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Abstract
When observational studies are used to establish the causal effects of treatments, 
the estimated effect is affected by treatment selection bias. The inverse propensity 
score weight (IPSW) is often used to deal with such bias. However, IPSW requires 
strong assumptions whose misspecifications and strategies to correct the misspeci-
fications were rarely studied. We present a bootstrap bias correction of IPSW (BC-
IPSW) to improve the performance of propensity score in dealing with treatment 
selection bias in the presence of failure to the ignorability and overlap assumptions. 
The approach was motivated by a real observational study to explore the potential 
of anticoagulant treatment for reducing mortality in patients with end-stage renal 
disease. The benefit of the treatment to enhance survival was demonstrated; the sug-
gested BC-IPSW method indicated a statistically significant reduction in mortality 
for patients receiving the treatment. Using extensive simulations, we show that BC-
IPSW substantially reduced the bias due to the misspecification of the ignorability 
and overlap assumptions. Further, we showed that IPSW is still useful to account for 
the lack of treatment randomization, but its advantages are stringently linked to the 
satisfaction of ignorability, indicating that the existence of relevant though unmeas-
ured or unused covariates can worsen the selection bias.
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1 Introduction

When the goal is to establish the causal effects of treatments, randomized con-
trolled trials (RCTs) are the gold standard (Kovesdy et al. 2012). Due to various 
reasons, including costs, ethicality, and the growing easiness of access to regis-
ters and large follow-up data, observational studies are increasingly used for the 
evaluation of treatment effect differences between groups of individuals (Austin 
2019). The present work is inspired by an observational study, where the objec-
tive was to explore the potential of oral anticoagulant treatment (OAT) in reduc-
ing the risk of mortality due to atrial fibrillation in patients with end-stage renal 
disease (ESRD) (Genovesi et  al. 2014). The observational nature of the study 
introduces a selection bias into the estimated average treatment effect as the lack 
of randomization can cause the treated and control groups to be different in terms 
of baseline characteristics (Lunceford and Davidian 2004). This treatment selec-
tion bias is commonly known as confounding bias or non-exchangeability prob-
lem (Hernán and Robins 2020).

Several methods have been used to account for baseline differences between 
treated and untreated subjects. These include from the simple model adjustment to 
g-computation (Hernán and Robins 2020), propensity score-based matching and 
stratification (Austin and Small 2014; Imbens and Rubin 2015), and doubly robust 
estimators (Saarela et al. 2016). In particular, the inverse propensity score weighting 
[(IPSW, Rosenbaum and Rubin (1983)], under the potential outcomes approach, has 
been widely used to address the selection bias of the estimated average treatment 
effect. IPSW uses weights based on the propensity score to balance baseline covari-
ates between the treated and control groups so that the two groups are similar in 
terms of pre-treatment covariates (Joffe et al. 2004; Hernán and Robins 2020). The 
use of IPSW is theoretically appealing as it intends to make the groups comparable 
(Kovesdy et al. 2012). In practice, however, the approach requires strong assump-
tions in order to successfully balance baseline covariate differences and allow esti-
mation of the treatment effect with reduced selection bias (Rosenbaum and Rubin 
1983; Frölich 2007). Specifically, the performance of IPSW critically depends on 
the ‘strongly ignorable treatment assignment’ condition, which requires the valid-
ity of two main assumptions. The first one is the ignorability restriction, which 
implies that there is no unobserved covariate that affects both the outcome and treat-
ment simultaneously (Rosenbaum and Rubin 1983; Joffe et al. 2004). The second is 
known as the overlap assumption (Hernán and Robins 2020), which indicates that 
after IPSW rebalance, the distributions of the baseline covariates are comparable 
between the treated and control groups (McDonald et  al. 2013). It has been sus-
pected that the IPSW lacks robustness against the misspecification of these assump-
tions (Rubin 2004). Indeed, Morgan and Todd (2008) warn that applying the pro-
pensity score methods without due attention to the underlying assumptions, under 
the justification that these models are more advanced than the unweighted analysis 
(dubbed naïve henceforth), may provide a worse biased estimate. Mao et al. (2019) 
and Zhou et al. (2020) suggested the use of stabilized propensity score weights to 
limit the impact of the misspecification of the overlap assumption.
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One statistical tool that can be used to improve the performance of the propensity 
score methods in estimating the average treatment effect for observational data is the 
bootstrap technique. The bootstrap is a well-known resampling method to assess the 
precision, whether bias or variability, of estimators with a complex analytic structure 
and unknown probability distribution (Efron and Tibshirani 1994). Some research-
ers have shown a promising impact of the bootstrap to enhance the propensity score-
based treatment effect estimate. Peng and Jing (2011) adopted the bootstrap to esti-
mate standard error for the average treatment effect, while Austin and Small (2014) 
used it to study the sampling variability of treatment effect focusing on propensity 
score matching. For the case of IPSW, a simulation by Gubhinder and Voia (2018) 
indicated that the bootstrap reduces the bias of the treatment effect on a Gaussian 
outcome. Apart from these limited efforts, the potential of bootstrap has not been 
sufficiently explored in conjunction with IPSW to correct bias due to the misspeci-
fication of key assumptions. Further, a broader simulation is lacking that illustrates 
the impact of failure to hold key assumptions that can be useful for applied research-
ers to understand the drawbacks and benefits of the propensity score.

This paper presents a bootstrap-corrected IPSW (BC-IPSW) to address selection 
bias when the propensity score weights are considered for the estimation of treat-
ment effect under the misspecification of the ignorability and overlap assumptions. 
The BC-IPSW will be applied on the real ESRD dataset to pursue an unbiased esti-
mate of the OAT effect on time-to-event mortality endpoint. The goal is twofold: (a) 
to evaluate whether OAT could lead to a reduction in mortality. The effect of OAT 
estimated by BC-IPSW will be compared with the estimates obtained using IPSW 
and the naïve (basic unweighted) methods. (b) To examine the impact of failure to 
hold the ignorability and overlap assumptions by a simulation study and to assess to 
what extent the BC-IPSW can eliminate or reduce the bias of these misspecifications 
under various scenarios. Both goals will be fostered based on real ESRD data.

In Sect.  2, we describe the ESRD application dataset. Section  3 presents the 
methodologies: the naïve approach, the IPSW and BC-IPSW methods. The results 
of the ESRD application dataset are presented in Sect. 4. The simulation study is 
discussed in Sect. 5, covering the simulation design and associated results. Section 6 
provides a concluding discussion.

2  Motivating application data

The motivating application is based on determining the effectiveness of oral anti-
coagulant treatment (OAT) in reducing mortality due to  atrial fibrillation (AF) in 
patients  with end-stage renal disease (ESRD). OAT has been the treatment of 
choice to prevent thromboembolic events in ESRD patients with AF, but its benefi-
cial effects are uncertain, also due to the high risk of bleeding in ESRD (Genovesi 
et al. 2014). The data are coming from a prospective cohort study of 290 patients 
aged 44–93 years with atrial fibrillation and ESRD in ten Italian hemodialysis cent-
ers. The patients were followed up for 4 years from October 31, 2010, to October 
31, 2014. At recruitment, 134 patients ( 46.2% ) received OAT prescription and 72 
(53%) died during the 4-year follow-up. Among the 156 control patients, 98 (63%) 
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died. The median survival time was 2.62 years, with a 95% confidence interval of 
2.20 − 3.86 . We considered the overall mortality as the endpoint, and several base-
line covariates were measured at patient recruitment. After preliminary analyses, 
nine covariates were considered which are also known confounders by the medical 
studies on the topic (Camm et al. 2012). Table 1 reports these patient characteristics 
of the ESRD dataset. The research interest is to quantify the estimate of the OAT 
effect in reducing mortality considering the observational nature of the study. The 
data have been previously analyzed by Genovesi et al. (2014, 2017).

3  Methods

In this section, we outline the methods we considered to address the two aims dis-
cussed in the Introduction section. We start with a recollection of the potential 
outcomes framework to causal inference in Subsect. 3.1. We then discuss in Sub-
sect. 3.2 the model we focus on for causal inference on OAT treatment and what we 
call the naïve estimation from observational data, which ignores the risk of treat-
ment selection bias. Then, Sect.  3.3 describes the IPSW to account for the selec-
tion bias, and Sect. 3.4 presents BC-IPSW to further improve treatment effect esti-
mation under the risk of misspecification of crucial requirements to IPSW. Let T∗

i
 

Table 1  Distributions of patient characteristics of the ESRD dataset by OAT at recruitment

Frequency and percentage (%) are reported as all characterstics are binary.
∗ The other AF category ParPers is the sum of patients with paroxysmal and persistent atrial fibrillation

Patient characteristics OAT at recruitment

No (%) Yes (%) Total (%)

Age (years) ≤ 65 36 (12.4) 24 (8.3) 60 (21)
≥ 65 120 (41.4) 110 (37.9) 230 (79)

Gender Female 68 (23.4) 48 (16.6) 116 (40)
Male 88 (30.3) 86 (29.7) 174 (60)

Atrial fibrillation  (AF) ∗ Permanent 33 (11.4) 68 (23.4) 101 (35)
ParPers 123 (42.4) 66 (22.8) 189 (65)

Previous bleeding Yes 41 (14.1) 16 (5.5) 57 (20)
No 115 (39.6) 118 (40.7) 233 (80)

Antiplatelet therapy  (AT) Yes 112 (38.6) 27 (9.3) 139 (48)
No 44 (15.2) 107 (36.9) 151 (52)

Hypertension Yes 133 (45.9) 102 (35.1) 235 (81)
No 23 (7.9) 32 (11.1) 55 (19)

Diabetes mellitus  (DM) Yes 52 (17.9) 39 (13.5) 91 (31)
No 104 (35.9) 95 (32.8) 199 (69)

Ischaemic stroke  (IS) Yes 22 (7.7) 21 (7.3) 43 (15)
No 134 (46.1) 113 (38.9) 246 (85)

Heart failure  (HF) Yes 57 (19.9) 58 (20) 115 (40)
No 99 (34) 76 (26) 175 (60)
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be the failure time of a subject i (i = 1,… , n) in the cohort of size n = 290 . Since 
the survival times are affected by the right censoring, the observed survival time is 
Ti = min (T∗

i
,Ci) , where Ci is the right censoring time. T∗

i
 and Ci are assumed to be 

independent, as commonly done in survival analysis (Marubini and Valsecchi 1996; 
Arisido et al. 2019). The outcome is denoted by Dit , which is the mortality event for 
subject i taking values 1 if Ti ≤ t and 0 if Ti > t . Let zi be the indicator of observed 
treatment status taking value 1 if subject i received treatment and 0 if assigned to 
control, and �i be the individual vector of baseline covariates. The interest is to esti-
mate the unbiased effect of OAT on mortality, denoted by � , using the hazard ratio 
scale.

3.1  Treatment effect estimation and assumptions

In the potential outcomes framework (Imbens and Rubin 2015), for each subject i 
there exist two potential outcomes: D1

it
 and D0

it
 , the mortality outcome if zi = 1 and 

zi = 0 , respectively. In the context of survival analysis (e.g., Hernán and Robins 
2020), the causal effect for subject i is the hazard ratio (HR) between D1

it
 and D0

it
 , 

which is never observed since either D1
it
 or D0

it
 can be observed, but not both (Lunc-

eford and Davidian 2004). The actual observed outcome Dit is the one that would 
have been seen under the actual treatment assignment:

The parameter of interest is the average treatment effect in the population (ATE), 
i.e., the average HR if all individuals were to receive the treatment against if all indi-
viduals were control. Another measure of treatment effect is the average treatment 
effect for the treated (ATT) as given by averaging HR over the treated ( zi = 1 ) group. 
Since ATE and ATT do not coincide in an observational study, the choice between 
them depends on the specific application (e.g., Pirracchio et al. 2016). In this paper, 
we focus on identifying the ATE of OAT in the ERSD dataset. For the unbiased 
estimation of ATE, two key assumptions are required. First let e(�i) = Pr(zi = 1|�i) 
define the propensity score, namely the probability of treatment assignment condi-
tional on �i (Hernán and Robins 2020). The first assumption is the ignorability or 
conditional independence assumption:

where ⊥⊥ denotes the statistical independence. The assumption states that provided 
that �i captures all confounders and that there are no omitted relevant covariates, 
assignment to treatment and the potential responses are unrelated. Under this 
assumption, the treatment assignment is ignorable (Rosenbaum and Rubin 1983). 
The second is the overlap or positivity assumption, which implies that conditional 
on e(�i) , the distribution of �i does not depend on zi . In other words, any subject in 
the treatment group has the potential match in the control group (McDonald et al. 
2013), indicating that e(�i) of the two groups overlaps. When the combination of 

Dit = ziD
1
it
+ (1 − zi)D

0
it

(1)(D1
it
,D0

it
)⊥⊥zi|�i,
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ignorability and overlap assumptions holds, the treatment assignment is said to be 
‘strongly ignorable’(Rosenbaum and Rubin 1983).

3.2  The Naïve estimation

To evaluate the impact of OAT treatment, the survival endpoint is specified as a 
function of treatment status and baseline characteristics, typically using the Cox pro-
portional hazards model (Cox 1972)

where h0(t) denotes the unspecified baseline hazard function and �nv is the log haz-
ard measuring the association between the treatment zi and the hazard hi(t) . Fur-
ther, �i denotes the n × 9 matrix of the nine baseline covariates as listed in Table 1 
and � denotes a column vector of the corresponding regression coefficients. With 
the naïve approach without accounting for the selection bias, parameters are esti-
mated based on maximizing the partial likelihood (Cox 1972), and the hazard ratio 
HR = exp(�nv) is interpreted as the relative change in the hazard at any time t for a 
subject who received OAT relative to a subject in the control group in the presence 
of confounding covariates.

3.3  Propensity score weighted estimation

The inverse propensity score weighting (IPSW) is a balancing strategy based on the 
propensity score e(�i) to match baseline characteristics between treated and con-
trol patients in observational studies (Imbens and Rubin 2015; Hernán and Robins 
2020). In practice, the probability distribution of zi|�i is unknown and the propensity 
score e(�i) has to be estimated from the observed data, usually by modeling the con-
ditional probability Pr(zi = 1|�i) via a parametric multivariable logistic regression 
model (Joffe et al. 2004; Hernán and Robins 2020)

where � is the column vector of regression coefficients measuring the effect of each 
covariate on the probability of treatment assignment. We then used the estimated �̂ 
to evaluate the propensity score ê(�i)

Figure 1a shows the estimated distribution of ê(�) in the ERSD dataset. The treated 
group appears to have higher propensity scores than the control group, except for a 
small number of control patients who act as outliers. The inverse propensity score 
weight (IPSW) �̂�(�i) =

1

ê(�i)
 was used to estimate the weighted treatment effect. For 

the ERSD dataset, this is achieved by fitting �̂�(�i)-adjusted Cox model, i.e., maxi-
mizing the weighted partial likelihood of the form

(2)hi(t) = h0(t) exp(�nvzi + �i�)

(3)Pr(zi = 1|�) = log
Pr(zi = 1|�i)

1 − Pr(zi = 1|�i)
= �i�

(4)ê(�i) =
exp(�i�̂)

1 + exp(�i�̂)
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where R(t) is the risk set at time t and �i indicates the censoring status of a subject. 
Notice that by setting �̂�j(t) = 1 for all j ∈ R(t) , Eq. (5) is the usual unweighted par-
tial likelihood. exp(𝛽ps) is the marginal hazard ratio for a subject who received OAT 
relative to a subject in the control group accounting for the selection bias. The stand-
ard error of 𝛽ps was computed by the robust variance estimation to account for the 
weighting (Joffe et al. 2004; Buchanan et al. 2014). The IPSW adjusts for the treat-
ment selection bias provided that the ignorability and overlap assumptions, as dis-
cussed in Sect. 3.1, hold. On the other hand, misspecification of either one or both 
has the potential to lead to a biased 𝛽ps . For instance, the ignorability assumption 
in our ERSD data anticipates that the nine-dimensional covariate vector in Table 1 
used to estimate ê(�i) is complete and represents all relevant covariates that affect 
the treatment status. This is quite a strong constraint, and its possible deviation from 
this assumption poses the risk of not eliminating or even worsening the selection 
bias.

3.4  Bootstrap‑corrected IPSW estimation

When IPSW fails to eliminate the selection bias due to the misspecification of one 
or more key assumptions, we consider a bootstrap bias correction of the IPSW (BC-
IPSW). The bootstrap, and particularly its nonparametric original version, is a well-
known computer-intensive methodology to assess estimation accuracy. Its main 

(5)PL (𝛽ps) =

n�

i=1

�
exp(𝛽pszi)∑

j∈R(ti)
�̂�j(t) exp(𝛽pszj)

�𝛿i
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Fig. 1  a The distribution of the estimated propensity scores. The box indicates the first and third quar-
tiles with a line drawn at the median, b the standardized mean difference of baseline covariates between 
treated and control groups after IPSW adjustment
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advantage relies on its ability to provide a resampling simulation of the unknown 
probability distribution of an estimator, known as bootstrap distribution, regardless 
of its analytical complexity. Consequently, bootstrap estimates of the estimator’s 
expectation and variance are offered upon the bootstrap distribution, as well as per-
centiles and confidence intervals. The underlying inferential idea is based on a com-
bination of plug-in frequentist estimation and Monte Carlo (MC) simulation (Efron 
1979; Efron and Hastie 2016). For the purposes of this paper, we focus on the bias 
of the IPSW estimator, i.e., the difference bias

(
𝛽ps

)
= E

(
𝛽ps

)
− 𝛽 where the expec-

tation is under the probability distribution of the IPSW estimator. We now illustrate 
how to compute the bootstrap estimate of such bias in order to improve upon the 
IPSW estimate by constructing a BC-IPSW estimate.

The rationale behind bootstrapping the bias can be simplified as rooted on the 
frequentist interpretation of E

(
𝛽ps

)
 which, ideally, is what we could observe by 

repeatedly sampling new version of treated and control groups of patients to observe 
the estimator’s distribution. With the bootstrap, we simulate this by repeatedly re-
sampling from the available data stratified by the treatment status that gives a MC-
induced estimator’s distribution (Tu and Shao 1995). The first step of the bootstrap 
algorithm consists of repeatedly drawing with replacement from the single original 
sample a sufficiently large number B of bootstrap samples (Efron and Tibshirani 
1994; Conti et  al. 2020). As applied to our original ESRD data, we set a number 
B = 2000 of bootstrap samples each with the same size n = 290 . For each of the B 
bootstrap samples, we computed a replication of the IPSW-adjusted treatment effect 
𝛽∗
ps1
, 𝛽∗

ps2
,… , 𝛽∗

psB
 , which provides the bootstrap distribution of 𝛽ps . Let 𝛽∗

ps
 denote the 

average of the bootstrap distribution B−1
∑B

b=1
𝛽∗
psb

 , which is in fact the bootstrap 
version EB

(
𝛽ps

)
 of the expectation E

(
𝛽ps

)
 . The bootstrap estimate for the bias of the 

IPSW estimator is given by

The bootstrap bias estimate is then used to update IPSW estimator 𝛽ps with the aim 
to correct the residual bias. Thus, the bootstrap-corrected BC-IPSW average treat-
ment effect estimator 𝛽c is given in the form

In other words, 𝛽c is obtained after a double bias correction in a single framework. 
First, IPSW was adopted to produce comparable treated and control groups in terms 
of pre-treatment differences. Second, the bootstrap is applied in an attempt to 
improve the IPSW estimate against violation of crucial assumptions. As a remark, a 
BC-IPSW-estimated effect confidence interval can be computed as bootstrap inter-
val based on bias-corrected percentiles distribution (𝛽∗

psb
, b = 1,… ,B) (Efron 1979). 

More specifically, the bias-corrected 95% confidence interval, according to Eq. 6, is 
given by [𝛽∗

ps,0.025
− biasB(𝛽ps), 𝛽

∗
ps,0.975

− biasB(𝛽ps)]. The BC-IPSW approach can 
be computationally intensive for choices of very large B. However, the approach 
does not require analytic computation, which should appeal to applied researchers 
for its broader applicability (Kim and Sun 2016).

(6)biasB(𝛽ps) = 𝛽∗
ps
− 𝛽ps.

(7)𝛽c = 𝛽ps − biasB(𝛽ps) = 2𝛽ps − 𝛽∗
ps
.
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4  Results of the application data

The results of the analysis of the ESRD dataset, which was described in Sect.  2, 
are shown in Table 2. The results are reported in terms of parameter estimate, the 
hazard ratio (HR) along with the 95% confidence interval ( 95% HR CI). In general, 
the estimated HR from the three methods indicated that OAT treatment has the ben-
efit of improving survival. However, the impact of the estimated treatment effect on 
mortality varies across the methods, ranging from a HR of 0.65 for the BC-IPSW 
to 0.90 for the naïve analysis. The naïve estimate gives indication for little differ-
ence in the mortality risk between treated and untreated groups, possibly minimiz-
ing the effect of the treatment due to selection bias. We noticed a great variability 
among the 95% confidence intervals, which indicated that both the naïve and IPSW 
methods estimated a statistically nonsignificant OAT effect on mortality, although 
the IPSW interval is narrower than the corresponding naïve confidence interval. The 
BC-IPSW estimated a HR=0.65(95% CI 0.421–0.978), which implies a statistically 
significant effect of OAT on mortality. This indicates that the rate of mortality for 
patients receiving the OAT decreased by 35% as compared to the same in the control 
group.

IPSW is intended to adjust for the selection bias in treatment assignment pro-
vided that the main assumptions as discussed in Sect. 3.1 hold. One way to examine 
whether IPSW successfully balanced the distribution of baseline covariates between 
the treated and control is to compare the standardized mean difference (Austin 2019; 
Ridgeway et  al. 2017). When the propensity score achieves a perfect balance, the 
standardized mean difference will be zero. Figure 1b displays the standardized mean 
differences for the nine baseline covariates in ERSD data. The absolute standardized 
differences ranged from 0.01 for age to a maximum of 0.1 for HF. For most covari-
ates such as age and bleeding, IPSW achieved a high degree of balance as the mean 
differences are closer to zero, but the balance in some covariates such as HF and DM 
is less satisfactory as the mean differences of these covariates are relatively large. 
Thus, the lack of balance between treated and control for some covariates may indi-
cate a failure of an assumption to hold. The distributional difference between treated 
and control of the estimated propensity score e(�i) in Fig. 1b suggests that the over-
lap assumption was not satisfied. A simulation study may provide detailed insights 
on the extent of the impact of failure to hold for propensity score assumptions. Fur-
ther, the three methods provided different estimates, which results in different con-
clusions regarding the causal effect of OAT on mortality. Thus, a simulation study is 

Table 2  The estimates of OAT 
effect on the mortality from the 
ESRD dataset. The estimates 
are analyzed by the naïve, IPSW 
and BC-IPSW methods

∗ The model included the confounding baseline covariates described 
in Table 1

Method Parameter Estimate HR HR 95%CI

Naïve∗ �
nv

− 0.103 0.902 0.604-1.350
IPSW �

ps
− 0.306 0.736 0.465-1.165

BC-IPSW 𝛽
c

− 0.426 0.653 0.421- 0.978
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necessary to validate the approaches and compare the performance of each method 
with and without misspecification of key assumptions.

5  Simulation study

In this section, we illustrate a simulation study with the aim of evaluating the impact 
of the misspecification of key assumptions and of assessing to what extent the BC-
IPSW can reduce or eliminate the bias. Specifically, we explore the performance of 
the three methods presented in Sect. 3 under the misspecification of the ignorability 
and the overlap assumptions.

5.1  Simulation protocol

The simulation was designed according to the motivational application in Section 2. 
We considered a sample size of n = 290 subjects with follow-up time of 4 years 
( t = 0,… , 4 ). Data were generated by the following five steps: 

1. A vector of nine binary baseline covariates �i was generated from a vec-
tor of independent Bernoulli distribution as �i ∼ Bernoulli (�x) with 
�x = (0.21, 0.4, 0.35, 0.19, 0.48, 0.81, 0.31, 0.15, 0.39) . These values are estimated 
from the ESRD data. For simplicity, interactions were not considered for the 
simulation study.

2. Treatment status zi was generated as zi ∼ Bernoulli (p̂i) , where p̂i is esti-
mated from model (3) using covariates generated in step 1 with coefficients 
� = (1.4, 0.22, 0.08, 0.14, 0.32, 0.39, 0.15, 0.07, 0.39) . To assess the impact of 
ignorability misspecification, we considered two levels of misspecifications: 1) 
mild, where two covariates weakly related to survival outcome with coefficients 
0.08 and 0.14 were omitted in the calculation of ê(�) ; and 2) gross, where a 
strongly related covariate with the highest coefficient 1.4 was omitted.

3. To assess the impact of failure to hold the overlap assumption, �x in step 1 was 
altered to reflect a certain covariate imbalance between treatment and control 
groups. We consider two scenarios in generating �i : 1) We set �x = 0.2 for treated 
and �x = 0.3 for control. We call this scenario large overlap as the disparity of 
�x between the two groups is small. 2) �x = 0.2 for treated and �x = 0.5 for con-
trol. We call this situation partial overlap as higher �x disparity between the two 
groups creates small overlap. Figure 2b and c depicts the distribution of ê(�) using 
� generated under the two overlap misspecification scenarios, while Fig. 2a shows 
the distribution of ê(�) for a perfect overlap scenario.

4. Survival times T∗
i
 were generated by a Weibull proportional hazard model 

hi(t) = ��t�−1 exp(�zi + �
t
i
�) , by evaluating the inverse of the cumulative haz-

ard (Bender et al 2005; Arisido et al. 2019). The rate and shape parameters 
are set as � = 0.1 and � = 1.4 , respectively. The true log hazard was fixed at 
� ∈ (−1.2,−0.3, 0.4) , corresponding to a situation of strongly negative, weakly 
negative and a positive association between treatment and mortality.
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5. Censoring times Ci were generated according to a uniform distribution in (0, 4), 
leading to about 20% of censoring proportion before year 4. The censored 
observed survival times were obtained as Ti = min (T∗

i
,Ci).

We run M = 1000 Monte Carlo simulations. For each simulation, we fitted a naïve 
model that ignores the selection bias and the IPSW adjusted model. To fit the BC-
IPSW model, B = 2000 bootstrap runs have been nested into the M simulations. To 
assess the performance of each method, simulation results are summarized using 
bias, absolute percentage bias (%Bias), mean-squared error (MSE), and the Monte 
Carlo coverage of 95% confidence intervals (CP). The description and computa-
tional details of these metrics are described in Burton et al. (2006); Arisido (2016).

5.2  Simulation results

Table  3 shows basic simulation results without model misspecification with the 
true � ∈ (−1.2,−0.3, 0.4) . In general, the estimated treatment effect obtained by the 
naïve analysis has a higher bias compared with the biases estimated by the other 
two approaches across the three � values. For a strong beneficial impact of treat-
ment ( � = −1.2 ), the naïve model that fails to account for the treatment selection 
bias overestimates the true effect of the treatment by 4.8% , while the IPSW and BC-
IPSW methods underestimated the true effect by 3.5% and 1.4% , respectively. Fur-
ther, IPSW and BC-IPSW showed slightly better accuracy as measured by MSE and 
good coverage properties. For � = −0.3 , the naïve method estimated a percentage 
bias of 5% and this bias was lowered to 3.33% when IPSW was implemented. The 
BC-IPSW resulted in a further lowest percentage bias of 0.67%. The three methods 
showed a minor difference in terms of accuracy and 95% coverage probability for 
� ∈ (−0.3, 0.4) . This may indicate that the treatment selection bias severely affects 
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Fig. 2  The distribution of the propensity score ê(�) estimated from the simulated data showing various 
levels of overlap between treated and control. a Nearly perfect overlap as covariate imbalance was elimi-
nated, b large overlap with slight covariate imbalance, c partial overlap with high covariate imbalance. 
The x-axis shows the range of ê(�) from 0 to 1, and the y-axis shows its probability density distribution
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the estimated treatment effect, with the impact less pronounced in precision and cov-
erage properties.

Table  4 reports the simulation results for the misspecification of the ignorabil-
ity assumption. The data simulation under this misspecification was stated in step 
2 of Sect. 5.1. In addition to the mild and gross misspecification scenarios, increas-
ing sample size (n = 100, 290, 600) was considered and � was fixed at � = 0.4 . For 
n = 100 (relatively small), the IPSW estimator was the most affected under mild 
misspecification, as its percentage bias of 22% was far higher than the biases esti-
mated by the naïve and BC-IPSW methods. The bias decreased as the sample size 
n increased, reaching a minimum bias of 1.7% by the BC-IPSW estimator with 
n = 600 , and the coverage probabilities were closer to the nominal 95% for the 
three methods. Under the gross misspecification, the amount of bias for the IPSW 
and BC-IPSW estimator was increased further, while the increase was small for the 
naïve estimator. To better understand the impact of the ignorability misspecification, 
one can compare this misspecification result for n = 290 with the basic simulation 

Table 3  Simulation results 
for the three methods with 
� ∈ (−1.2,−0.3, 0.4) and 
n = 290 . Bias, absolute 
percentage bias (%Bias), 
empirical Monte Carlo standard 
error (ESE), mean squared 
error (MSE), and 95% coverage 
probabilities (CP) are shown

True � Method Estimate Bias %Bias MSE ESE CP

− 1.2 Naïve − 1.258 − 0.058 4.833 0.062 0.242 93
IPSW − 1.158 0.042 3.500 0.052 0.224 95
BC-IPSW − 1.183 0.017 1.417 0.053 0.229 96

− 0.3 Naïve − 0.315 − 0.015 5.000 0.041 0.202 95
IPSW − 0.290 0.010 3.333 0.039 0.196 95
BC-IPSW − 0.298 0.002 0.667 0.041 0.203 95

0.4 Naïve 0.417 0.017 4.250 0.035 0.185 96
IPSW 0.385 − 0.015 3.750 0.035 0.185 95
BC-IPSW 0.403 0.003 0.750 0.033 0.181 97

Table 4  Simulation results under ignorability misspecification with the true � = 0.4 and sample sizes 
n ∈ (100, 290, 600) . Bias, absolute percentage bias (%Bias), mean squared error (MSE), and empirical 
coverage of 95% confidence intervals (CP) reported

n Method Mild misspecification Gross misspecification

Bias %Bias MSE CP Bias %Bias MSE CP

100 Naïve − 0.036 12.000 0.187 92 − 0.039 13.000 0.184 92
IPSW 0.066 22.000 0.157 90 0.081 27.000 0.155 89
BC− IPSW 0.025 8.333 0.172 96 0.026 8.667 0.170 95

290 Naïve − 0.015 5.000 0.041 93 − 0.015 5.000 0.041 93
IPSW 0.034 11.333 0.038 92 0.049 16.333 0.040 93
BC− IPSW 0.015 5.000 0.040 95 0.022 7.333 0.040 94

600 Naïve − 0.011 3.667 0.019 94 − 0.016 5.333 0.020 94
IPSW 0.027 9.000 0.018 92 0.046 15.333 0.020 93
BC− IPSW 0.005 1.667 0.018 95 0.014 4.667 0.019 94
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results obtained under no misspecification in Table 3 at � = 0.4 scenario. The per-
centage bias of 11.3% for the IPSW under mild misspecification corresponds to 
an extra 8% bias as compared with the same scenario without misspecification in 
Table 3. The extra bias could be as large as 13% under gross misspecification. BC-
IPSW resulted in reduced biases of 5% and 7.3% for the mild and gross misspecifica-
tions, respectively.

The performance of the three approaches improves with n, but the sensitive 
nature of the ignorability assumption is reflected by the fact that the estimates by 
IPSW are more biased than the naïve estimates for all the scenarios. BC-IPSW sub-
stantially reduced the bias, although it does not lead to a negligible bias even for 
the largest n scenario. Figure  3 shows the distribution of the estimated treatment 
effect using the BC-IPSW method under the mild (a) and gross misspecification (b) 
across various n with a maximum size 1200. It is evident that the estimate under 
the mild scenario approaches the true � = 0.4 as n increases and close to coincide 
at n = 1200 . However, the estimate appears to deviate from the true value under the 
gross misspecification.

Table  5 shows the simulation results of the overlap misspecification for 
� ∈ (−0.3, 0.4) and n = 290 . The data simulation under this misspecification was 
stated in step 3 of Sect. 5.1. Figure 2 shows distribution of the propensity score ê(�) 
for the treated and control groups under various overlap scenarios. The performance 
of the naïve method was comparable to the previous results (see Tables 3 and  4). 
The performance of IPSW strictly depends on the overlap assumption. For instance, 
for � = −0.3 and when most of the subjects in treated and control overlap (large 
overlap scenario), the estimated effect was 9% biased with coverage probability 
lower than 90% . The BC-IPSW method reduced this bias by 8% with a good empiri-
cal coverage probability close to the nominal 95% . For the corresponding partial 
overlap scenario, the percentage bias of the IPSW rose to 16% with a poor coverage 
probability of just 75% . Again, BC-IPSW was able to shrink the IPSW bias to 12% 
for the partial overlap scenario.
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Fig. 3  The sampling distribution of estimated 𝛽
c
 obtained using the BC-IPSW approach under a mild (a) 

and gross (b) misspecification of the ignorability assumption for various sample size n
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6  Discussion

Investigating the effects of a treatment based on observational studies requires sta-
tistical tools that take into account selection bias due to the lack of randomization. 
The propensity score-based IPSW has been widely used to address such selection 
bias (Imbens and Rubin 2015). While the propensity score is a viable way to rely 
on observational studies when RCT is not feasible to conduct, it necessitates strong 
assumptions whose misspecification might severely bias the treatment effect. In this 
context, there have been some efforts to jointly use the bootstrap and the propensity 
score to describe either the bias (Gubhinder and Voia 2018) or variability (Peng and 
Jing 2011; Austin and Small 2014) of the average treatment effect. The former paper 
showed that bootstrap reduces the bias of the treatment effect on a Gaussian outcome 
under treatment response misspecifications such as ignorability and endogeneity.

In this paper, we present a more complex bootstrap-corrected IPSW (BC-IPSW) 
approach for a time-to-event endpoint to improve the performance of IPSW in deal-
ing with selection bias in observational studies. The method first adopts IPSW to 
balance baseline characteristics between treated and control groups, and then it 
applies the bootstrap to improve the estimate of the treatment effect when the IPSW 
fails to achieve adequate balance. The work was motivated by an observational real 
cohort study, where the objective was to investigate the potential of OAT in reduc-
ing mortality in patients with ESRD. We found that OAT treatment has the benefit 
of improving the survival rate, although the estimated effect was different across the 
methods used to analyze the data. The naïve method, which does not account for the 
observational nature of the study, estimated a very weak effect of the treatment. The 
combined use of the IPSW and the bootstrap resulted in an estimate that showed a 
statistically significant reduction in mortality for patients receiving the treatment.

A comprehensive simulation study was presented that examined the impact of 
failure to hold key propensity score assumptions on the estimation of treatment 
effect and evaluated the extent to which the BC-IPSW is able to reduce the bias of 
IPSW estimator due to violation of these assumptions. The performance of the three 
methods was compared by considering various scenarios under the misspecification 
of the ignorability and overlap assumptions. The strong reliance of the IPSW on 

Table 5  Results of the simulation study under the overlap misspecification with the true � ∈ (−0.3, 0.4) 
and n = 290 . Bias, absolute percentage bias (%Bias), mean squared error (MSE), and 95% coverage 
probabilities (CP) are shown

� Method Large overlap Partial overlap

Bias %Bias MSE CP Bias %Bias MSE CP

− 0.3 Naïve − 0.015 5.000 0.037 93 − 0.015 5.000 0.043 93
IPSW − 0.028 9.333 0.034 89 0.048 16.000 0.042 75
BC-IPSW 0.005 1.667 0.031 95 0.037 12.000 0.042 94

0.4 Naïve 0.013 3.250 0.046 94 0.013 3.250 0.044 94
IPSW 0.031 7.750 0.057 92 0.037 9.250 0.056 80
BC-IPSW 0.019 4.750 0.055 95 0.028 7.000 0.055 93
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the ignorability assumption was disclosed by the simulation results, in which even 
omitting covariates that are weakly associated with the treatment status resulted in 
a biased estimate of treatment effect. Under such mild misspecification, the BC-
IPSW method substantially reduced the bias to a negligible magnitude. In the event 
of a gross misspecification, when a covariate that is strongly associated with the 
treatment status was missing, BC-IPSW performed well in shrinking the bias, but 
a non-negligible bias was still observed. The implication of this is that the exist-
ence of unmeasured or unused, though relevant, covariates could affect the treatment 
effect, which is frequently the case for observational data (Morgan and Todd 2008). 
The simulation results additionally indicated the risk of failure to hold the overlap 
assumption. We noted that when a greater imbalance of baseline covariate exists 
between the treated and control groups, the IPSW is unable to eliminate the dispar-
ity to achieve an overlap between the groups, which in turn resulted in a severely 
biased treatment effect. This was particularly evident when we attempted to correct 
a highly divergent distribution of covariates between the two groups. The BC-IPSW 
reduced the misspecification bias even though the estimated effect was still rela-
tively biased.

In conclusion, we investigated that the benefit of the propensity score adjustment 
to account for the selection bias associated with observational studies is linked to a 
careful consideration of its main assumptions. Both the application and the simula-
tion results suggest that the BC-IPSW approach markedly improved the performance 
of the IPSW. However, the approach did not lead to an unbiased estimate of treat-
ment effect under serious misspecifications. Thus, efforts to improve the BC-IPSW 
performance should be a future research focus. Further, the bootstrap can be used 
in conjunction with other estimating methods. To illustrate this, we compared the 
stabilized propensity score weights (Hernán and Robins 2020) with the unstabilized 
IPSW which we have adopted. The stabilized IPSW was suggested to address the 
lack of overlap between the treated and control groups (Mao et al. 2019; Zhou et al. 
2020). The performance of the bootstrap with the stabilized IPSW was mostly simi-
lar to bootstrap with the unstabilized IPSW, though the former estimated slightly 
better coverage probability. The results are shown in Table 1 of the Supplemental 
Appendix. We also note that we adopted a uniform censoring with administratively 
known in advance as in ERSD data. In other real settings, censoring can be a ran-
dom non-administrative with no pre-specified end point (Worms and Worms 2018; 
Stupfler 2019). Table  2 of the Supplemental Appendix shows simulation results 
obtained with and without administrative censoring. For a lower censoring rate, the 
results obtained with both censoring types are relatively comparable. A higher cen-
soring rate resulted in a more biased estimate of the treatment effect for both censor-
ings, but the bias is stronger for the non-administrative censoring. It should be noted 
that non-random censoring (endogenous) was not addressed here, but could be of 
interest for further work on the topic.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10182- 021- 00427-3.
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