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Abstract
Arsenotučekite, Ni18Sb3AsS16, is a new mineral discovered in the abandoned chromium mine of Tsangli, located in the eastern
portion of the Othrys ophiolite complex, central Greece. Tsangli is one of the largest chromite deposit at which chromite was mined
since 1870. The Tsangli chromitite occurs as lenticular and irregular bodies. The studied chromitites are hosted in a strongly
serpentinized mantle peridotite. Arsenotučekite forms anhedral to subhedral grains that vary in size between 5 μm up to 100 μm,
and occurs as single phase grains or is associated with pentlandite, breithauptite, gersdorffite and chlorite. It is brittle and has a
metallic luster. In plane-polarized light, it is creamy-yellow, the bireflectance is barely perceptible and the pleochroism is weak. In
crossed polarized reflected light, the anisotropic rotation tints vary from pale blue to brown. Internal reflections were not observed.
Reflectance values of arsenotučekite in air (Ro, Re′ in %) are: 41.8–46.4 at 470 nm, 47.2–50.6 at 546 nm, 49.4–52.3 at 589 nm, and
51.3–53.2 at 650 nm. The empirical formula of arsenotučekite, based on 38 atoms per formula unit, and according to the structural
results, is (Ni16.19Co1.01Fe0.83)Σ18.03Sb3(As0.67Sb0.32)Σ0.99S15.98. Themass density is 6.477 g·cm−3. The simplified chemical formula
is (Ni,Co,Fe)18Sb3(As,Sb)S16. The mineral is tetragonal and belongs to space group I4/mmm, with a = 9.7856(3) Å, c = 10.7582(6)
Å, V = 1030.2(6) Å3 and Z = 2. The structure is layered (stacking along the c-axis) and is dominated by three different Ni-
coordination polyhedral, one octahedral and two cubic. The arsenotučekite structure can be considered as a superstructure of
tučekite resulting from the ordering of Sb and As. The name of the new mineral species indicates the As-dominant of tučekite.
Arsenotučekite occurs as rims partly replacing pentlandite and irregularly developed grains. Furthermore, it is locally associated
with chlorite. These observations suggest that it was likely precipitated at relatively low temperatures during: 1) the late hydrother-
mal stages of the ore-forming process by reaction of Sb- and As-bearing solutions with magmatic sulfides such as pentlandite, or 2)
during the serpentinization of the host peridotite. The mineral and its name have been approved by the Commission of New
Minerals, Nomenclature, and Classification of the International Mineralogical Association (number 2019–135).
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Introduction

Recently, three new minerals, namely tsikourasite,
Mo3Ni2P1 + x (x < 0.25), grammatikopoulosite, NiVP, and
eliopoulosite, V7S8, were discovered in the heavy mineral
concentrates from chromitite samples collected in the Othrys
ophiolite, central Greece (Zaccarini et al. 2019; Bindi et al.
2020a, b). The Othrys ophiolite is structurally divided into
west and east Othrys occurrences, which probably formed in
different geotectonic environments. The western type includes
formations, which are related to an extension regime, i.e.
back-arc basin or mid-ocean ridge (MOR) (Barth et al. 2003,
2008; Barth and Gluhak 2009; Dijkstra et al. 2003), while the
Othrys ophiolite from the eastern region is associated with a
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supra-subduction zone setting (SSZ), as proposed by Barth
and Gluhak (2009) and Magganas and Koutsovitis (2015).

The three new minerals were found in the abandoned chro-
mium mine of Agios Stefanos, located in the west area of the
Othrys complex. Due to the promising mineralogical results,
an additional amount of chromite was collected from the
Tsangli mining area located in the east domain of the Othrys
complex. It was studied by a combination of chemical analysis
and X-ray diffraction techniques.

An additional new mineral was then discovered and ap-
proved by the Commission of New Minerals, Nomenclature
and Classification of the International Mineralogical
Association (number 2019–135). The simplified chemical for-
mula of the new mineral is (Ni,Co,Fe)18Sb3(As,Sb)S16 and it
has been named arsenotučekite to indicate the As-dominant
tučekite, as previously proposed for arsenohauchecornite, the
As-hauchecornite (Gait and Harris 1980; Grice and Ferguson
1989). Holotype material is deposited in the collections of the
Natural History Museum, London (catalogue number BM
2020,1).

Geological background, description
of the chromitite and chromite composition

Arsenotučekite has been found in massive chromitite which
was collected from the Tsangli mining area located in the east
Othrys ophiolite, central Greece (Fig. 1a, b). The Othrys
ophiolite is a remnant of the Tethys Ocean, which extended
between Eurasia and Gondwanaland in the Jurassic.

The geological history of the Othrys ophiolite is still debat-
ed and several models have been proposed for its origin. In
particular, the east Othrys ophiolite is considered to have
formed in the island arc of a SSZ geo-dynamic setting
(Barth and Gluhak 2009; Magganas and Koutsovitis 2015).
In contrast, the west Othrys ophiolite represents a section of
MOR-type oceanic lithosphere formed along a paleo-
transform fault (Rassios and Konstantopoulou 1993; Dijkstra
et al. 2003).

The Othrys ophiolite is strongly tectonically overprinted
and fragmented, but an almost complete stratigraphy was rec-
ognized. It comprises a mantle peridotite, ultramafic and gab-
broic cumulates, sheeted dikes, pillow lavas and a sedimentary
cover (Rassios and Konstantopoulou 1993; Bortolotti et al.
2008; Koutsovitis 2012).

Although the mantle rocks of the Othrys ophiolite show
characteristics of MOR and SSZ geodynamic settings, the
occurrence of chromitites was reported in both of the mantle
peridotites. The Othrys peridotites consist of fertile plagio-
clase lherzolites in the western part of the complex and of
depleted harzburgites in the eastern domain. They represent
residual rocks characterized by a different degree of partial
melting.

The studied sample was collected from the Tsangli mining
area located in the eastern portion of the Otrhys complex,
about 40 km North-East of the Domokos village (Fig. 1b)
and 1 km North-East of the Eretria village (Fig. 1c).

The sample that hosts arsenotučekite is a massive chromite
host in an altered mantle peridotite. The chromitite contains
interstitial Ni-Cu-Fe sulfides, such as pentlandite, and subor-
dinate pyrrhotite and chalcopyrite (Economou and Naldrett
1984). The serpentinized peridotites are over- and underlain
by schist, covered in turn unconformably by Cenomanian
limestone (Economou and Naldrett 1984) (Fig. 1c).
Conglomerates are widespread in the mining area (Fig. 1c).

Fig. 1 Location of the Othrys complex in Greece (a), general geological
map of the Othrys ophiolite showing location of the Tsangli chromium
mine (b) and detailed geology of the Tsangli area (c), (modified after
Rassios and Smith 2001; Economou and Naldrett 1984)
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Following the procedure described by Ifandi et al. (2018),
chemical analyses of the spinels obtained on chromitite
yielded the following compositional range: Cr2O3 (43.39–
51.14 wt%), Al2O3 (15.26–22.32 wt%), MgO (11.77–
14.08 wt%), and FeO (13.56–16.31 wt%). Fe2O3, calculated
on the basis of the spinel stoichiometry, ranges from 3.46 to

6.92 wt%. Minor elements are MnO (0.00–0.09 wt%), ZnO
(0.00–0.08 wt%), V2O3 (0.08–0.19 wt%) and NiO (0.10–
0.23 wt%). The TiO2 content is low (0.04–0.16 wt%), and
consistent with most mantle-hosted podiform chromitites.

Previous investigations had shown that the Tsangli
chromitites contain several platinum group minerals (PGM),
including laurite, erlichmanite, alloys in the Os-Ir-Ru system,
irarsite, ruasrsite, osarsite, sperrylite and merenskyite
(Tsikouras et al. 2016). Most of the discovered PGM have a
magmatic origin and only few of them were re-worked and
altered during the serpentinization (Tsikouras et al. 2016).

Samples and experimental

Concentrate specimens of heavy minerals were prepared from
samples of massive chromitite weighing ca. 10 kg. The

Fig. 2 Digital images in reflected
plane polarized light (a, b, c) and
BSE image (d) showing
arsenotučekite from the
chromitite of Tsangli.
Abbreviations: atc =
arsenotučekite, epx = epoxy,
chr = chromite, chl = chlorite,
pn = pentlandite, btp =
beithauptite

Table 1 Reflectance
values of arsenotučekite λ (nm) Ro R’e

400 38 38.9

420 39 41

440 40 43.1

460 41.1 45.4

470 41.8 46.4

480 42.5 47.5

500 44.1 49.1

520 45.6 50.3

540 46.9 51.1

546 47.2 51.4

560 48 51.6

580 49 52.1

589 49.4 52.3

600 49.8 52.5

620 50.3 52.7

640 51 53.1

650 51.3 53.2

660 51.5 53.3

680 52.1 53.7

700 52.4 53.8

Values required by the Commission on
Ore Mineralogy (COM) are given in bold

Fig. 3 Reflectance data (reflectance values plotted versus wavelength)
for arsenotučekite
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processing and recovery were carried out following the pro-
cedure described elsewhere (Tsikouras et al. 2016; Ifandi et al.
2018; Zaccarini et al. 2019; Bindi et al. 2020a, b). The heavy
minerals were embedded in epoxy, and ground and polished
for mineralogical investigation.

Quantitative chemical analyses of arsenotučekite were
obtained using a JEOL JXA-8200 electron probe micro-
analyser, operating in WDS (wavelength dispersive X-ray
spectrometry) mode. Major and minor elements were de-
termined at 20 kV accelerating voltage and 10 nA beam
current, with 20 s as counting time for the peaks and 10 s
for the backgrounds. The beam diameter was about 1 μm
in size. For the WDS analyses, the following lines and
diffracting crystals were used: S = Kα, PETJ, As = Lα,
TAP, Sb = Lα, PETJ, and Fe, Co, Ni, = Kα, LIFH. The
following reference materials were selected: skutterudite
(Co, As), stibnite (Sb, S), millerite (Ni), and pyrite (Fe).
The same instrument was used to obtain back-scattered
electron (BSE) images.

Reflectance measurements were made using a J & M
TIDAS diode array spectrometer attached to a Zeiss
Axiotronmicroscope. Measurements were made in air relative
to a WTiC standard.

Single-crystal X-ray analysis was done on a crystal
fragment hand-picked from the polished section under a
reflected light microscope. The crystal (about 35 μm in
size) was carefully washed in acetone several times. It did
not show any visible other phase attached to the surface.
The analysis was carried out using a Bruker D8 Venture
Photon 100 CMOS diffractometer system, using graphite-
monochromatized MoKα radiation (λ = 0.71073 Å). X-ray
powder diffraction data were not collected owing to the
small size of the grain and the limited material available.

Physical and optical properties

More than 50 grains of arsenotučekite were identified in the
studied polished sections. Arsenotučekite forms anhedral to
subhedral grains and ranges in size from 5 μm to rarely up
to about 100 μm (Fig. 2a–d). It occurs as single phase grains
(Fig. 2a) but was also associated with chlorite (Fig. 2b),

Table 2 Chemical compositions (WDS analyses) and calculated
mineral formulae of arsenotučekite

Chemical constituents, as measured (wt%)

S As Sb Ni Co Fe Total

TS1-10an10 25.50 2.50 20.29 46.39 3.22 2.71 100.62

TS1-10an9 25.81 2.67 19.13 46.95 2.93 2.86 100.36

TS1-11an13 25.01 3.13 20.41 46.73 3.54 2.11 100.92

TS1-13an16 25.49 2.68 20.05 47.87 2.95 1.65 100.69

TS1-19an20 25.36 3.32 18.33 48.05 2.13 2.49 99.67

TS1-19an21 25.66 3.18 19.21 48.02 2.22 2.78 101.08

TS1-21an23 25.57 2.11 20.96 47.42 2.87 1.89 100.81

TS1-21an24 25.44 2.39 20.34 47.25 2.92 1.88 100.21

TS1-21an26 25.61 2.86 19.84 47.49 2.84 1.98 100.62

TS1-7an2 25.63 2.29 20.58 47.12 3.31 2.18 101.10

TS1-9an5 25.78 3.33 18.88 48.05 3.20 1.99 101.22

TS1-35an18 25.76 2.63 19.62 47.07 3.20 2.62 100.90

Chemical constitutents, normalised (at%)

S As Sb Ni Co Fe Total

TS1-10an10 42.10 1.77 8.82 41.84 2.90 2.57 100

TS1-10an9 42.40 1.88 8.28 42.13 2.62 2.70 100

TS1-11an13 41.41 2.22 8.90 42.28 3.19 2.01 100

TS1-13an16 42.05 1.89 8.71 43.14 2.65 1.56 100

TS1-19an20 41.95 2.35 7.99 43.43 1.92 2.36 100

TS1-19an21 41.98 2.23 8.27 42.92 1.98 2.61 100

TS1-21an23 42.23 1.49 9.11 42.79 2.58 1.80 100

TS1-21an24 42.19 1.69 8.88 42.81 2.64 1.79 100

TS1-21an26 42.20 2.01 8.61 42.75 2.55 1.87 100

TS1-7an2 42.13 1.61 8.91 42.32 2.96 2.06 100

TS1-9an5 42.05 2.32 8.11 42.82 2.84 1.86 100

TS1-35an18 42.23 1.84 8.47 42.14 2.85 2.47 100

Calculated mineral formulae (apfu)a

S As Sb Ni Co Fe Total

TS1-10an10 16.00 0.67 3.35 15.90 1.10 0.98 38

TS1-10an9 16.11 0.71 3.14 16.01 0.99 1.03 38

TS1-11an13 15.74 0.84 3.38 16.07 1.21 0.76 38

TS1-13an16 15.98 0.72 3.31 16.39 1.01 0.59 38

TS1-19an20 15.94 0.89 3.03 16.50 0.73 0.90 38

TS1-19an21 15.95 0.85 3.14 16.31 0.75 0.99 38

TS1-21an23 16.05 0.57 3.46 16.26 0.98 0.68 38

TS1-21an24 16.03 0.64 3.38 16.27 1.00 0.68 38

TS1-21an26 16.04 0.77 3.27 16.25 0.97 0.71 38

TS1-7an2 16.01 0.61 3.39 16.08 1.12 0.78 38

TS1-9an5 15.98 0.88 3.08 16.27 1.08 0.71 38

TS1-35an18 16.05 0.70 3.22 16.01 1.08 0.94 38

a calculated based on 38 atoms per formula unit

Table 3 Wyckoff positions, atom coordinates and isotropic
displacement parameters (Å2) for arsenotučekite

Atom Wyckoff x/a y/b z/c Uiso

Ni1 4c 0 0.5 0 0.0394(4)

Ni2 16m 0.14285(8) 0.14285(8) 0.38158(10) 0.0399(3)

Ni3 16m 0.17361(11) 0.17361(11) 0.13537(12) 0.0538(3)

Sb1 4d 0 0.5 0.25 0.0426(3)

Sb2 2a 0 0 0 0.0400(3)

As 2b 0 0 0.5 0.0327(6)

S1 16 l 0.3447(4) 0.1711(4) 0 0.0652(7)

S2 16n 0 0.2440(3) 0.2507(3) 0.0603(7)
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pentlandite, breithauptite (Fig. 2c, d) and gersdorffite. It is
brittle and has a metallic luster.

In plane-polarized light, the color is creamy-yellow (Fig.
2a–c), the bireflectance is barely perceptible and the pleoch-
roism is weak. In crossed polarized reflected light, the aniso-
tropic rotation tints vary from pale blue to brown. Internal
reflections were not observed.

Reflectance values in air (R in %) requested by the
Commission of Ore Mineralogy (COM) of arsenotučekite
are (Ro, Re′ in %) are: 41.8–46.4 at 470 nm, 47.2–50.6 at
546 nm, 49.4–52.3 at 589 nm, and 51.3–53.2 at 650 nm.
The reflectance values are reported in Table 1 and Fig. 3.

Table 4 Calculated X-
ray powder diffraction
pattern for arsenotučekite
[only Icalc >5σ(Icalc)
are reported], the
strongest reflections are
given in bold

h k l dcalc Icalc

1 0 1 7.239 9

1 1 0 6.92 7

1 1 2 4.247 33

2 2 0 3.4597 56

3 1 0 3.0945 85

2 2 2 2.9098 37

2 1 3 2.7738 5

3 1 2 2.6823 81

3 2 1 2.6316 6

1 1 4 2.5068 42

2 0 4 2.3569 96

4 1 1 2.3176 7

3 3 0 2.3065 15

4 0 2 2.2269 10

4 2 0 2.1881 75

3 2 3 2.1641 6

3 1 4 2.03 38

5 0 1 1.9255 11

4 0 4 1.8097 100

5 1 2 1.8075 5

3 3 4 1.7508 91

4 4 0 1.7299 47

4 2 4 1.6973 18

6 0 0 1.6309 54

5 3 2 1.6021 16

2 2 6 1.5919 8

3 1 6 1.5514 13

4 3 5 1.4478 6

0 0 8 1.3448 20

6 2 4 1.3412 13

7 3 0 1.2849 7

7 3 2 1.2498 7

3 1 8 1.2333 7

7 1 4 1.2305 11

6 4 4 1.2115 21

8 2 0 1.1867 7

7 3 4 1.1594 6

6 6 0 1.1532 8

4 2 8 1.1457 15

8 0 4 1.1135 6

8 3 3 1.091 5

4 4 8 1.0617 14

6 0 8 1.0376 16

8 4 4 1.0134 13

9 3 4 0.9631 7

Fig. 4 The crystal structure of arsenotučekite. Black, grey and white
circles refer to Ni, Sb and S atoms, respectively. Grey globes refer to
As atoms. The unit cell and the orientation of the structure are outlined

Table 5 Selected bond
distances (Å) for
arsenotučekite

Ni1-S1 2.261(3) (×4)

Ni1-Sb1 2.6896(1) (×2)

Ni2-S2 2.217(2) (×2)

Ni2-S1 2.226(3) (×2)

Ni2-As 2.3519(11)

Ni2-Ni3 2.5465(15)

Ni2-Ni2 2.548(2)

Ni2-Ni3 2.6828(18)

Ni3-S2 2.213(2) (×2)

Ni3-S1 2.219(3) (×2)

Ni3-Ni2 2.5465(15)

Ni3-Ni2 2.6828(18)

Ni3-Sb2 2.8095(15)

Ni3-Ni3 2.913(3)

Sb1-S2 2.505(3) (×4)

Sb1-Ni1 2.6896(1) (×2)

Sb2-Ni3 2.8095(15) (×8)

As-Ni2 2.3518(11) (×8)

Arsenotučekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece



Mass density was not measured because of the small
amount of available material. The mass density, on the basis
of the ideal chemical formula and unit-cell volume from
single-crystal X-ray data, is 6.477 g·cm−3. The calculated
mass density is equal to 7.085 g·cm−3, based on the empirical

composition and unit-cell volume refined from single-crystal
XRD data.

Chemical composition and X-ray
crystallography

Representative results of chemical analyses of arsenotučekite
are listed in Table 2. The empirical formula of arsenotučekite,
based on 38 atoms and according to the structural results (see
below), is (Ni16.19Co1.01Fe0.83)Σ18.03Sb3(As0.67Sb0.32)Σ0.99S15.98
and the simplified formula is (Ni,Co,Fe)18Sb3(As,Sb)S16. The
ideal formula is Ni18Sb3AsS16, which requires Ni 52.58 wt%,
Sb 18.17 wt%, As 3.73 wt% and S 25.52 wt%, in order to sum
up to 100 wt%.

Single-crystal X-ray diffraction intensity data were inte-
grated and corrected for Lorentz and polarization factors and
absorption using the software package APEX3 (Bruker 2016).
A total of 678 unique reflections were collected. Given the
similarity in unit-cell values and space groups, the structure
was refined starting from the atomic coordinates reported for
the I4/mmm crystal structure of arsenohauchecornite (Grice
and Ferguson 1989) using the program Shelxl-97 (Sheldrick
2008).

The site occupancy factor at the Ni, Sb and As sites was
allowed to vary (Ni versus structural vacancy, Sb versus As)
using scattering curves for neutral atoms taken from Wilson
(1992). Ni and Sb sites were found to be fully occupied by Ni
and Sb, respectively. The mean electron number refined at the
As site was 39.1 e−, in excellent agreement with the site pop-
ulation obtained from the chemical data (i.e., As0.65Sb0.35). At
the last stage, with anisotropic displacement parameters for all
the atoms, the structure was refined to R1 = 0.0562 using 678
independent reflections. Final atomic coordinates and equiva-
lent isotropic displacement parameters are given in Table 3.
These data were used to calculate a theoretical X-ray powder
diffraction pattern (Table 4). Selected bond distances are
shown in Table 5.

The structure of arsenotučekite (Fig. 4) consists of al-
ternating layers of Ni atoms and S, Sb and As atoms,
parallel to (001), at approximately one-eighth intervals
of the c cell dimension. The structure is dominated by
three different Ni coordination polyhedra, two of them
are distorted cubes and the third is an octahedron. The
Ni1-octahedron has a plane of four S atoms parallel to
(001) and two apical Sb atoms. Ni2 and Ni3 are 8-
coordinated distorted cubes. Although the latter two sites
are similar, Ni2 exhibits a shorter mean bond distance
than Ni3. Both of these polyhedra contain a nearly square
plane of four atoms, which is a diagonal within the
distorted cube.

As shown in Fig. 5, arsenotučekite structure can be consid-
ered as a superstructure of tučekite resulting from the ordering

Fig. 6 The crystal structure of arsenotučekite down the c-axis. Geometric
relationships with the tučekite unit cell (light-grey dashed square) are
reported. Symbols as in Fig. 4. The unit cell and the orientation of the
structure are outlined

Fig. 5 The crystal structure of arsenotučekite down the a-axis. It can be
considered as a superstructure of tučekite resulted from the ordering of Sb
and As along the c-axis (alternation of rectangles with different shades of
grey). Symbols as in Fig. 4. The unit cell and the orientation of the
structure are outlined

F. Zaccarini et al.



in the cubic polyhedra of Sb and As (alternation of rectangles
with different shades of grey in Fig. 5), which have very dif-
ferent mean bond-lengths (2.810 and 2.352 Å, respectively).
We show here that the unit cell of arsenotučekite is multiple of
the 7.2 Å × 5.4 Å tetragonal primitive cell of Just and Feather
(1978) given for tučekite. Geometric relationships between
the two cells are given in Fig. 6. The matrix to transform the
cell of Just and Feather (1978) to the present one is |1–10/110/
002|. It is very likely that tučekite also crystallizes in this space
group.

Arsenotučekite does not correspond to any valid or invalid
unnamed mineral (Smith and Nickel 2007). It is a new mem-
ber of the hauchecornite group (Table 6), besides
hauchecornite, bismutohauchecornite, tellurohauchecornite,
arsenohauchecornite and tučekite (Gait and Harris 1980; Just
1980; Peacock 1950; Just and Feather 1978).

Origin of arsenotučekite

Based on previous and our mineralogical descriptions, it is
possible to propose a genetic model for arsenotučekite.
Arsenotučekite was not observed as inclusions in the magmat-
ic chromite grains. Instead, it occurs as rims partly replacing
pentlandite and as irregularly developed grains, locally asso-
ciated with chlorite. These observations suggest that
arsenotučekite likely precipitated at relatively low tempera-
tures and two possible scenarios are proposed.

Arsenotučekite formed during (i) the late hydrothermal
stages of the ore-forming process by reaction of Sb- and As-
bearing solutions with magmatic sulfides such as pentlandite
or (ii) during the serpentinization of the host peridotite. The
first hypothesis was also proposed for tučekite described in the
Kanowna nickel mineralization, its type locality, hosted in
metamorphosed mafic and ultramafic rocks of the West
Australian Archaean shield (Just and Feather 1978). The sec-
ond hypothesis is in agreement with the model proposed by
Economou and Naldrett (1984) for the formation of the inter-
stitial sulfide described in the Tsangli chromitites. These au-
thors suggested that the sulfides precipitated from hydrother-
mal fluids, which were also possibly responsible for the

serpentinization of their host rocks. The source of the metals
originates from the host rock.
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