elementary facts from genetics. In
particular, substituting one block vk in V k by a block vi , i = k, we get a mutant with
a single mutation of the block-structure V k . Conceptually, this is a macroeconomic
scenario, where all industries, except for one, are affected by the economic conditions
encoded with vk , while the remaining industry is affected by the economic conditions
summarized in vi . Trying all possible V k, k = 1, . . . , K , industries s = 1, . . . , S or,
equivalently, positions of the mutated block, and its type vi , i = 1, . . . , K , i = k, all
mutants V1 with a single mutation will be obtained. Similarly Vn , can be defined for
n > 1. That is, Vn contains all possible mutants with n mutations. The mutations can
coincide: definingVn for n > 1, a block vi can appear more than one time in a mutant
stemming from the block-structure V k . Then Vn ∩ Vn′ = ∅, if n, n′ < S/2, n = n′.
Defining the sets Vn for n ≥ S/2, some of the mutants, originating from different
block-structures, can be listed several times. Such repetitions have to be avoided. For
example, if S is an even number, a mutant containing S/2 blocks vk and S/2 blocks
vi can be regarded as originating from the block-structure V k as well as originating
from the block-structure V i . Such mutants have to be listed in VS/2 just one time.

There are K S possibilities for allocating K building blocks among S positions. If
K < 2M , this number is smaller than 2MS . Consequently, restricting the analysis to all
possible combinations of blocks, on the one hand, reduces the scope ofmacroeconomic
scenarios, but, on the other hand, the corresponding solution should not be necessarily
optimal even if all of the combinationswere considered.A smaller K implies a stronger
reduction of the search space.

123



T. Gärtner et al.

Instead of dealing with all binary vectors from Vn , a random sample can be used.
Generating a binary vector fromVn , for the first mutation there are S equally probable
positions, for the second—the remaining S − 1, etc. The simplest way for choosing
mutations, is to sample them with equal probabilities 1

K−1 . The resulting distribution
of mutants is referred to as uniform.

The S&P’s dataset used for estimating unknown parameters contains 103723 tran-
sition counts. See https://doi.org/10.1371/journal.pone.0175911.s001. We consider
two classifications: M = 7 with S = 6 and M = 2 with S = 12. The corresponding
numbers of unknowns are 84+242 and 48+224. They are huge and, more importantly,
these numbers greatly exceed 103723—the number of available observations. Com-
mon sense suggests that no classical approach can be used. Looking for a way out,
we observe that there are 242 (224) probabilities D(V ) among the unknowns. Dealing
with a real life problem, unlikely outcomes can be ignored. A lower bound ε for prob-
ability of a significant outcome implies that at most ε−1 such outcomes have to be
considered. In particular, if ε = 10−3 then at most 1000 macroeconomic scenarios are
statistically significant. This number is approximately 100 times smaller than 103723.
Therefore, taking into account that the upper bound of 1000 corresponds to a practi-
cally impossible situation when all of the significant outcomes are equally probable,
the task of estimating D does not look hopeless. In sum, a classical solution is not
possible given the input, instead a conceptually plausible approximation for D and,
consequently, for the hidden dependence structure among industries and credit classes
can be suggested. Motivating this approach, we rely on the principles formulated in
Gilli andWinker (2009): “Often the term ‘heuristic’ is linked to algorithmsmimicking
some behavior found in nature, ... a heuristic should be able to provide high-quality
(stochastic) approximation to the global optimum at least when the amount of com-
putational resources spent on a single run of the algorithm ... is increased.” See p.
83.

Searching for a plausible approximation, we first hypothesize that all industries
are affected by the same economic conditions. This assumption corresponds to the
standard business cycle theory. A new element is a fine-grained classification of
creditworthiness. Under such a restriction on the class of admissible macroeconomic
scenarios, we identify the significant outcomes, referred to as block-structures. Since
no penalty is necessary and the restarts of the IP method from different initial points
result in the same likelihood value, all criteria of Gilli and Schumann (2012) for a
classical optimization technique are satisfied. See p. 130. Therefore, this is a classical
solution. Next we consider a richer set of admissible macroeconomic scenarios—
block structures and their mutants having just one mutation. It is a further extension
of the standard business cycle theory because industries can be affected by different
economic conditions. This extension is the simplest possible since at most one varia-
tion per macroeconomic scenario is allowed. For all choices of M and S considered
in this paper, the number of unknowns allows, given our computational resources, to
use the IP method. Since a penalty was necessary, an approximation to the solution
was obtained for this extension. Next we turn to macroeconomic scenarios where at
most two of the industries can be affected by different economic conditions. Con-
ceptually, this is a further generalization of the standard business cycle theory. We
list all mutants with exactly two mutations. Given our computational resources, the
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corresponding number of unknowns for the couple M = 7 and S = 6 is too high.
Thus, we are forced to split this set into equally large subsets. First, we consider one
of the subsets and the significant binary strings with at most one mutation. The corre-
sponding continuous space maximization problem is solved with the IP method. The
significant binary strings identified at this step are considered together with the next
subset, etc. Having tested all of the subsets, we obtain a heuristic approximation to the
most likely, given the input, distribution on the binary strings with at most two muta-
tions of the block-structures. This is just an approximation. In fact, non-zero penalties
were used in several extensions and, more importantly, we cannot guarantee that the
greatest likelihood value achieved by the sequential analysis of the subsets coincides
with the maximum value attained on the union of them, should the corresponding
maximization be done. If M = 2 and S = 12, all binary strings with two mutations
are used for a single extension. Further extensions are done in the same way with
randomly generated mutants having 3, 4, . . . , S − 1 mutations. No binary string may
be considered more than one time. All necessary details are given in Appendix 1.

As a standard measure of performance for the heuristic, we present in Appendix 1
the percentage of increase of the likelihood value. Also, since for M = 2 and S = 6
a classical solution exists, we compare it in Appendix 1 with the heuristic solution.
This is an instructive example illustrating the particularities of both the likelihood
maximization problem and the heuristic algorithm.

The discrete space search described above mimics biological evolution: first, only
macroeconomic scenarios more probable (or more frequent, because we refer to
a period in the past) than a threshold are retained to the next round of selection
(where they compete with the new scenarios of the extension) and, second, more
complex macroeconomic scenarios obtain as mutations of the original forms—the
block-structures. The minimum viable population argument is a particular justifica-
tion for the selection rule. Business cycles is another natural point of reference: we
begin with the standard setting and attempt to arrive at a more fine-grained view. Some
of the reported solutions are exact, but typically an approximation is found. The quality
of a solution increases as the computation efforts do. In particular, widening the scope
of admissible macroeconomic scenarios, a more realistic view of a business cycle can
be obtained. However, it requires solving more complicated optimization problems.
The random search in the space of mutants with n ≥ 3 mutations exhibits, accord-
ing to our experience, path dependence. Moreover, the shape of L depends upon the
transition counts available. For this reason, any estimate of the empirical distribution
of the maximum likelihood value would be input-specific as well. Therefore, such an
empirical convergence analysis, even if it is recommended in the literature on heuristic
methods in econometrics, see among others Gilli andWinker (2009) or Gilli and Schu-
mann (2012), cannot be used. A bootstrap procedure can be suggested instead. Then,
for a set of estimated parameters, new credit-ratingmigrations are generated according
to formula (1). Applying the algorithm, this input is transformed by into a new set
of estimates. If they match reasonably well the original values, we conclude that the
algorithm works correctly. For a simple example of such a convergence analysis see
Boreiko et al. (2016).

Given D, Q and �, some risk estimates are suggested in the next section.
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4 Methodology

The following quantitative characteristics of risk can be evaluated:

• Probability

πm1,m2,...,mL
s1,s2,...,sL (Im1

s1 , Im2
s2 , . . . , ImL

sL )

=
∑

V∈{0,1}MS

D(V )

L∏

i=1

max[Imi
si VM(si−1)+mi , (1 − Imi

si )(1 − VM(si−1)+mi )]

of a favorable, if Imi
si = 1, (an adverse, if Imi

si = 0,) for the industry si and the credit
class mi macroeconomic scenario, i = 1, 2, . . . , L . Both indexes can repeat. That
is, this probability can concern more than one credit class from the same industry
or/and several industry sectors having the same creditworthiness.

• Correlation

Cm1,m2
s1,s2 (Im1

s1 , Im2
s2 )

= π
m1,m2
s1,s2 (Im1

s1 , Im2
s2 ) − π

m1
s1 (Im1

s1 )π
m2
s2 (Im2

s2 )
√

π
m1
s1 (Im1

s1 )π
m2
s2 (Im2

s2 )π
m1
s1 (1 − Im1

s1 )π
m2
s2 (1 − Im2

s2 )

between the indicators of the following macroeconomic outcomes: if Im1
s1 = 1

(Im1
s1 = 0), one of them is favorable (adverse) for the credit class i1 of the industry

s1, the other one is favorable (adverse) for the credit class i2 of the industry s2 if
Im2
s2 = 1 (Im2

s2 = 0).
• Percentage of variation

v
(s)
m, j (I

m
s ) = 100 ×

(Qm,s P
(s)
m, j + (1 − Qm,s)P

(s)
m, j (I

m
s )

P(s)
m, j

− 1

)

,

of the conditional probability Qm,s P
(s)
m, j + (1− Qm,s)P

(s)
m, j (I

m
s ) against its uncon-

ditional counterpart P(s)
m, j . (The paragraph containing formula (2) introduces this

conditional distribution.) In particular, v(s)
m,M+1(I

m
s )measures the relative increase

or the relative decrease of the default probability in the credit classm of the indus-
try s due to the economic conditions.
Let us characterize the input data and the corresponding heuristic solutions.

5 Inputs and heuristic solutions

IfM = 7, the S&P’s credit classes AAA, AA, A, BBB, BB, B andC are numbered by
1, 2, . . . , 7. The following 6 industry sectors are considered: 1—agriculture, mining
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and construction; 2—manufacturing; 3—transportation, technology and utility; 4—
trade; 5—finance; 6—services. Wozabal and Hochreiter (2012) as well as Boreiko
et al. (2017) dealt with the same choice of industries.

In the case of twonon-default credit classes, index1(2) is assigned to the investment-
grade (non-investment-grade) debtors. The investment-grade debtors occupy the
S&P’s ratings from AAA to BBB. The non-investment-grade debtors are those
whose creditworthiness is lower: BB, B or C . There are 12 industry sectors: 1—
industry sectors are consideredaero, auto, capital goods, metal; 2—consumer,
service; 3—energy, natural resources; 4—financial institutions; 5—forest and
building products, homebuilders; 6—health care, chemicals; 7—high technology,
computers, office equipment; 8—insurance, real estate; 9—leisure time, media;
10—telecommunications; 11—transportation; 12—utilities. Nagpal and Bahar (2001)
estimateddefault correlations for these 12 industries and twonon-default credit classes.

5.1 Input

We use annual transition counts I t (s,m1,m2) covering the period 1991–2015: t = 1
corresponds to 1991 and T = 25 corresponds to 2015. These transition counts are
available at https://doi.org/10.1371/journal.pone.0175911.s001. Distribution of the
counts among credit classes and industries is characterized in Appendix 2.

5.2 Solution

All continuous space optimization problems were solved with the IP method. The
significance threshold equals 10−3 everywhere.

Consider first the couple, where M = 7 and S = 6. There are K = 14 block-
structureswhose probabilities exceed10−3. Total probability assigned to the remaining
block-structures does not exceed 0.0506%. Numbering the significant V k in descend-
ing order of their probabilities, the corresponding blocks vk are listed in Table 1.
Searching for the heuristic solution, mutants with up to 5 mutations were considered.
(The most important technicalities regarding this search are given in Appendix 1.)
Table 2 contains the 22 significant macroeconomic scenarios and their probabilities.
Interestingly enough, the block v14 does not appear in these scenarios. Total proba-
bility of the remaining sample points falls below 0.0223%. In particular, probability
of the significant macroeconomic scenario numbered by n = 1 is 0.2661. It can be
thought of as a mutant with four mutations of the block-structure V 1. In fact, the
block v1 is assigned to industries 1 and 5, while the remaining industries received all
different blocks: v13, v8, v11 and v4. Since this macroeconomic scenario allocates the
block v8 to the industry 3, economic conditions are favorable for the transportation,
technology and utility firms rated at AAA, AA, BBB and BB, while the debtors in
this industry sector rated at A, B and C are affected by adverse economic conditions.
In fact, the row of Table 1 allocated to v8 contains 1 at the positions 1, 2, 4 and 5, while
0 is assigned to the remaining cells. The significant scenarios listed in Table 2 contain
up to five mutations. (In this case all blocks in the corresponding row are different.)
The minimum number of mutations in the macroeconomic scenarios quoted in Table 2
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is three. Therefore, the simpler outcomes containing zero, one or two mutations were
wiped out in the course or calculations. The content of Tables 1 and 2 suggests that
the significant macroeconomic scenarios do not exhibit the pattern assumed within
the classical business cycle theory.

A referee, whose insight was crucial for streamlining this paper, observed that some
of the blocks in Table 1 encode scenarios that look counterintuitive: being favorable for
lower rated debtors they are adverse for higher rated ones. For example, the scenario
encoded by v1 is adverse for debtors rated at A, but it is favorable for those rated at
BBB. He suggested to consider only “monotone” blocks. In particular, dealing with
7 non-default credit classes, there are 8 such blocks: 1111111, 1111110, 1111100,
. . ., 1000000, 0000000. This proposal is promising because, on the one hand, the
counterintuitive outcomes are excluded and, on the other hand, the total number of
unknowns can be substantially reduced. In fact, dealing with M non-default credit
classes and S industries, the total number of sample points will be (M + 1)S instead
of 2MS . We are going to test the corresponding model numerically.

The following matrices Q and � were estimated:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.3237 0.9775 0.6230 0.0000 1.0000 0.8279
0.4579 0.9134 0.8652 0.6744 0.5809 0.9789
0.8580 1.0000 0.8559 0.9035 0.6219 1.0000
0.9185 0.9471 0.8280 0.9772 0.9482 1.0000
0.8026 0.7764 0.8761 0.9611 0.6946 1.0000
0.6013 0.6452 0.4498 0.6297 0.5575 0.8064
0.7337 0.6797 0.2978 0.7654 0.3793 0.7509

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8610 0.9984 0.8824 0.8930 0.9313 0.9166
0.7492 0.3822 0.8716 0.7724 0.7834 0.9754
0.0234 0.3558 0.0900 0.1353 0.0000 0.0135
0.7835 0.7617 0.9445 0.4770 1.0000 0.6968
0.1311 0.1262 0.2871 0.0263 0.0092 0.1328
0.6996 0.6091 0.6935 0.6234 0.5572 0.7495
0.6530 0.5243 0.5325 0.9610 0.4042 0.2946

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If M = 2 and S = 12, all four block-structures are significant macroeconomic sce-
narios. In Table 3 blocks are listed in descending order of probabilities assigned to the
corresponding block-structures. The main facts regarding the heuristic search in this
case are summarized in Appendix 1. Table 4 contains the significant macroeconomic
scenarios and their probabilities. Total probability assigned to the remaining sample
points does not exceed 0.0506%. The matrices Q and � read:

Q =
(
0.9950 1.0000 0.9654 1.0000 1.0000 0.9296 1.0000 0.5724 1.0000 0.7797 0.8134 0.5285
0.5965 0.6376 0.9647 0.8608 0.5975 0.6929 0.3688 0.2531 0.5018 0.4219 0.6318 0.6870

)

,

� =
(
0.7279 1.0000 0.2829 0.8447 0.5333 0.7441 0.8806 0.6872 0.6435 0.7686 0.7520 0.7620
0.7223 0.6923 0.9515 0.8551 0.7194 0.6607 0.6443 0.6715 0.6410 0.8039 0.6745 0.7841

)

.

In the considered so far sectoral models of dependent credit rating migrations, all
entries of � are assumed to be equal to 1. See Boreiko et al. (2017), for example. Our
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Table 1 Structure of blocks vk

for S = 6 and M = 7
Block\credit class AAA AA A BBB BB B C

v1 1 1 0 1 0 1 1

v2 1 0 0 1 0 0 0

v3 0 1 0 1 0 0 0

v4 1 1 0 1 0 1 0

v5 1 0 0 1 1 1 1

v6 1 1 0 0 1 1 1

v7 0 1 0 1 0 1 0

v8 1 1 0 1 1 0 0

v9 1 0 1 1 0 1 1

v10 1 1 0 1 1 1 0

v11 1 1 0 0 0 1 1

v12 1 1 1 1 1 0 0

v13 1 0 0 0 0 0 0

v14 1 1 1 1 1 1 0

estimates for � imply that this assumption cannot be justified empirically. Also, since
a larger �m,s causes larger conditional probabilities P

(s)
m, j (0), j > m, the default rates

reported in Boreiko et al. (2017) are overestimated.
Having Q, � and D, transition paths mimicking the actually observed historical

migrations can be simulated. Using the Monte-Carlo method, losses generated by a
portfolio can be estimated. Rather than moving in this direction, we concentrate in the
next section on the risk characteristics given by formulas involving the estimates of
Q, � and D.

6 Estimates

If Qm,s = 1, macroeconomic factors do not affect migrations in the credit class m
of the industry s, so such combinations are not considered further. As a curious fact
regarding the combination of M = 7 with S = 6, note that Q1,5 = 1 can be a
quantitative argument supporting the “too big to fail” theory in the financial sector.
In particular, an evidence of implicit too-big-to-fail bail-out guarantee policies of the
regulatory authorities. If M = 2 and S = 12, Q1,4 = 1 can be interpreted in the same
way. In sum, the financial sector debtors belonging to the most secure credit classes
seem to enjoy a special treatment.

Let us analyze first the results for the combination of M = 7 with S = 6. Given
in Table 5 percentages regarding the financial sector imply that the credit classes AA,
BBB, B and C exhibit under adverse conditions much stronger increase of default rate
than A and BB. (Since Q1,5 = 1, the variation equals zero for the credit class AAA.
See the formula for v

(5)
1,8(0) in Sect. 4.) The corresponding conditional default proba-

bilities are quoted in Table 6. For the four credit classes exhibiting the highest increase
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Table 2 0.001-support of D for S = 6 and M = 7

n\Industry sector s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 Probability

1 v1 v13 v8 v11 v1 v4 0.2661

2 v2 v9 v7 v13 v2 v11 0.1941

3 v3 v4 v1 v3 v10 v7 0.1124

4 v6 v9 v1 v1 v1 v11 0.0852

5 v4 v5 v5 v9 v3 v8 0.0533

6 v13 v8 v11 v12 v6 v2 0.0404

7 v7 v3 v9 v1 v5 v8 0.0395

8 v9 v1 v2 v11 v3 v3 0.0294

9 v6 v7 v9 v4 v12 v3 0.0262

10 v6 v12 v9 v3 v9 v11 0.0256

11 v5 v9 v4 v11 v3 v2 0.0192

12 v11 v12 v4 v6 v3 v8 0.0192

13 v11 v4 v4 v4 v7 v8 0.0191

14 v7 v4 v2 v9 v13 v1 0.0162

15 v7 v2 v13 v7 v7 v12 0.0147

16 v9 v3 v13 v13 v3 v12 0.0086

17 v11 v5 v4 v12 v11 v11 0.0078

18 v5 v1 v13 v1 v7 v11 0.0075

19 v11 v8 v13 v1 v5 v13 0.0052

20 v11 v5 v2 v12 v3 v13 0.0046

21 v11 v7 v2 v9 v13 v3 0.0032

22 v11 v10 v13 v8 v11 v12 0.0022

Table 3 Blocks, S = 12 and M = 2

Block\Credit class Investment grade Non-investment grade

v1 1 1

v2 0 1

v3 1 0

v4 0 0

of default rate, frequencies of adverse periods are given in Table 7. Explaining the out-
lier estimated for the credit class BBB, note that BBB is the lowest investment grade
creditworthiness level. Therefore, a migration towards a creditworthiness level below
BBB means a quality break. As a consequence, a downgrading within the investment
grade credit classes could be an easier decision for the rating agency than a downgrad-
ing to a junk level. In sum, a low frequency of adverse periods or, equivalently, a high
frequency of favorable years corresponds to the role of the credit class BBB as a last
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Table 4 0.001-support of D for S = 12 and M = 2

n\ Industry sector s 1 2 3 4 5 6 7 8 9 10 11 12 Probability

1 v1 v1 v2 v1 v2 v1 v1 v2 v2 v1 v3 v1 0.3350

2 v3 v1 v2 v1 v3 v2 v3 v1 v3 v2 v2 v2 0.2475

3 v2 v3 v2 v2 v2 v3 v1 v1 v1 v1 v1 v1 0.1382

4 v1 v3 v1 v3 v1 v3 v2 v3 v3 v3 v1 v3 0.1271

5 v2 v1 v1 v1 v1 v3 v3 v3 v1 v3 v1 v3 0.0615

6 v4 v3 v3 v1 v1 v1 v2 v3 v1 v1 v1 v1 0.0294

7 v2 v3 v1 v3 v3 v1 v3 v3 v2 v3 v1 v1 0.0180

8 v2 v2 v3 v3 v2 v2 v2 v3 v2 v3 v2 v1 0.0124

9 v4 v3 v3 v4 v3 v3 v3 v3 v1 v3 v1 v3 0.0118

10 v2 v2 v3 v2 v3 v2 v3 v3 v2 v3 v1 v3 0.0113

11 v4 v1 v3 v1 v3 v3 v1 v3 v1 v3 v3 v1 0.0074

Table 5 Increase of default rate
in financial sector under adverse
conditions

AA A BBB BB B C

105.74% 2.07% 68.81% 8.80% 73.98% 55.50%

Table 6 Default probabilities in
financial sector under adverse
conditions

AA A BBB BB B C

0.0004 0.0014 0.0026 0.0066 0.0453 0.1947

Table 7 Frequencies of adverse
years during the period
1991–2015

AA BBB B C

0.2839 0.0700 0.3743 0.5279

resort for investment grade debtors. Analyzing the respective entries of Q, provides
with a quantitative argument supporting such an explanation. In fact, Q2,5 = 0.5809
and Q3,5 = 0.6219 imply that credit rating migrations of the debtors rated at A and at
AA are strongly affected by market forces, while Q4,5 = 0.9482, the second largest
entry of Q estimated for the financial sector, causes almost idiosyncratic migrations
of the debtors rated at BBB. Of course, a list of the downgraded investment grade
debtors, rather than anonymized data, would be necessary for a more comprehensive
explanation.

Arguing about how likely is a contagion, as a factor of systemic risk, in the European
financial networks, Glasserman and Young (2015) “consider the possibility that the
failure of a bank causes the next two largest banks to default”. See p. 396. Depending
upon the country, the largest bank can be an investment grade debtor, like Deutsche
Bank in Germany, a well as a non-investment grade debtor, like Alpha Bank in Greece.
The frequencies quoted in Table 8 can be an input for such an analysis. We consider
three out of the four credit classes with the highest increase of default probabilities
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Table 8 Frequencies π
m1,m2,m3
5,5,5 (0, 0, 0)

m1=2,m2=6,m3=6 m1=2,m2=6,m3=7 m1=6,m2=6,m3=7 m1=6,m2=7,m3=7

0.2839 0.2839 0.3743 0.3743

Table 9 Increase of default rate
in credit class B under adverse
conditions

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

75.05% 49.10% 98.78% 56.55% 73.98% 48.55%

Table 10 Percentages v
(s)
2,3(0) for M = 2 and S = 12

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 s = 11 s = 12

95.79 75.39 45.04 68.18 95.57 58.02 103.10 192.84 83.12 173.67 70.65 116.40

under adverse conditions: A, B and C. (Given the nearly idiosyncrasy of migrations in
BBB indicated above, triples involving this credit-class have to be analyzed separately.)
The corresponding indexes are: m1 = 2,m2 = 6 and m3 = 7. Not all possible triples
are included. In fact, the argument of Glasserman and Young can hardly address a
group of three AA rated banks. Comparing the values quoted in Tables 7 and 8,
we conclude that the frequency of an adverse outcome for a triple of credit classes
coincides with the frequency of an adverse outcome for the most creditworthy entity
involved in the triple. Given that the creditworthiness is typically positively related
to the size, the pattern exhibited by the frequencies in Table 8 supports indirectly the
argument of Glasserman and Young. (For a less approximative analysis, a dataset,
where the counts regarding banks are separated from the counts characterizing the
remaining financial institutions, is necessary.)

Table 9 characterizes the increase of default rate under adverse conditions in the
(non-investment grade) credit class B for six industries. For a comparison, Table 10
quotes analogous values for the non-investment grade debtors classified into twelve
industry sectors.

Tables 11 and 12 contain correlations between indicators of favorable outcomes,
a measure of dependence between the corresponding couples of a credit class and an
industry sector. These dependencies are not directly observable, but they affect occur-
rence of credit events involving these couples. The values quoted in Table 11 concern
all seven non-default credit classes of two industry sectors: correlations regarding
agriculture, mining and construction are quoted below the main diagonal, while those
for transportation, technology and utility age given above the main diagonal. Every
diagonal element equals one as the correlation coefficient of an indicator with itself.
Table 12 contains correlations characterizing couples of an investment grade credit
debtor and a non-investment grade debtor classified into twelve industry sectors. Only
combinations of industry sectors corresponding to the entries of Q that fall below 1 are
included. (Remember, if Qm,s = 1, macroeconomic factors do not affect migrations
in the credit classm and industry s.) In a portfolio, strongly positively correlated assets
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Table 11 Correlations
Cm, j
1,1 (1, 1) for m ≥ j and

Cm, j
3,3 (1, 1) for m ≤ j

m\ j 1 2 3 4 5 6 7

1 1.00 −0.27 0.16 −0.14 0.34 −0.37 0.39

2 −0.31 1.00 −0.57 0.17 0.11 0.04 −0.26

3 0.09 −0.30 1.00 0.09 −0.22 0.24 0.40

4 −0.27 −0.16 0.11 1.00 0.20 0.08 −0.08

5 0.21 0.13 −0.09 −0.62 1.00 −0.68 −0.30

6 0.27 0.60 0.14 −0.21 0.32 1.00 0.59

7 0.50 0.41 0.19 −0.34 0.42 0.77 1.00

Table 12 Correlations C1,2
s1,s2 (1, 1) for S = 12 and M = 2

s1\s2 1 2 3 4 5 6 7 8 9 10 11 12

1 −0.18 0.49 0.44 −0.04 −0.18 0.55 0.10 0.35 −0.49 0.25 −0.43 0.13

3 0.17 −0.46 −0.45 −0.73 0.17 −0.52 −0.12 −1.00 −0.10 −0.93 0.41 −0.83

6 0.82 −0.42 0.04 −0.20 0.88 −0.44 0.73 −0.26 0.68 −0.23 −0.44 −0.25

8 −0.46 −0.49 −0.20 −0.32 −0.46 −0.52 −0.56 −0.44 −0.55 −0.41 0.98 −0.37

10 0.88 −0.40 −0.16 −0.26 0.88 −0.42 0.73 −0.36 0.74 −0.33 −0.42 −0.30

11 0.85 −0.41 −0.06 −0.19 0.85 −0.43 0.70 −0.31 0.71 −0.28 −0.43 −0.31

12 0.88 −0.40 −0.16 −0.26 0.88 −0.42 0.73 −0.36 0.74 −0.33 −0.41 −0.30

can provoke cascades of defaults. The simulations reported in Kaniovski and Pflug
(2007) illustrate this possibility. To the contrary, combining strongly negatively corre-
lated assets can imply smaller losses. To this end, the cells with correlations given in
italic mark the combinations that should be avoided, while the cells with correlations
given in bold correspond to the couples of credit classes that can mitigate losses in the
corresponding industries. The cutoff levels are ±0.5.

7 Conclusion

A numerical technique is suggested for estimating hidden and observable risk charac-
teristics. It exploits a probability distribution on macroeconomic scenarios. A scenario
characterizes the conditions affecting every combination of a credit class and an indus-
try sector. The conditions can be favorable or adverse. Given historical migrations,
the maximum likelihood principle is used to estimate the distribution. As a result, a
fine-grained extension of the standard business cycle theory emerges. Since through-
the-cycle ratings were used, this fine-grained structure is rather unexpected. See Kiff
et al. (2013) for an analysis of the through-the-cycle rating approach. We guess that,
applying our technique to point-in-time ratings, even a more interesting pattern can
emerge. Dealing with such an input, constraints (4) can be too restrictive.

Transition counts is the only required input. For practically interesting combinations
of the number of non-default credit classes M and the number of industry sectors S,
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the number of unknown parameters is combinatorial and it greatly exceeds the number
of observations. Therefore, the corresponding non-linear estimation problem cannot
be solved with a classical method. Instead, a heuristic algorithm was suggested. It
entails a local search method and a constructive method. Performing the local search,
a set of macroeconomic scenarios is fixed. This is a continuous space optimization
problem. All results presented in this paper were obtained with the IP method as
a continuous space solver. The constructive search in the space of macroeconomic
scenarios resembles a genetic algorithm (GA).Unlike in a classical GA, recombination
is not used and an allele entails more than one digit in our case. Instead of dealing
with all mutants, a random sample can be used in some instances.

Two combinations of M and S are considered: M = 7 with S = 6 and M = 2 with
S = 12. The corresponding numbers of unknowns are 84 + 242 and 48 + 224.

InHölzl et al. (2019) a similar numerical techniquewas applied for analyzing survey
data.
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Appendix 1

The threshold for identifying the significant macroeconomic scenarios is 0.001. Solv-
ing a continuous space optimization problem, up to five different initial points were
tried in several cases. In all instances the restarts did not affect the solution.

First, the set V0
0.001 of significant block-structures is extended with V1. If M = 7

and S = 6, there are 14 binary strings in V0
0.001 and 6552 binary strings in V1. The

respective numbers equal 4 and 1728 for the combination of M = 2 with S = 12.
The continuous space optimization problems for this extension, containing 6650 and,
respectively, 1780 unknowns, were solved with the IPmethod. Since R = 10 was used
for both combinations ofM and S, these are approximations rather than exact solutions.

Denote by V̄
1
0.001 the corresponding set of all statistically significant macroeconomic

scenarios.
Second, V̄

1
0.001 is extended using V2. For M = 2 and S = 12 there are 1584

strings in V2. The corresponding continuous space optimization problem was solved
with the IP method. Since R = 20 was used, an approximation was obtained. If
M = 7 and S = 6, there are 35490 strings in V2. For our computational resources,
the corresponding continuous space optimization problem is too hard. Therefore, we
had to split V2 into 10 subsets, each containing 3549 elements. They were used one
after another for extensions. Two values of R were applied: 20 and 50. At the end, an
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Table 13 Improvement of the
likelihood value

LH−L0

L0
100 ln LH−ln L0

ln L0
100

S = 6 and M = 7 1.1522 × 106% 0.6883%

S = 12 and M = 2 44241% 1.0030%

approximation to the solution for the sample space limited to binary strings with at
most two mutations was obtained.

Third, the set of significant macroeconomic scenarios V̄
2
0.001 with at most two

mutations is extended using a random sample from V3. In the sample, binary strings
may not repeat. If M = 7 and S = 6, the sample contains 35000 strings. This set
comprise 10 subsets, each formed by uniformly, that is with the probabilities specified
in Sect. 3, sampled 250 mutants of a block-structure. The subsets are used one after
another for extensions. The penalties term with R = 20 and R = 50 was applied in
some of the extensions. At the end, an approximation to the solution for the sample
space limited to binary stringswith atmost threemutationswas obtained. IfM = 2 and
S = 12, sampling uniformly 350mutants for each block-structure, 1400 binary strings
were generated. They were used for a single extension. Since R = 20 was applied,
an approximation to the solution for the sample space limited to binary strings with at
most three mutations was obtained.

Thereafter extensions employed random samples from Vn, n = 4, 5, . . . , S − 1.
Always 250 mutants were sampled uniformly for each block-structure and these sub-
sets were used sequentially for extensions if M = 7 and S = 6, while, sampling
uniformly 350 mutants per block-structure, a single bulk of 1400 binary strings was
used if M = 2 and S = 12. With such numbers of mutants, the total number of binary
strings used for extensions remains approximately equal to the cardinality of V2. In
several cases, the value of R was 10, 20 or 50 dealing with S = 6 and M = 7, while
in the case of S = 12 and M = 2 the three values, 10, 20 and 30, of R were applied.

Table 13 characterizes the improvement of the maximal likelihood value LH

achieved by the heuristic algorithm. As the benchmark the maximal value L0 attained
on the block-structures is used. A smaller relative increase of the likelihood value for
a larger MS is consistent with a smaller ratio of the number of binary strings tested
by the heuristic algorithm to the total number 2MS of mutants. We observed that the
values Qi,s stabilize relatively early in the course of calculations. Testing mutants
with at most three mutations is typically sufficient to stabilize the third digit after the
decimal point. To the contrary, the entries of � keep adjusting to the variations of D.

Since for S = 6 and M = 2 there are only 212 = 4096 binary strings involved,
the corresponding likelihood maximization problem can be solved exactly with the IP
method.We consider this case in order to illustrate efficiency of the heuristics and some
of the complications discussed above. The threshold 0.001 remains. This threshold
implies 64 significant macroeconomic scenarios according in the exact solution. Total
probability of insignificant scenarios amounts to 72.59%. On the one hand, there are
too many, for a conceptual analysis, significant macroeconomic scenarios. On the
other hand, the total probability of all insignificant scenarios is too large.

The heuristic solutions was evaluated according to the scheme explained above.
The four building blocks and their probabilities are given in Table 14.

123



T. Gärtner et al.

Table 14 Blocks and their probabilities, S = 6 and M = 2

Block\Credit class Investment grade Non-investment grade Probability

v1 1 0 0.4235

v2 0 1 0.3051

v3 1 1 0.2448

v4 0 0 0.0265

Table 15 0.001-support of
heuristic solution, M = 2 and
S = 6

n\Industry sector s 1 2 3 4 5 6 Probability

1 v1 v4 v1 v4 v3 v1 0.5563

2 v2 v2 v2 v2 v4 v2 0.2330

3 v4 v1 v3 v3 v4 v1 0.0812

4 v3 v2 v3 v2 v1 v2 0.0756

5 v3 v1 v3 v1 v1 v2 0.0216

6 v3 v1 v4 v4 v1 v4 0.0120

7 v3 v4 v3 v1 v4 v1 0.0108

8 v3 v1 v4 3 v4 v3 0.0077

9 v3 v4 v1 v1 v4 v4 0.0013

Table 16 Variation of LH for S = 6 and M = 2

LH−L0

L0
100 LH−L∗

L∗ 100 ln LH−ln L0

ln L0
100 ln LH−ln L∗

ln L∗ 100

6.8783 × 1020% −0.9347% 7.1386% −0.0014%

Since there are 360 binary strings inV2 in this case, sampling 90 mutants for every
block-structure, randomsamples fromVn, n = 3, 4, 5weregenerated, each containing
360 binary strings.Using penalty values 5 and 10, the approximate distribution D given
in Table 15 was estimated. Probability assigned to all insignificant macroeconomic
scenarios was 0.05%. Table 16 characterizes the relative standing of LH against L0 as
well as against the maximum value L∗ found with the exact algorithm. The heuristic
solution appears to be just slightly worse than the exact one, being more convenient
for a conceptual analysis of the corresponding macroeconomic scenarios.

Appendix 2

Distribution of migration counts among credit classes and industry sectors is charac-
terized by Tables 17 and 18. The cell belonging to row s and column m contains the
number of counts available for the industry sector s and the credit class m.
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Table 17
∑T

t=1
∑M+1

m1=1 I
t (s,m,m1) for M = 2 and S = 12

m\s 1 2 3 4 5 6 7 8 9 10 11 12 Total

1 3391 5242 2073 17518 1298 2370 2053 27447 1264 1661 2136 9246 75699

2 3129 4096 1661 1647 1296 1776 1920 7246 2316 1026 1021 890 28024

Total 6520 9338 3734 19165 2594 4146 3973 34693 3580 2687 3157 10136 103723

Table 18
∑T

t=1
∑M+1

m1=1 I
t (s,m,m1) for S = 6 and M = 7

s\m 1 2 3 4 5 6 7 Total

1 118 263 719 1531 1125 1068 128 4952

2 315 1159 3774 4483 3655 3501 331 17218

3 369 1634 5362 6232 1861 1840 259 17557

4 39 225 805 1278 1004 1126 64 4541

5 2760 11186 17978 13142 5730 2691 543 54030

6 52 367 607 1301 1316 1642 140 5425

Total 3653 14834 29245 27967 14691 11868 1465 103723

The following migration matrices were estimated for S = 6 and M = 7:

P(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9492 0.0508 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0114 0.9202 0.0646 0.0038 0.0000 0.0000 0.0000 0.0000
0.0000 0.0167 0.9110 0.0723 0.0000 0.0000 0.0000 0.0000
0.0007 0.0033 0.0202 0.9406 0.0320 0.0007 0.0020 0.0007
0.0000 0.0000 0.0000 0.0507 0.8640 0.0782 0.0027 0.0044
0.0000 0.0000 0.0000 0.0047 0.0496 0.8558 0.0552 0.0346
0.0000 0.0000 0.0000 0.0078 0.0000 0.1797 0.5234 0.2891

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9238 0.0667 0.0095 0.0000 0.0000 0.0000 0.0000 0.0000
0.0017 0.9241 0.0733 0.0009 0.0000 0.0000 0.0000 0.0000
0.0000 0.0101 0.9367 0.0509 0.0024 0.0000 0.0000 0.0000
0.0000 0.0002 0.0272 0.9275 0.0379 0.0060 0.0004 0.0007
0.0000 0.0003 0.0005 0.0487 0.8627 0.0777 0.0022 0.0079
0.0000 0.0000 0.0009 0.0014 0.0583 0.8538 0.0531 0.0326
0.0000 0.0000 0.0000 0.0000 0.0060 0.1148 0.5347 0.3444

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9133 0.0813 0.0027 0.0027 0.0000 0.0000 0.0000 0.0000
0.0031 0.8727 0.1138 0.0086 0.0006 0.0012 0.0000 0.0000
0.0000 0.0084 0.9215 0.0660 0.0026 0.0004 0.0006 0.0006
0.0000 0.0003 0.0345 0.9387 0.0209 0.0029 0.0006 0.0021
0.0011 0.0000 0.0054 0.0752 0.8280 0.0742 0.0064 0.0097
0.0000 0.0000 0.0060 0.0022 0.0804 0.7984 0.0636 0.0495
0.0000 0.0000 0.0039 0.0039 0.0077 0.1081 0.4865 0.3900

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P(4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9487 0.0513 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.9378 0.0622 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0037 0.9019 0.0944 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0282 0.9124 0.0540 0.0047 0.0000 0.0008
0.0010 0.0000 0.0020 0.0488 0.8516 0.0906 0.0020 0.0040
0.0000 0.0000 0.0000 0.0018 0.0533 0.8810 0.0409 0.0231
0.0000 0.0000 0.0000 0.0000 0.0000 0.0938 0.4688 0.4375

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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P(5) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8851 0.1080 0.0047 0.0007 0.0000 0.0000 0.0000 0.0014
0.0066 0.9057 0.0826 0.0038 0.0002 0.0007 0.0003 0.0002
0.0016 0.0503 0.8932 0.0506 0.0018 0.0008 0.0004 0.0014
0.0023 0.0088 0.0829 0.8361 0.0595 0.0078 0.0011 0.0015
0.0009 0.0077 0.0209 0.1878 0.7003 0.0679 0.0084 0.0061
0.0030 0.0052 0.0111 0.0364 0.1903 0.6815 0.0465 0.0260
0.0037 0.0000 0.0018 0.0037 0.0387 0.1510 0.6759 0.1252

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P(6) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9038 0.0577 0.0192 0.0192 0.0000 0.0000 0.0000 0.0000
0.0136 0.9401 0.0300 0.0163 0.0000 0.0000 0.0000 0.0000
0.0000 0.0132 0.9110 0.0741 0.0000 0.0016 0.0000 0.0000
0.0008 0.0000 0.0292 0.9185 0.0430 0.0077 0.0000 0.0008
0.0000 0.0000 0.0000 0.0403 0.8754 0.0752 0.0023 0.0068
0.0000 0.0000 0.0006 0.0030 0.0621 0.8660 0.0420 0.0262
0.0000 0.0000 0.0000 0.0000 0.0286 0.1500 0.5357 0.2857

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For S = 12 and M = 2 the transition matrices are:

P(1) =
(
0.9752 0.0245 0.0003
0.0291 0.9338 0.0371

)

, P(2) =
(
0.9762 0.0235 0.0004
0.0229 0.9424 0.0347

)

, P(3) =
(
0.9870 0.0130 0.0000
0.0229 0.9506 0.0265

)

,

P(4) =
(
0.9928 0.0063 0.0010
0.0522 0.9101 0.0376

)

, P(5) =
(
0.9646 0.0339 0.0015
0.0309 0.9352 0.0340

)

, P(6) =
(
0.9793 0.0207 0.0000
0.0248 0.9521 0.0231

)

,

P(7) =
(
0.9771 0.0224 0.0005
0.0250 0.9240 0.0510

)

, P(8) =
(
0.9677 0.0311 0.0012
0.1813 0.8033 0.0153

)

, P(9) =
(
0.9684 0.0316 0.0000
0.0155 0.9512 0.0332

)

,

P(10) =
(
0.9789 0.0181 0.0030
0.0263 0.9006 0.0731

)

, P(11) =
(
0.9841 0.0154 0.0005
0.0264 0.9354 0.0382

)

, P(12) =
(
0.9875 0.0115 0.0011
0.1000 0.8775 0.0225

)

.
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