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Abstract
The paper proposes an approach to the design of the chemical composition of steel, which is based on neural networks and

genetic algorithms and aims at achieving a desired hardenability behavior possibly matching other constraints related to the

steel production. Hardenability is a mechanical feature of steel, which is extremely relevant for a wide range of steel

applications and refers to the steel capability to improve its hardness following a heat treatment. In the proposed approach,

a neural-network-based predictor of the so-called Jominy hardenability profile is exploited, and an optimization problem is

formulated, where the optimization function allows taking into account both the desired accuracy in meeting the target

Jominy profile and other constraint. The optimization is performed through genetic algorithms. Numerical results are

presented and discussed, showing the efficiency of the proposed approach together with its flexibility and easy cus-

tomization with respect to the user demands and production objectives.
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1 Introduction

The steel industry is undergoing a profound transformation

thanks to the progress of Digitalization[1], which is

becoming pervasive in any stage of the production chain

and is now fully recognized as a major enabler for pre-

serving the competitiveness of the sector and improving its

socio-economic and environmental sustainability. Artificial

intelligence (AI) and machine learning (ML) are indeed at

the core of the ongoing and foreseen progresses of process

automation, which is a natural field of development under

the leadership of the major equipment providers, which are

usually keen to introduce innovation in order to improve

the efficiency and reliability of their product.

On the other hand, one very important and quite recent

consequence of the digitalization is the increasing attention

and importance attributed to the so-called data-driven

materials science for new high-added value materials

design. In effects, ML techniques, and in particular neural

networks (NNs), are now increasingly applied in the design

of novel steel qualities with target properties, as they

appear capable to overcome the lack of efficiency charac-

terizing traditional experimental science in capturing the

complex combination of processing conditions and chem-

ical compositions. Since the end of the last century,

Badeshia [2] highlighted that NNs could highly support

material science, and in the first decade of this century Sha

and Edwards [3] further enforced such thesis with their

thorough analysis. However, it is only in the last decade

that the evolution of the measuring and analytical systems,

on one hand, and the availability of large and low cost

computational resources, on the other hand, allow material

scientists to get the maximum profit of ML tools and

techniques, such as highlighted in the analysis recently

conducted by Smith for NNs [4]. Nowadays numerous

applications can be found concerning NNs applications for

forecasting the mechanical properties of steel products

based on chemical composition and manufacturing process

parameters, such as described, for instance, in the exemplar

works of Khalaj et al. [5], Faizabadi et al.[6] and Liu et al.

[7].

However, most of current applications of ML and NNs

to steel design are limited to the direct analysis, which
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starts from a given chemistry and/or microstructure and

process conditions in order to forecast material properties

and check whether they are compliant with the customer

(i.e. steel user) requirements for the considered application.

On the other hand, an inverse approach starting from the

desired property and finding the steel chemical composi-

tion(s) and/or the process conditions, which allow meeting

the target is highly more relevant from the industrial point

of view, as it provides direct indications on how to realize

the demanded product. An example of such approach can

be found in the recent study of Wang et al. [8], which is

focused on the elaboration of a suitable microstructure that

can convey a balanced property of tensile strength and total

elongation. Another example is provided in the work of

Shen et al. [9], who exploit extreme learning machine for

the optimization of the composition of a particular steel

grade suitable to the realization of experimental nuclear

reactors. A further relevant application has been recently

proposed by Zhu et al. [10], who combine deep NNs-based

tensile properties prediction and genetic algorithm (GA)-

based optimization in order to design the chemical com-

position of low-alloy steels.

This approach can also be extended in order to provide

guidelines to the technical personnel of the steelworks on

how to manage the different stages of the production pro-

cesses in order to obtain a material, which is perfectly

compliant with the specifications. An example in this sense

is provided by the work of Colla et al. [11], who applied an

ensemble of NNs and an ad-hoc developed iterative pro-

cedure for identifying the variability ranges of the most

relevant process variables of the hot dip galvanizing pro-

cess that ensure uniformity of the tensile properties along

steel strips for automotive applications.

The present work is in line with the above-mentioned

approach: the considered property is hardenability, one of

the most important mechanical features, which is extre-

mely relevant for a wide range of steel applications and

refers to the steel capability to improve its hardness fol-

lowing a heat treatment. The purpose is to find the most

suitable steel chemistry ensuring the achievement of a

target hardenability together with the compliancy with

respect to a series of constraints. This issue is faced as an

optimization problem and the definition of ‘‘suitability’’ of

the steel chemistry is part of the optimization process in the

form of the definition of the objective function of the

optimization. The proposed system, which is called JoMi-

ner, exploits a NNs-based predictor of hardenability at the

core of the optimization as a means to associate one par-

ticular steel chemistry to the microalloyed steel harden-

ability. The main elements of novelty of this system lies in

its flexibility, relative simplicity of use and maintenance

and, mostly, in the fact that, differently form previously

developed work, it allows taking into account the different

strategies that the technical personnel of the steelworks

usually follows in the steelmaking phase, in accordance

with customers’ specifications and overall production tar-

gets. A trade-off is always searched between joint

achievement of a target accuracy for specific hardenability

values and of limited production costs, e.g. by reducing the

use of the microalloying elements, which are more

expensive or which can affect the reuse and recycling of

the slag, a by-product of the steel process, by therefore

reducing the profit margins. JoMiner allows implementing

such philosophy by a suitable design of the objective

function to minimize and this feature ensures an easier

acceptance by technicians, who might not be familiar with

AI and ML-based tools and techniques.

The paper is organized as follows: Sect. 2 provides

some background on the considered industrial application,

by also revising the state of the art on the models fore-

casting the steel hardenability curve and the problem of

optimizing the steel chemistry in order to obtain a desired

hardenability. Section 3 presents the details of the JoMiner

approach. Section 4 describes and discusses the numerical

results of the developed tests, while Sect. 5 proposes some

concluding remarks and hints for future work.

2 Background on the faced industrial
application

2.1 Hardenability and Jominy end-quench test

Hardness is a very important property of structural metallic

materials and alloys, such as steel, as it affects most of their

applications. Hardness is defined as the resistance that the

surface of a material opposes to localized plastic defor-

mation (e.g., a small dent or a scratch) [12] and depends on

the material microstructure. The microstructure can be

modified by altering the chemical composition of the

material (e.g. in steelmaking by adding micro-alloying

elements to the steel chemistry) and/or by means of a

particular heat treatment named quenching, which basi-

cally consists of a high temperature heating followed by an

abrupt cooling.

Hardenability is defined as the ability of a material to

change its hardness as a result of a given heat treatment. In

the steelmaking field, hardenability depends on the steel

capability to form a particular microstructure, named

martensite, during the heat treatment. In this treatment,

often named quenching, the steel is heated up to a specific

temperature, named Austenitizing temperature (A3, lying in

the range 800–925 �C), as at this temperature the structure

becomes austenite. Afterwards, it is cooled down at a

cooling speed that prevents high temperature transforma-

tions and favors the formation of martensite by quenching

Neural Computing and Applications

123



in a cooling agent, e.g. (in order of decreasing efficiency)

air, oil, water, brine or molten salts.

One standard procedure, which is widely applied to

determine hardenability, is the Jominy end-quench test

[13]. According to such procedure, all factors affecting the

depth to which a material hardens (i.e., specimen size and

shape, quenching treatment), apart from the chemical

composition, are kept constant. The specimen has a

cylindrical shape, with fixed diameter D (usually

D = 25.4 mm = 1.0 in.) and length L = 100 mm = 4 in.

Such specimen is austenitized at a prescribed temperature

for a fixed time, afterwards it is removed from the furnace

and quickly mounted on a fixture and its lower end is

quenched by a jet of water of specified flow rate and

temperature (see Fig. 1). Therefore, the maximum cooling

rate is observed in the area closer to the quenched end and

decreases with the distance from the quenched end along

the specimen length. After the specimen has cooled to

room temperature, shallow flats deep are ground along the

specimen length and N measurements (usually N = 15) of

Rockwell or Vickers hardness measurements [14] are taken

at predefined positions for the first 50 mm along each flat

(see Fig. 1).

The so-called Jominy profile is the diagram obtained by

plotting the measured hardness values as a function of the

distance from the quenched end: it is a monotonic

decreasing curve, as the quenched end is cooled most

rapidly and exhibits the maximum hardness (for most steels

100% martensite is observed at the quenched end). As the

cooling rate decreases with the distance from the quenched

end, the hardness also decreases, as lower values of the

cooling rate allow more time for carbon diffusion and the

formation of a greater proportion of softer microstructures

(i.e. pearlite possibly mixed with martensite and bainite). A

highly hardenable steel shows large hardness values for

relatively high values of the distance from the quenched

end.

Each steel alloy is characterized by its own unique

hardenability curve. The main alloying elements, which

affect hardenability include carbon (C), chromium (Cr),

manganese (Mn), molybdenum (Mo), silicon (Si), nickel

(Ni) and boron (B). Carbon strongly affects the hardness of

the martensite, therefore steel hardenability generally

increases with the C content, as C delays the generation of

pearlite and ferrite and such delay stimulates the formation

of martensite at slower cooling rates. However, the effect is

not significant enough to be used as hardenability con-

troller, and other elements are commonly used to control

the hardenability. Cr, Mo, Mn, Si, Ni and V (especially Cr,

Mo and Mn) retard the transformation from austenite to

ferrite and pearlite. The delay is due to the need to dis-

tribute the alloying elements during the transformation

from austenite to ferrite and pearlite. Moreover, the dif-

ferent elements show complex interactions among each

other affecting the temperature during the transformation

phase. Finally, B is a very powerful alloying element and

its effect increases for low C content, thus, it is commonly

used for low C steels, but it affects hardenability only if it

is in solution.

Steels with high hardenability are used to create high-

strength components and are usually more valuable with

respect to steels with low hardenability, which can be used

for small components. The Jominy profile is used for

characterize each steel and, depending on the aimed

application, specific requirements are imposed by the

customers to the steel producers, in the form of upper and

lower bound for the hardness value corresponding to

specific distance values. The most commonly found con-

straints refer to the first 2–3 points of the Jominy curve and

on the position of the inflection point of the profile itself.

2.2 Data-driven approaches to forecast steel
hardenability

As the Jominy End Quench Test is very expensive and time

consuming, considerable research efforts have been and are

still being spent to develop models forecasting steel hard-

enability from the chemical composition. The first attempts

were based on traditional statistical techniques: for

instance, in the 40ies Grossmann proposed an approach

based on multiplicators [15]; this approach was subse-

quently improved and generalized in the seventies by

Grange [16], Brown and James [17], Kunze and Russle

[18] and Doane [19]. This last researcher proposed several

empirical and statistical methods to predict hardenability

by analyzing their advantages and limitations.

Fig. 1 Schematic description of the Jominy end-quench test
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Regression analysis also provided good results for the

prediction of hardenability [20, 21]. In particular, Komenda

et al. in [21] investigated the variables that mostly affect

each hardness value of the Jominy profile on a limited

range of Boron steels, by demonstrating that C, Si, Mn, P

and Cr are important variables at each point of the profile,

while Ni, Cd, B and N mainly affect the hardness of the

sixth one. More recently, Gong et al. applied an approach

based on nonlinear regression for predicting the Jominy

profile of gear steels [22].

Other approaches have been proposed, which rely on

numerical studies concerning the cooling graphic trend and

considering its thermodynamics [23–25].

In [26] a parametric mathematical model was proposed,

where each parameters was linked to the steel chemical

composition by non-linear equations. However, this

method failed when treating multi-alloyed medium-C

steels, as it neglects the interaction among the different

alloying elements. The same approach was improved in

[27], where the interaction of the alloying elements is

considered through some empirically tuned interaction

parameters, by improving the forecasting performance on

some Jominy profiles of multi-alloyed medium-C steels.

However, the validity is proved on a limited range of steel

grade and the empirical tuning procedure disregards any

chemical or physical consideration.

A different approach from Yazdi et al. [28] involves the

quench factor analysis (QFA), a proven technique intro-

duced in the early seventies and improved in 1993 by

Rometsch et al. [29], which correlates the cooling curves to

metallurgical response. QFA is applied to estimate hard-

ness from simulated cooling curves, by providing a good

correlation between predicted and measured hardness.

However, forecasting accuracy is acceptable only for high

hardness values.

To sum up, most numerical models forecasting the

Jominy profile of steels provide good results only on very

limited ranges of steel grades, on which their internal

parameters were tuned, and do not show good generaliza-

tion properties when applied outside those ranges, as the

relationship linking such parameters with the steel chemi-

cal composition are mostly empirical and difficult to

extend. Moreover, often the accuracy is acceptable only on

a few points of the Jominy curve. This is mainly due to the

fact that the effect of each alloy element is individually

analyzed, while interactions are neglected.

In order to overcome the above-mentioned drawbacks,

since the nineties NNs have been explored as a tool to

forecast the Jominy profile of based on the steel chemical

composition. In the seminal works of Chan et al. [30] and

Vermeulen et al.[31] NNs of the multi-layer perceptron

(MLP) type have been applied for the pointwise estimation

of Jominy curve based on the chemical composition.

Further similar works have been developed by Dobrazanski

and Sitek on different constructional steels [32, 33] and,

more recently, by Knap et al. on special microalloyed steel

grades [34, 35]. On the other hand, Pouraliakbar et al.

developed a study related to a particular class of pipeline

steels by using as input of the NN both some elements of

the chemical composition but also other mechanical

properties, i.e. yield strength, ultimate tensile strength and

percent elongation, which are measured through other

specific although standard tests [36].

However, all the approaches, which forecast each

hardness value of the Jominy profile, neglect the correla-

tions among values, which correspond to neighboring dis-

tance values. In order to overcome such issue, Colla et al.

in [37] proposed a parametric approach, where the Jominy

profile is represented through a parametric mathematical

function of the distance from the quenched end (e.g. a

quasi-sigmoidal monotonic decreasing function) and

wavelet NNs are applied to correlate the steel chemistry to

the function parameters. Quite recently also fuzzy systems

have been applied for the determination of the Jominy

hardenability curve based on the chemical composition,

although the investigation was limited to structural steels

for quenching and tempering [38].

2.3 The problem of optimizing the steel
chemistry for obtaining the desired Jominy
profile

The availability of a reliable system to forecast the Jominy

profile of various categories of steel leads also to the

possibility of facing a further issue, which is harder but far

more relevant from the industrial point of view, namely the

identification of a suitable steel chemistry, which allows

obtaining a target Jominy profile.

A tool for the rapid determination of the steel chemical

composition (mostly in terms of micro-alloying elements

which can be added in the steelmaking stage) leading to the

achievement of a target Jominy profile, allows technical

operators and managers drastically reducing the time

required for the steel grade design phase and for the actual

tests on a number of tentative product specimens, by also

mitigating the laboratory work burden. Moreover, relevant

economic advantages can be achieved in terms of reduced

testing costs and waste of material and energy, as a con-

sequence of a better and faster matching of customers’

specifications.

Last but not least, from the metallurgical point of view

the possibility arises that different steel chemistries lead to

the same or very similar Jominy profiles. Therefore, the

formulation of an optimization problem concerning the

identification of the steel chemistry leading to a target

Jominy profile does not necessary refer only to the
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minimization of some performance error among the actual

and the desired Jominy curve. It can also include the

minimization of the most expensive micro-alloying ele-

ments, while keeping the achieved Jominy profile in rea-

sonable agreement with the target one, according to

constraints, which might be specific of a certain customer

or application. If available, such tool can lead to relevant

savings in terms of production costs due to a lower usage of

costly micro-allowing elements and even easier re-use of

slags, which are a by-product of the steelmaking stage,

whose reuse and valorization is often hampered by the

unavoidable presence of a portion of the added micro-al-

loying elements [39].

Several studies can be found, which focus on the opti-

mization of the chemical composition of steel grades for

achieving target values of mechanical properties, among

which hardenability, such as, for instance, in [40, 41].

However, most of such studies require complex, costly and

cumbersome physical simulation eventually based on finite

elements modelling, which cannot be included in a tool

dedicated to the steelworks technical personnel.

Trzaska et al. firstly conceived the idea of using a NN-

based Jominy profile predictor in order to optimize the steel

chemistry so as to reach a desired hardenability [42]. In

particular, they used a previously designed NN-based

model to build a representative set of data and to work out

the neural classifier for the selection of steel grade with the

required hardenability. However, no studies can be found

so far, which face the problem of achieving a target

hardenability profile as a formalised optimization problem

by exploiting a reliable and computationally sustainable

data-driven Jominy profile predictor.

The present paper fills this gap by exploiting a NN-

based Jominy profile predictor presented by the authors in

[43] and recently used in [44]. This predictor proved to be

very reliable, robust and fast and can be easily maintained

by an end user, as it only needs to be trained with exper-

imental Jominy profiles and associated steel chemical

composition available in any steelworks. Such model

exploits and merges the results of several previous studies,

as it provides a pointwise prediction of the Jominy profile

by a set of quite simple NNs, each one dedicated to a point

of the Jominy curve, and with a peculiar set of inputs, by

thus considering the effect of the various micro-alloying

element of the different points of the profile. On the other

hand, the model takes into account the correlation among

the hardness values measured at different distances from

the quenched end by means of a hierarchical structure,

where some previously calculated hardness values are used

to estimate other ones. Finally, the limited dimension of the

networks make the computational burden very limited in

the training phase and negligible in the relaxation one, so

that the time required to compute a whole curve is

suitable for an optimization framework based on evolu-

tionary computation. Further details are provided in

Sect. 3.1.

3 The JoMiner approach

In this work a novel tool—the so-called JoMiner—that

performs the automatic design of steel grades in order to

meet as much as possible a desired Jominy profile is

introduced.

In line with industrial standards JoMiner considers the

user requirements and constraints in terms of steel chemi-

cal composition ranges expressed as the minimum and

maximum concentration of each chemical element and a

target Jominy profile expressed in its standard form, i.e. as

a N couples of distance and hardness values (di, Ji). Sub-

sequently the optimization engine explores the search

space looking for the most suitable chemical composition

that fulfills the user chemical constraints and corresponds

to a predicted Jominy profile that is as close as possible to

the target profile. The whole process exploits a hierarchical

Neural Networks (NN)-based Jominy profile predictor,

which is used within an optimization framework that aims

at the selection of a suitable chemical composition. In this

context each candidate chemical composition is fed to the

predictor that provides as output the corresponding esti-

mated Jominy profile. This latter result, together with the

associate chemical composition and the target profile, are

then used within the optimization loop until an optimal

solution—in line with constraints—is found. The interac-

tion among the components forming the JoMiner system is

represented in Fig. 2.

To sum up, the JoMiner system receives as inputs the

user’s demands, namely the target Jominy profile to

achieve and the constraints on the steel chemical compo-

sition, and outputs the steel chemistry, which ensures to

achieve the best fitting of the target Jominy profile and is

compliant with the provided constraints.

In the following Sects. 3.1 and 3.2 the Jominy profile

predictor and the chemical composition optimizer compo-

nents, respectively, are described in deeper detail.

3.1 The NN-based Jominy profile predictor

The Jominy profile predictor component is the core of

JoMiner, since its performance and robustness affect the

usability and reliability of the entire tool. A Jominy profile

can be represented as a vector J 2 RN (here N = 15) and

the predictor is formed by a set of N interacting NNs, each

one devoted to the prediction of a point forming the Jominy

profile measured at the standard distances.

Neural Computing and Applications

123



In the light of these features the Jominy profile predictor

component sequentially estimates the N values of the

Jominy profile by using as input of each NN part of the

chemical composition variables and the hardenability val-

ues predicted for some of the previous points, such as

shown in Fig. 3.

The 15 NNs that form the predictor are fed by using

different input variables concerning chemical elements

concentration and hardenability values corresponding to

lower values of the distance from the specimen quenched

end (i.e. values of the Jominy profile that are estimated by

the previous stages of the system itself). The inputs for

each of the networks were selected by coupling the analysis

of specific literature studies on the influence of chemical

elements on the Jominy profile (see Sect. 2) and an ad-hoc

variable selection analysis aiming at highlighting the

correlation between the potential input variables and the

target hardenability[45]. Table 1 shows the list of the input

variables used by each NN by reporting for each point of

the profile the selected chemical elements and the predicted

hardenability values Ĵ ¼ Ĵ1. . .ĴN
� �

(where Ĵi represents

the hardness value estimated at ith distance value di) that

are fed to the network.

As shown in Table 1, M = 15 chemical components, are

considered in this application (C, Mn, Si, P, S, Cu, Cr, Ni,

Mo, B, Ti, Nb, Sn, Al, V), but the corresponding values are

not simultaneously fed into each NN. This aspect is com-

mon also to other literature approaches to the estimate of

the Jominy profile, including the ones which are not based

on machine learning, as it is a consequence of the different

effect of each microalloying element on the shape of the

Jominy curve.

The adopted NNs are two layers feed-forward NNs of

the perceptron type with a variable number of neurons in

the hidden layer (such number is indicated with the symbol

Nh in Table 1) having a sigmoidal activation function,

which are trained by means of a variant of the back-

propagation algorithm that employs Bayesian regulariza-

tion in order to improve the network generalization capa-

bilities and robustness [46]. The number of neurons in the

hidden layer Nh of each network was experimentally

determined by taking into account a well-known empirical

rule, which sets the maximum total number of NN

parameters Nw as a function of the number of available

training samples Ns, namely Ns C 5Nw. In the case of the

simple feed-forward NNs, with one output neuron and Ni

input variables, which are adopted in the present case,

Nw = (Ni ? 2)Nh ? 1, by taking into account inter-layers

weights and neurons biases. By imposing that Nw B 0.2 Ns,

an upper bound Nh_max is calculated for Nh. Then the most

Fig. 2 Flowchart depicting the

JoMiner components

interactions

Fig. 3 Functional scheme of the Jominy profile predictor for the

prediction of an arbitrary point of the profile, where both chemical

composition and previously predicted hardenability values are fed as

inputs to the NN
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suitable Nh value has been determined through an

exhaustive search, i.e. by training different NNs holding all

the values of Nh in the range [1, Nh_max] and selecting the

one, which achieves the best predictive performance on the

validation dataset.

The above described profile predictor must be tuned by

using data coming from real Jominy tests. Depending on

the range of products that are produced by the company

and on the number of the available experimental data, a

general purpose predictor can be designed, by exploiting

data related to different steel types, or a highly customized

predictor can be generated targeting specific company

needs and products. This is the case, for instance, of steels

for automotive applications [44], or Boron steels, for which

the parametric NN-based approach was attempted in the

past [47].

3.2 The steel chemistry optimizer

The chemistry optimizer is the component of JoMiner

appointed to find the chemical composition that leads to an

estimated Jominy profile Ĵ as close as possible to an

arbitrary target profile JT. This component exploits the

Jominy profile predictor described in Sect. 3.1 and per-

forms the search by minimizing an arbitrary distance

function d: RN � RN ! R, which measures the dissimi-

larity (i.e. the higher d, the lower the similarity) of Ĵ with

respect to the target profile JT, and by fulfilling an arbitrary

set of constraints on the variability ranges of the considered

chemical elements or their relative ratios. Clearly, the

selection of the distance function affects the results. The

most straightforward choice is to select the N-dimensional

Euclidean distance between the two vectors Ĵ and JT. A

further possibility is represented by the so-called Manhat-

tan or city-block distance, which corresponds to the sum of

the absolute differences between the corresponding entries

of the two vectors. For a give couple of vectors Ĵ and JT,

the Manhattan distance is greater or equal than the Eucli-

dean one, and gives more importance to small difference in

each single entries, therefore it appears more suitable for

this application. Moreover, not all the points of the profile

might have the same importance, as it will be deepened

later on, when discussing the objective function for the

optimization problem. As a consequence, the need can

arise to weight the differences among the values of some of

the entries of Ĵ and JT, and the determination of the

weights is simpler if the Manhattan distance is adopted.

To sum up, the optimization problem can be formalized

as finding the chemical composition, which is codified as a

vector C* 2 RM (each entry corresponds to the content of

one chemical component in wt.%) that minimizes d(Ĵ, JT)

subject to a set of constraints.

The chemical composition optimizer employs genetic

algorithms (GAs) to perform the main optimization task.

The basic operating principles of GAs can be briefly

summarized as follows:

1. An initial population of candidate solutions P0 is

created, which is composed by Q vectors Cq

Table 1 Summary of the input

variables used by each of the

NNs forming the Jominy profile

predictor [44]

Point di (mm) Inputs Nh

Chemical elements Previous hardness values

1 1.5 C, Mn, Si – 2

2 3 C, P, S, Cu Ĵ1 2

3 5 C, Cr, S, Ni Ĵ1; Ĵ2 3

4 7 C, Cu, Mn, Mo Ĵ2; Ĵ3 3

5 9 C, B, Ti, Nb Ĵ3; Ĵ4 4

6 11 C, B, Ti, Nb Ĵ2; Ĵ5; Ĵ7 4

7 13 C, B, Ti, Nb Ĵ1; Ĵ2; Ĵ5; Ĵ10 4

8 15 C, Sn, Al, V Ĵ4; Ĵ6; Ĵ7; Ĵ9; Ĵ10 4

9 20 C, S, P Ĵ2; Ĵ3; Ĵ5; Ĵ11 4

10 25 C, S, P, Cu Ĵ1; Ĵ2; Ĵ4; Ĵ5; Ĵ11 3

11 30 C, S, Cr, Ni Ĵ1; Ĵ4; Ĵ5; Ĵ12; Ĵ15 3

12 35 C, Mn, Ni Ĵ1; Ĵ3; Ĵ4; Ĵ13 3

13 40 C, S, Cr, Ni, Nb, Ti, B Ĵ1; Ĵ4; Ĵ5 3

14 45 C, P, S, Cr Ĵ1; Ĵ2; Ĵ3; Ĵ5 3

15 50 C, P, S, Cr Ĵ1; Ĵ3; Ĵ5 2
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(1 B q B Q) containing sets of values of relevant

chemical elements, which are compliant with the

provided constraints. Such compliancy are a-priori

set according to specific criteria, which depend on

the considered steel grade and target product.

Then an iterative loop is started.

2. At the kth iteration the goodness of each solution in

the population Pk is evaluated through a so-called

fitness function.

3. According to single solutions fitness value, popula-

tion Pk is evolved into Pk?1 by rewarding fittest

solutions:

(a) through the selection of survivors from Pk;

(b) through the selection of couples of solutions from Pk

from which new offspring solutions are generated

through the crossover operator;

(c) through the mutation of the newly formed Pk?1.

At the sub-steps (b) and (c) a verification step of the

compliancy of the considered chemistry with respect

to the constraints could be needed, depending on the

complexity of such constraints. As an alternative,

compliancy can be embedded in the crossover and

mutation operators, so that they always generate

compliant off-springs, if the parents are compliant.

Therefore, compliancy needs to be ensured only at

step 1, namely when generating the initial population.

4. An arbitrary terminal condition (i.e. achievement of

a target performance or of a pre-determined maxi-

mum number of iterations) is checked. If such

condition is achieved, the algorithm stops and returns

the fittest individual throughout generations, other-

wise jumps back to step 2.

GAs are used in order to efficiently explore the high-di-

mensional (here the dimension isM = 15) non-convex (due

to the presence of arbitrary user-defined constraints) search

domain of the problem in relation to error surface deter-

mined by the function f, on which no a-priori knowledge is

available. GAs are extremely performing on this kind of

problems, especially when facing industrial problems,

thanks to their ability to suitably merge the exploration

(through the mutation operator) of the search space and the

exploitation (through the selection of fittest elements for

survival and crossover and the exploitation of the crossover

operator itself) of the knowledge on the problem gained

through generations. In particular, GAs proved to be cap-

able to converge faster than other search methods and to

avoid local minima of the objective function.

The GA optimizer engine of JoMiner exploits real

codification for each solution Cq and random initialization

of the initial population within the space search allowed by

the constraints. More in detail, for all candidates Ci in P0

the value of each of its elements, corresponding to chem-

ical elements, is randomly drawn from a Gaussian distri-

bution whose parameters (mean and standard deviation) are

determined experimentally according to training data.

The simplest version of the adopted fitness function that

evaluates each solution is proportional to the opposite of

the Manhattan distance between target and estimated

Jominy profile, and is expressed as follows:

f Cq

� �
¼ � 1

N
� d Ĵ Cq

� �
; JT

� �
¼ � 1

N
�
XN

i¼1

Ĵi Cq

� �
� JTi

�� ��

ð1Þ

Noticeably the fitness function is customizable, thus it is

possible to introduce any sort of weighting function forcing

the optimizer to award higher accuracies on some points of

the profile, which might be a relevant option for particular

products devoted to specific industrial applications. The

simplest example is the introduction of weighting factors in

the form of a vector W 2 RN, with N entries 0 B wi B 1

and the adoption of the following modified weighted fitness

function:

h Cq

� �
¼ � 1

N
�
XN

i¼1

wi � bJi Cq

� �
� JTi

���
��� ð2Þ

Furthermore, it is possible to drive the optimization process

to solutions that discourage the use of arbitrary elements

taking into account, for instance, their economical cost or

environmental impact. In that case the fitness function is

modified by adding a penalty factor proportional to the

content of the chemical elements whose content shall be

minimized:

h Cq

� �
¼ � 1

N
�
XN

i¼1

b#i Cq

� �
� JTi

���
���þ b

XM

j¼1

cj � Cqj

 !

ð3Þ

whereM is the number of chemical elements that constitute

the candidate solution, c is a vector whose items represent

the cost of associate chemical elements and b is a equal-

ization factor that balances the order of magnitude of the

penalty with respect of the Jominy profile discrepancy part

of the equation.

The adopted crossover operator generates an offspring

solution by randomly choosing with equal probability each

entry from the corresponding ones belonging to the parents.

This practice is commonly known as uniform crossover.

The adopted mutation operator randomly varies

r\M entries of the candidate solution Cq within a speci-

fied range [- a%; ? a%] with respect to the original value

by taking into account the constraints.

The adopted termination condition consists in the

achievement of a maximum number of generations NG of

the GA, which ensures a deep exploration of the search
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space and the achievement of the convergence. Moreover,

a fuzzy adaptive genetic algorithm (FAGA) is applied,

which has been introduced by the authors in the past as an

advanced implementation of GA exploiting a fuzzy infer-

ence system to govern the GA recombination strategies

[48]. FAGA was proven to grant higher speed and

improved capability to avoid local minima with respect to

standard GA [49].

4 Experimental results

JoMiner was trained and validated by using data gathered

by an Italian steelmaking company. The provided dataset

holds more than 800 samples that include both the steels

chemical composition and the result of the Jominy test on

actual specimens. The samples span various steel grades

and chemical compositions, as shown in Table 2, which

reports the variability range of each chemical element

within the dataset.

The variability of the Jominy profiles in dataset is

reported in Table 3 and depicted in Fig. 4, where the

maximum, minimum and average hardness values are

shown for each value of the distance d from the specimen

quenched end.

The dataset was divided into two parts: the first one, Dtr,

includes the 70% of the available experimental Jominy

profiles and is used for the training of the Jominy profile

predictor component. The remaining data represent the test

set Dts, which is composed of Dimts = 243 Jominy profiles

and is used for testing the optimizer, namely they are used

as target Jominy profiles. The corresponding suggested

chemical composition is computed through the optimizer,

fed as input to the Jominy profile predictor and the simi-

larity among of the estimated profile and the target one is

assessed as a measure of the goodness of the optimizer.

In this work the optimizer is firstly used for the base case

of the minimization of the discrepancy between the actual

and predicted profile (see Eq. 1). This task allows the

determination of suitable values of the hyperparameters of

the optimizer. Subsequently two additional tasks are pur-

sued: one for optimization of the profile accuracy in

arbitrary points of the profile (Eq. 2) and the other

including the minimization of the usage of selected

chemical elements (Eq. 3).

In all the developed tests, as far as the GA-based opti-

mization engine is concerned, the size of the population is

set to Q = 50 and for the termination criterion the value

NG = 100 is adopted.

4.1 Base case optimization: minimization
of the average error on predicted Jominy
profiles

In the base case task, the fitness function for the GA-based

optimization is the one reported in Eq. (1). Moreover, 20

variants of the mutation function have been tested, corre-

sponding to two couples of values of the parameters r and

a, namely r = 1, 2, 3, 4 and a = 5, 10, 15, 25, 50.

The results obtained by JoMiner are reported for the 20

above-mentioned combinations of the parameters of the

mutation operator are reported in Table 4 in terms of mean

value ei, maximum value Ei, and standard deviation Si

computed over Dts of the absolute difference bJ i � JTi

���
���

between the computed and target hardness value at distance

di, (with 1 B i B N), according to the following classical

definitions:

ei ¼
1

Dimts
�
XDimts

j¼1

Ĵi;j � JTi;j

���
��� ð4Þ

Ei ¼ max
1� j� dimts

Ĵi;j � JTi;j

���
��� ð5Þ

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PDimts

j¼1 Ĵi;j � JTi;j

���
���� ei

� 	2

Dimts � 1

vuut
ð6Þ

where Ji;j and JTi;j are, respectively, the forecasted and

target value of the jth Jominy curve in the test set in cor-

respondence to the distance value di.

The last column of Table 4 shows the average values of

the above listed indexes over the whole Jominy profile,

namely:

Table 2 Variability ranges of the chemical elements within the experimental dataset (expressed in wt.%)

C Mn Si P S Cr Ni Mo Cu Sn Al V Nb Ti B

Min 0.315 0.9 0.19 0.008 0.007 0.13 0.04 0.01 0.01 0.006 0.011 0 0 0.009 0

Max 0.435 1.44 0.32 0.028 0.026 0.62 0.12 0.15 0.24 0.017 0.03 0.008 0.006 0.055 0.003

Av 0.367 1.172 0.248 0.015 0.017 0.283 0.062 0.022 0.164 0.009 0.021 0.004 0.002 0.047 0.002

SD 0.019 0.099 0.021 0.004 0.005 0.111 0.013 0.025 0.027 0.001 0.003 0.002 0.002 0.010 0.001
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e ¼ 1

N
�
XN

i¼1

ei ð7Þ

E ¼ 1

N
�
XN

i¼1

Ei ð8Þ

S ¼ 1

N
�
XN

i¼1

Si ð9Þ

Figure 5a, b shows through two distinct box-plot charts

the distribution of the average error e throughout the per-

formed tests according to the values of the hyper-parame-

ters a and r, respectively. These results, combined to those

reported in Table 4, put into evidence the overall good

performance of the method and highlight the combination

r = 3 and a = 15 as the best performing one.

A further useful performance index is the average

absolute percent error for each hardness measure, which is

defined as:

hi ¼ 100� 1

Dimts
�
XDimts

j¼1

Ĵi;j � JTi;j

���
���

JTi;j
1� i�N ð10Þ

The performance achieved by JoMiner while using the

combination r = 3 and a = 15 is shown in Fig. 6 for all the

points of the profile. The performance of the optimizer is

satisfactory, keeping the percent error lower than 1% in the

first points of the curve and lower than 2.5% in the central

part of the profile, where variability is much higher.

The qualitative achievements of JoMiner are shown in

Fig. 7, which compares some target Jominy profiles

belonging to the test dataset and the corresponding profiles

forecasted by JoMiner by using as input of the predictor the

computed optimal chemical composition and the selected

hyper-parameters. As it is clear from this figure, the results

are very satisfactory and the forecasted curve is really close

to the target one.

The outcome of JoMiner can be analysed also in terms

of similarity of the optimal chemical composition with

respect to the real chemical composition corresponding to

the target profile. In other words, for each relevant chem-

ical element El, we can evaluate the average absolute dif-

ference e[El] between the value of the content of this

element in the computed optimal composition [El]opt and

corresponding real content value [El]T in the experimental

chemistry of the target Jominy profile, as follows:

e El½ � ¼
1

Dimts
�
XDimts

j¼1

El½ �opt� El½ �T
���

��� ð11Þ

Table 5 reports the values of the e[El] index computed for

all the 15 chemical elements which are fed as inputs to the

Jominy profile predictor for the 4 above-mentioned com-

binations of the parameters of the mutation operator.

It can also be useful to assess, for each chemical ele-

ment, the average relative error q[El] with respect to the

maximum value [El]max of the contents of the same ele-

ment (as reported in the last row of Table 2), which is

defined as:

q El½ � ¼
e El½ �
El½ �max

ð12Þ

Please note that the index in Eq. (12) differs from the

relative error on the hardness values, which is provided in

Eq. (10), as here the error between actual and target con-

tent value is divided by the maximum value of the content.

The reason for this choice is that, provided that the Jominy

Table 3 Variability ranges of hardness value (in HRC) for the Jominy tests included in the experimental dataset

d (mm) 1.5 3 5 7 9 11 13 15 20 25 30 35 40 45 50

Max 57 56 55 54 54 54 54 54 53 52 51 49 45 43 42

Min 51 51 51 48 42 37 30 26 24 22 20 19 17 16 14

Average 54.2 56.7 52.9 52.3 51.5 50.1 47.9 44.8 36 30.5 27.5 25.4 23.4 21.7 20.4

Fig. 4 Variability of the Jominy profiles in the experimental dataset

as a function of the distance from the specimens quenched ends
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Table 4 Results of the tests for different values of the parameters related to the mutation function

a r Index

(HRC)

di (mm) Aver.

Index
1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

5 1 ei 0.31 0.30 0.28 0.32 0.34 0.23 0.46 0.27 0.41 0.28 0.67 0.69 0.27 0.31 0.27 0.36

Ei 0.75 1.16 0.94 0.75 1.09 0.88 1.35 2.02 2.11 1.23 1.76 1.75 1.87 1.12 1.67 1.36

Si 0.24 0.24 0.23 0.21 0.29 0.19 0.39 0.44 0.54 0.31 0.56 0.49 0.40 0.33 0.30 0.35

2 ei 0.31 0.26 0.30 0.31 0.35 0.23 0.40 0.21 0.30 0.25 0.59 0.53 0.21 0.32 0.21 0.32

Ei 0.87 0.70 0.81 1.14 1.19 1.02 1.35 1.89 1.74 1.42 1.76 1.59 1.23 1.36 1.33 1.29

Si 0.25 0.20 0.21 0.24 0.30 0.22 0.38 0.39 0.46 0.31 0.55 0.45 0.29 0.32 0.27 0.32

3 ei 0.31 0.29 0.33 0.28 0.32 0.25 0.45 0.27 0.37 0.28 0.58 0.53 0.19 0.34 0.18 0.33

Ei 0.75 0.92 0.84 1.15 1.01 0.78 1.36 2.01 1.90 1.12 1.63 1.40 1.47 1.40 0.79 1.23

Si 0.24 0.23 0.20 0.23 0.26 0.21 0.39 0.42 0.52 0.31 0.52 0.45 0.30 0.30 0.20 0.32

4 ei 0.33 0.30 0.27 0.27 0.36 0.25 0.37 0.27 0.32 0.30 0.57 0.42 0.18 0.26 0.18 0.31

Ei 0.93 1.18 0.65 0.67 1.18 0.96 1.06 2.04 2.18 1.37 1.63 1.14 1.46 1.28 1.08 1.25

Si 0.27 0.23 0.18 0.21 0.30 0.24 0.33 0.39 0.49 0.34 0.50 0.38 0.26 0.28 0.21 0.31

10 1 ei 0.36 0.38 0.39 0.42 0.41 0.20 0.42 0.28 0.21 0.27 0.85 0.78 0.34 0.36 0.23 0.39

Ei 1.19 1.19 1.10 1.26 1.47 0.86 1.41 2.71 1.67 1.40 2.18 2.19 1.22 1.29 1.39 1.50

Si 0.30 0.27 0.33 0.28 0.38 0.20 0.39 0.55 0.33 0.32 0.63 0.60 0.36 0.42 0.28 0.38

2 ei 0.30 0.31 0.31 0.36 0.34 0.22 0.44 0.26 0.21 0.28 0.56 0.53 0.24 0.24 0.25 0.32

Ei 1.02 0.72 0.92 1.04 1.28 0.94 1.94 1.99 1.62 1.19 1.82 1.82 1.05 1.22 1.30 1.33

Si 0.26 0.21 0.26 0.21 0.31 0.22 0.45 0.50 0.35 0.30 0.55 0.45 0.26 0.29 0.29 0.33

3 ei 0.32 0.28 0.31 0.25 0.32 0.21 0.38 0.16 0.23 0.30 0.55 0.45 0.18 0.32 0.25 0.30

Ei 0.81 1.09 0.78 0.96 0.87 0.90 1.20 1.49 2.20 1.48 1.71 1.44 1.08 1.41 1.81 1.28

Si 0.21 0.25 0.20 0.20 0.24 0.21 0.32 0.27 0.42 0.34 0.51 0.43 0.21 0.34 0.31 0.30

4 ei 0.30 0.30 0.25 0.31 0.32 0.21 0.40 0.24 0.27 0.25 0.52 0.38 0.18 0.24 0.20 0.29

Ei 1.08 1.10 0.90 0.74 1.09 0.83 1.30 1.84 1.39 1.39 1.72 1.33 1.39 0.92 1.33 1.22

Si 0.25 0.22 0.18 0.20 0.30 0.20 0.35 0.36 0.34 0.32 0.47 0.36 0.25 0.23 0.23 0.28

15 1 ei 0.32 0.28 0.28 0.28 0.34 0.25 0.35 0.13 0.31 0.27 0.56 0.43 0.17 0.25 0.26 0.30

Ei 0.84 1.18 0.81 0.71 1.22 0.77 1.19 1.90 1.65 1.24 1.72 1.37 0.88 1.20 1.02 1.18

Si 0.23 0.24 0.20 0.20 0.28 0.21 0.34 0.31 0.46 0.31 0.47 0.39 0.20 0.26 0.25 0.29

2 ei 0.33 0.31 0.32 0.31 0.35 0.24 0.36 0.16 0.21 0.25 0.64 0.45 0.18 0.23 0.19 0.30

Ei 1.06 1.05 0.92 0.89 1.35 0.67 1.22 1.59 1.23 1.31 1.86 1.67 0.64 1.02 1.12 1.17

Si 0.26 0.26 0.22 0.23 0.31 0.19 0.33 0.27 0.32 0.33 0.54 0.42 0.19 0.26 0.22 0.29

3 ei 0.28 0.27 0.29 0.31 0.36 0.24 0.34 0.18 0.17 0.28 0.49 0.36 0.11 0.25 0.18 0.27

Ei 0.85 0.81 0.80 0.90 1.27 0.82 1.11 2.02 1.20 1.27 1.39 1.42 0.57 0.88 0.84 1.08

Si 0.22 0.20 0.20 0.20 0.33 0.22 0.29 0.32 0.24 0.34 0.45 0.36 0.14 0.24 0.20 0.26

4 ei 0.30 0.29 0.26 0.30 0.33 0.21 0.36 0.14 0.15 0.29 0.55 0.36 0.16 0.22 0.26 0.28

Ei 0.88 1.03 0.70 0.82 1.15 0.87 1.16 1.26 1.16 1.26 1.76 1.35 0.56 1.11 2.19 1.15

Si 0.25 0.22 0.19 0.21 0.28 0.19 0.33 0.26 0.23 0.32 0.45 0.34 0.15 0.24 0.36 0.27

25 1 ei 0.27 0.31 0.28 0.33 0.37 0.24 0.32 0.11 0.24 0.23 0.60 0.47 0.28 0.31 0.27 0.31

Ei 0.91 0.80 1.02 0.96 1.14 0.84 1.24 1.70 1.38 1.45 1.71 1.73 1.36 1.15 0.91 1.22

Si 0.22 0.22 0.23 0.21 0.32 0.24 0.30 0.26 0.36 0.28 0.54 0.45 0.33 0.32 0.27 0.30

2 ei 0.30 0.30 0.26 0.31 0.32 0.25 0.35 0.11 0.21 0.25 0.53 0.36 0.16 0.24 0.29 0.28

Ei 0.90 1.00 0.77 0.74 1.12 0.97 1.16 1.78 1.59 1.28 1.57 1.41 0.61 1.19 1.36 1.16

Si 0.23 0.23 0.20 0.21 0.28 0.22 0.33 0.26 0.35 0.35 0.45 0.35 0.17 0.25 0.31 0.28

3 ei 0.30 0.35 0.32 0.37 0.33 0.21 0.37 0.21 0.21 0.23 0.65 0.51 0.23 0.23 0.18 0.31

Ei 1.18 0.96 1.09 0.83 1.15 0.84 1.26 2.15 1.56 1.11 1.83 2.06 0.92 0.97 1.00 1.26

Si 0.25 0.23 0.29 0.20 0.31 0.21 0.37 0.39 0.32 0.27 0.54 0.49 0.24 0.28 0.21 0.31
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curve is similar to the target one, the similarity of the

chemistry is not particularly relevant, but it is important not

to provide steel chemistry which include very high contents

of the micro-allowing elements. Under this perspective

(which is deepened in Sect. 4.3), it is much more important

to compare the error on the suggested chemical content of

each chemical element to its maximum value, as derived

from the available dataset.

Figure 8 graphically shows the values of the q[El] index
for all the relevant chemical elements and for all the

combinations of the parameters of the mutation operator.

Figure 8 shows that the relative error on the chemical

composition is generally bigger that the one on the Jominy

profile, especially for V and Nb. Two possibly concurrent

reasons can be argued for this fact.

From the merely computational point of view, Vana-

dium is relevant for estimating one value of the Jominy

profile, i.e. Ĵ8, corresponding to the distance value

d8 = 15 mm, together with other 8 inputs (3 related to the

steel chemistry and 5 related to values of the profile), such

as reported in Table 1. As the objective function defined in

Table 4 continued

a r Index

(HRC)

di (mm) Aver.

Index
1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

4 ei 0.26 0.27 0.28 0.31 0.35 0.23 0.35 0.18 0.17 0.25 0.50 0.40 0.11 0.27 0.17 0.27

Ei 0.72 0.77 0.73 1.08 1.09 0.99 1.15 1.68 1.35 1.28 1.48 1.31 0.83 1.20 1.26 1.13

Si 0.19 0.20 0.21 0.22 0.29 0.21 0.34 0.31 0.29 0.29 0.46 0.35 0.17 0.23 0.21 0.26

50 1 ei 0.26 0.36 0.29 0.36 0.35 0.27 0.34 0.12 0.16 0.29 0.56 0.50 0.25 0.31 0.29 0.31

Ei 0.87 1.19 0.89 0.86 1.17 0.91 1.17 1.89 1.02 1.43 1.84 2.14 1.57 1.16 2.02 1.34

Si 0.21 0.22 0.28 0.18 0.33 0.21 0.31 0.29 0.21 0.35 0.51 0.44 0.30 0.32 0.37 0.30

2 ei 0.32 0.29 0.33 0.29 0.35 0.23 0.34 0.13 0.20 0.20 0.53 0.43 0.20 0.32 0.24 0.29

Ei 0.77 1.06 0.84 1.13 1.00 0.93 1.18 1.22 1.43 0.92 1.74 1.52 1.16 1.35 1.50 1.18

Si 0.21 0.24 0.22 0.23 0.27 0.20 0.32 0.20 0.33 0.22 0.45 0.39 0.24 0.27 0.28 0.27

3 ei 0.29 0.28 0.28 0.29 0.34 0.23 0.34 0.16 0.22 0.25 0.50 0.33 0.24 0.30 0.27 0.29

Ei 0.70 1.17 0.71 0.71 1.02 0.89 1.09 1.66 2.34 1.12 1.44 1.25 1.07 1.33 2.02 1.23

Si 0.21 0.24 0.20 0.19 0.28 0.21 0.31 0.26 0.38 0.30 0.46 0.31 0.26 0.30 0.39 0.29

4 ei 0.31 0.29 0.28 0.32 0.35 0.22 0.33 0.17 0.18 0.29 0.45 0.33 0.15 0.23 0.23 0.27

Ei 0.73 0.94 0.90 0.84 1.32 0.86 1.05 1.66 1.29 1.42 1.32 1.32 1.18 0.91 1.06 1.12

Si 0.21 0.24 0.21 0.21 0.33 0.22 0.29 0.26 0.27 0.32 0.44 0.34 0.23 0.23 0.24 0.27

The best results are highlighted in bold

Fig. 5 Box-plots showing the distribution of the e error measure for the different values of the a (a) and r (b) hyperparameters throughout the

performed tests
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Eq. (1) is adopted for these tests, which gives the same

importance to the errors on all the values of the Jominy

profile, small mismatching on one value has a limited

importance on the overall goodness of the fitting. On the

other hand, Niobium is relevant for estimating four values

of the Jominy profile, i.e. Ĵ5, Ĵ6, Ĵ7 and Ĵ13 (related to

d5 = 9 mm, d6 = 11 mm, d7 = 13 mm and d13 = 40 mm).

The NNs forecasting these values hold several inputs, Nb is

only one of them and its impact is marginal in the deter-

mination of the output value.

From the metallurgical point of view, the combined

effect of microalloying elements on steel hardenability is

very complex and not yet perfectly understood. It is indeed

possible that two different steel chemical compositions

give rise to very similar Jominy profiles, and this fact is

reflected in the exploited experimental data. As the target

of the optimization is the minimization of the error

between the target and forecasted Jominy profiles, the

system is free to select any steel chemistry, which,

according to the data used for training, allows providing a

forecasted profile as close as possible to the target one.

The results depicted in Table 8 put into evidence a

further aspect of the JoMiner. Combinations of hyper-pa-

rameters characterized by low values of a (mutation per-

cent range) and r (number of mutated elements) correspond

to optimized chemical compositions that are closer to the

actual ones than those obtained by other hyper-parameters

couples with higher a and/or r values. Low hyper-param-

eters values configurations of the GA engine correspond to

conservative approaches to the search within the space of

Fig. 6 Average percent error

achieved by JoMiner on test

data by using the

hyperparameters values a = 15

and r = 3 and the basic fitness

function provided in Eq. (1)

Fig. 7 Exemplar comparison between some target Jominy profiles belonging to Dts and the corresponding profiles forecasted by JoMiner by
using as input of the predictor the computed optimal chemical composition and the selected hyper-parameters values
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Table 5 Results of the tests in terms of e[El] for different values of the parameters related to the mutation function assessed in terms of error on

the values of the chemical components expressed in wt.%

ε[El] (wt%)

αα r C Mn Si P S Cr Ni Mo Cu Sn Al V Nb Ti B

5

1 0,005 0,038 0,014 0,0034 0,0038 0,017 0,010 0,015 0,019 0,0009 0,0015 0,0019 0,0016 0,0026 0,00031

2 0,006 0,052 0,013 0,0032 0,0041 0,017 0,011 0,015 0,027 0,0010 0,0020 0,0020 0,0016 0,0032 0,00032

3 0,005 0,051 0,015 0,0031 0,0050 0,017 0,009 0,015 0,027 0,0009 0,0018 0,0021 0,0016 0,0026 0,00037

4 0,005 0,063 0,015 0,0039 0,0034 0,017 0,014 0,008 0,034 0,0010 0,0019 0,0022 0,0015 0,0030 0,00031

10

1 0,007 0,042 0,013 0,0033 0,0034 0,017 0,011 0,016 0,024 0,0011 0,0019 0,0023 0,0016 0,0024 0,00038

2 0,005 0,044 0,015 0,0033 0,0044 0,018 0,018 0,016 0,027 0,0011 0,0017 0,0022 0,0017 0,0029 0,00036

3 0,005 0,056 0,014 0,0030 0,0049 0,018 0,010 0,019 0,032 0,0011 0,0020 0,0021 0,0015 0,0031 0,00037

4 0,005 0,064 0,012 0,0034 0,0036 0,015 0,014 0,011 0,036 0,0010 0,0020 0,0024 0,0016 0,0034 0,00034

15

1 0,005 0,064 0,016 0,0034 0,0032 0,015 0,010 0,018 0,034 0,0013 0,0016 0,0024 0,0014 0,0030 0,00039

2 0,006 0,050 0,017 0,0038 0,0033 0,017 0,012 0,021 0,033 0,0012 0,0021 0,0021 0,0021 0,0035 0,00037

3 0,005 0,068 0,013 0,0037 0,0042 0,016 0,014 0,014 0,038 0,0012 0,0024 0,002 0,002 0,003 0,00033

4 0,005 0,073 0,014 0,0033 0,0027 0,017 0,011 0,018 0,039 0,0010 0,0022 0,002 0,001 0,003 0,00042

25

1 0,006 0,052 0,019 0,0041 0,0037 0,016 0,013 0,013 0,034 0,0015 0,0023 0,0021 0,0018 0,0032 0,00036

2 0,005 0,070 0,018 0,0036 0,0036 0,015 0,012 0,021 0,038 0,0013 0,0020 0,0023 0,0014 0,0030 0,00043

3 0,006 0,051 0,019 0,0037 0,0042 0,017 0,014 0,022 0,032 0,0015 0,0023 0,0026 0,0019 0,0030 0,0005

4 0,004 0,059 0,016 0,0034 0,0051 0,017 0,011 0,020 0,034 0,0013 0,0023 0,0022 0,0015 0,0032 0,0004

50

1 0,005 0,049 0,023 0,0031 0,0047 0,015 0,010 0,022 0,030 0,0020 0,0029 0,0024 0,0019 0,0027 0,0003

2 0,005 0,051 0,023 0,0027 0,0053 0,017 0,010 0,031 0,034 0,0012 0,0027 0,0022 0,0019 0,0033 0,0004

3 0,004 0,059 0,021 0,0031 0,0050 0,017 0,012 0,029 0,036 0,0016 0,0026 0,0024 0,0018 0,0027 0,0004

4 0,005 0,064 0,019 0,0039 0,0044 0,016 0,015 0,026 0,036 0,0012 0,0026 0,0023 0,0017 0,0030 0,0004

Fig. 8 Relative error q[El] for each chemical element that is fed as input to the Jominy profile predictor for the 4 considered combinations of the

parameters a and r of the mutation operator
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possible chemical compositions. An approach that does not

extensively explores the solutions domain remains indeed

closer to the initial chemical compositions, which are

drawn from the original distributions of chemical elements

in the training dataset. On the other hand, high-valued

hyper-parameters combinations lead to optimized chemical

compositions that are quite different from the actual ones,

since in these cases exploration of the domain is favored.

This discrepancy does not affect the goodness of the

solution that is measured in terms of distance between the

target Jominy profile and the one predicted by using the

optimal chemical composition. In this scenario the selected

best performing combination of hyper-parameters is a

trade-off between a conservative and an explorative

approach to the search task.

4.2 Jominy profile points weighted optimization

As introduced in the previous section, it is possible to use

different objective functions in order to exploit the search

capabilities of JoMiner to respond to specific industrial

requirements. One common case corresponds to the need of

more accuracy in arbitrary points of the optimized profile Ĵ

with respect to the target profile JT. In this context, a

typical industrial application is the achievement of a higher

precision in forecasting the central points of the profile

(i.e.11 mm B di B 35 mm), since such points are intrin-

sically affected by a higher variability with respect to the

other ones and mostly influence a number of mechanical

properties of interest. This optimization can be pursued by

using the objective function shown in Eq. (2), where a

weighting system is employed to set the relative impor-

tance of each of the 15 points of the profile. In this work the

requirement of higher precision in the central part of the

profile is addressed by using the weights shown in Table 6.

With respect to the weight attributed to discrepancy

between forecasted and target hardness values in the initial

and final values of the profile, a double penalty is attributed

for di = 11.0 mm and di = 35.0 mm, and a quadruple

penalty for 13 mm B di B 30 mm.

The optimization task is performed for all the curves in

the test dataset by using the usual configuration, as far as

the GA engine is concerned, and the selected values for the

a and r parameters (a = 15, r = 3). The obtained results are

reported in Table 7. In addition, Table 8 allows a direct

comparison between the values of ei achieved through the

weighted optimization and the ones achieved in the base

test, by highlighting accuracy improvements. Lower errors

are achieved for all the focused points except for the first

one (distance 11 mm). Improvement in selected points

varies between 10 and 60%. The side-effect of this

increased interest on a subset of the profile points is an

overall loss of precision that raised from 0.27 HRC to 0.34

HRC, although it remains certainly acceptable at both

global and individual points level.

4.3 Optimization by minimizing
the consumption of arbitrary elements

A further application of JoMiner involves the consideration

of economical or environmental aspects in the optimization

process related to the consumption of the micro-alloying

elements, by typically minimizing their usage according to

either cost or environmental impact criteria. This task is

pursued by using Eq. (3) as objective function, since the

content of selected chemical elements can be discouraged

by using a suitable cost vector C = [c1…cM].
Here a typical optimization study is proposed, that tar-

gets minimization of the usage of micro-alloyed elements.

This is a quite common goal in the industrial practice, since

Cr, Ni, Mo, V, Nb and Ti are expensive and their con-

sumption markedly affects the production cost. More in

detail, the adopted C cost vector is shown in Table 9. This

set-up penalizes the usage of the above-mentioned chemi-

cal elements without distinction (i.e. c = 1 for all of them)

with respect to all the other elements of the domain. The

equalization parameters of the objective function shown in

Eq. (5) is set to b = 3 for order of magnitude balancing

purposes.

The results obtained by the optimization of the test

profiles by using the standard configuration of the GA

engine and the selected hyper-parameters are shown in

Table 10 in terms of absolute error of the optimized Ĵ with

respect to the associate target profiles JT.

Table 11 compares the average contents of the relevant

chemical elements computed over the optimal solutions

Table 6 Weighting employed in the optimization test focusing on the achievement of more accuracy in the central part of the Jominy profile

di (mm) 1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Weight 0.0315 0.0625 0.125 0.0625 0.0315

Bold value indicates the highest values of the weights associated to the different values of di

Italics values indicate the second highest values of such weights
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determined by JoMiner to the actual ones (i.e. the average

contents computed over the target profiles). Noticeably, the

contents of the micro-alloying elements, on which the

optimization focuses, are reduced: the reduction is slight

for Cr and Ti, but sensible for Ni and Mo (around - 18%)

and dramatic as far as V and Nb are concerned (- 89% and

- 80% respectively). The exchange in terms of discrep-

ancy of the optimized profiles with respect to the target

ones is again negligible, since 0.27 HRC B e B 0.40 HRC

(see Table 4), a price which can be worth to pay for a

considerable reduction of micro-alloying elements and

consequent production costs.

Figure 9 depicts form a qualitative point of view the

performance of JoMiner in the optimization task on a

single Jominy profile while adopting the different objective

functions provided by Eqs. (1)–(3). In particular, focusing

on the central points of the profile through the objective

function in Eq. (2) effectively improves the prediction

accuracy in these points (black vs. red curve). On the other

hand, the penalization of the consumption of costly micro-

alloying elements, which is implemented through the cost

function in Eq. (3), slightly modifies the whole shape of the

profile (magenta vs. red curve), which, however, is still

very close to the target one.

Table 7 Performance of the weighted optimization focusing on the central part of the Jominy profile (highlighted in bold and italic)

Perf. Index

(HRC)

di (mm) Average Perf. Index

(HRC)
1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

ei 0.36 0.33 0.32 0.34 0.40 0.30 0.27 0.09 0.07 0.22 0.44 0.32 0.38 0.52 0.72 0.34

Ei 1.13 0.86 0.99 0.83 1.34 1.03 0.97 1.36 0.37 1.22 1.69 1.97 1.37 2.25 2.59 1.33

Si 0.28 0.23 0.24 0.21 0.35 0.23 0.28 0.20 0.08 0.30 0.46 0.38 0.39 0.48 0.60 0.31

Table 8 Comparison between weighted and standard version of the optimizer on test curves in terms of average absolute error

di (mm) e (HRC)

1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

ei (HRC)—Weighted version 0.36 0.33 0.32 0.34 0.40 0.30 0.27 0.09 0.07 0.22 0.44 0.32 0.38 0.52 0.72 0.34

ei (HRC)—Basic version 0.28 0.27 0.29 0.31 0.36 0.24 0.34 0.18 0.17 0.28 0.49 0.36 0.11 0.25 0.18 0.27

Points where higher accuracy is required are highlighted with bold and italic

Table 9 Array of the relative cost associated to each chemical element as employed in the optimization test that includes the minimization of

micro-alloyed elements usage

C Mn Si P S Cr Ni Mo Cu Sn Al V Nb Ti B

ci 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0

Table 10 Results of the optimization with a weighting factor limiting consumption of costly micro-alloying elements

Perf. Index

(HRC)

di (mm) Average Perf. Index

(HRC)
1.5 3.0 5.0 7.0 9.0 11.0 13.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

ei 0.33 0.29 0.32 0.24 0.30 0.29 0.52 0.47 0.28 0.42 0.79 0.70 0.36 0.39 0.39 0.40

Ei 0.95 1.00 0.74 0.79 0.99 1.15 1.53 2.07 1.67 1.59 2.14 2.16 1.89 1.51 1.88 1.47

Si 0.24 0.24 0.17 0.20 0.21 0.24 0.45 0.49 0.34 0.39 0.58 0.54 0.43 0.42 0.42 0.36
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5 Conclusions and future work

This paper proposes an approach combining NNs-based

models and GA-based optimization to face a relevant

practical problem within the steelmaking field, i.e. finding

the steel chemical composition, which ensures achievement

of a target hardenability profile. The balance between

exploration and exploitation in the search for optimal

solution is investigated, by varying two hyper-parameters

and a trade-off solution is proposed, which also allows

exploiting the information hidden in the available dataset.

This is an important aspect, if one considers the non bi-

univocal correspondence between the steel chemistry and

the shape of the Jominy curve, which reflects the still not

perfectly known interactions between the micro-alloying

elements. Moreover, different optimization strategies can

be implemented, targeting the matching of the target profile

over the whole or over a particular range of distance values

(according to frequently found customers specifications,

which are stricter on a limited range of distance values), as

well as the minimization of the contents of some micro-

alloying elements, in compliance with economic and

environmental constraints.

The proposed approach is flexible and customizable to

the specific production range and targets of a company, in

term not only of exploited dataset exploited for system

training, but also of optimization targets, as the weights of

the objective functions can be selected based on the cus-

tomer’s specifications on the Jominy profile and on the

production constraints. Even more important, the system, is

capable to provide suggestions which goes beyond the

standard operating practice, as the generalization capability

of the NN-based models and the exploration potential of

the GAs helps finding combinations of micro-alloying

elements, which might be less frequently used in the past,

but can provide adequate Jominy profiles, while saving

costly micro-alloying elements. To sum up, the system can

extract valuable knowledge from raw data, by supporting

plant managers in meeting production demands and

achieving economic and environmental targets.

Future work will focus on development of a suit-

able graphical user interface, which allows an easy deploy-

ment of the system in the steelworks, including parameters

set-up and NN-based models re-tuning. Moreover, some

efforts will be devoted to speed up the GA-based optimization

procedure, for instance, through the combination of the cur-

rent simple termination condition, consisting in the achieve-

ment of a maximum number of iterations, with an additional

condition on the improvement of the best solution in the most

recent generations, by terminating the search if no significant

improvement is achieved.
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