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Abstract
Partial least squares path modeling is a statistical method that allows to analyze com-
plex dependence relationships among several blocks of observed variables, each one
represented by a latent variable. The computation of latent variable scores is an
essential step of the method, achieved through an iterative procedure named here
Hanafi–Wold’s procedure. The present paper generalizes properties already known in
the literature for this procedure, from which additional convergence results will be
obtained.

Keywords PLS path modeling · Iterative procedure · Convergence properties

1 Introduction

Partial least squares path modeling (PLS-PM), originally developed by Wold (1982,
1985), is a powerful multivariate statistical method that allows us to analyze relation-
ships among several blocks of observed variables, usually called manifest variables
(MVs). Each block is assumed to represent an unobserved variable, the so-called latent
variable (LV).

PLS-PM is considered to be an alternative approach to the covariance structure
analysis (Jöreskog 1970), traditionally used for parameter estimation in Structural
Equation Modeling (SEM). However, PLS-PM is based on a statistical approach quite
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Fig. 1 Conceptual model involving three blocks of manifest variables

different fromcovariance structure analysis for SEM, leading to different parameters to
be estimated. It is actually better defined as an estimation method for composite-based
path modeling, according to the most recent literature (Dijkstra 2017).

PLS-PM focuses on LV score computation, accounting for variances of MVs and
correlations among LVs. It shows a number of interesting features (e.g., great flexibil-
ity, robustness, few demands concerning distributional assumptions and requirement
for identification) and has become increasingly important in many areas (Esposito
Vinzi et al 2010; Hair et al 2017).

The fundamental principle in PLS-PM is that all the information concerning the
relationships between K blocks of observable variables X1,X2, . . . ,XK is assumed
to be conveyed by K composites z1,z2, . . . , zK . Each composite, zK , is a proxy of
the corresponding LV, ξ k , which can not be directly observable and is assumed to
represent the block of pk MVs Xk = [xk,1, xk,2, . . . , xk,pk ]. The same N observations
are measured on the blocks of MVs, stacked in matrices X1,X2, . . . ,XK .

In PLS-PM the investigator starts with a conceptual picture of the model. In the
conventional graphical representation of the conceptual model (see Fig. 1), the MVs
xk, j (1 ≤ j ≤ pk ; 1 ≤ k ≤ K) are represented by squares and LVs by circles.
Using prior substantive knowledge and intuition the investigator can specify the links
between LVs (represented by arrows) when these LVs are assumed to be related. The
investigator therefore defines which LVs are to be connected to others and which are
not.

Once the conceptual model is designed, the design of the formal model and the
estimation algorithm are straightforward. Two models are considered in PLS-PM.
The first one, called the measurement model, relates the MVs to the LVs. Each MV
xk,j is related to its LV ξ k by a simple regression (1 ≤ j ≤ pk ; 1 ≤ k ≤ K):

xk, j = π0
k, j + πk, jξ k + εk, j . (1)
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The only hypothesis made on the model in Eq. (1) is called the predictor specification
condition:

E(xk, j |ξ k) = π0
k, j + πk, jξ k (1 ≤ j ≤ pk, 1 ≤ k ≤ K ) (2)

This condition implies that the residuals εk, j have zero mean and are even mean
independent with the LV ξ k . The error terms of each block are allowed to freely
correlate.

The second model, called the structural model, specifies the relationship between
LVs. A LV that never appears as a dependent variable is called exogenous; otherwise,
it is called endogenous. In the structural model, a dependent LV ξ k′ is related by
a multiple regression model to the corresponding predictor LVs ξ k , k ∈ Jk′ , where
Jk′ = {k : ξ k′ is predicted by ξ k}:

ξ k′ = βk′0 +
∑

k∈Jk′
βk′kξ k + δk′ (3)

where the usual hypotheses on the residuals implied by the predictor specification
condition are made.

The estimation of the parameters of the models in Eqs. (1) and (3) is based on the
PLS-PM algorithm which proceeds in three stages. The first stage computes the LV
scores, z1,z2, . . . , zK . Each zk is constructed as a linear combination of its indicators

zk = Xkwk with unit variance (
w

′
kX

′
kXkwk
N = 1). The second stage estimates the model

parameters in Eqs. (1) and (3), i.e., the parameters πk, j (1 ≤ j ≤ pk, 1 ≤ k ≤ K )

and βk′k . Finally, the third stage estimates the location parameters, the parameters
π0
k, j (1 ≤ j ≤ pk, 1 ≤ k ≤ K ) and βk′0. The first two stages use centred data

X1,X2 . . .XK , and the two last stages use classical OLS regression and do not show
any difficulty concerning the computation.

The present paper focuses on the computation of LV scores (i.e. the first stage of
the PLS-PM algorithm). Hanafi (2007) points out that there are two main procedures
for the computation of scores in the first stage of the PLS-PM algorithm: the original
procedure as proposed by Wold (1982, 1985), and extended by Hanafi (2007) (called
hereHanafi–Wold’s procedure), and an alternative procedure introduced by Lohmöller
(1989).

As demonstrated by Hanafi (2007), the advantage of Hanafi–Wold’s procedure is
that it is monotonically convergent, it reaches a stable solution faster and has a better
performance in terms of convergence speed compared to Lohmöller’s procedure. This
latter procedure does not converge monotonically, but is implemented in most PLS-
PM software applications, such as PLS-Graph (Chin 2003), PLS-GUI (Hubona 2015),
SmartPLS (Ringle et al 2015),XLSTAT’sPLSPMpackage (AddinsoftXLSTAT2019),
among others. The present paper focuses on Hanafi–Wold’s procedure.

Hanafi (2007) showed that the sequence of LV scores computed through Hanafi–
Wold’s procedure increases two different criteria, depending on two schemes for
computing the weights relating LV scores (see Theorem 1 below), well known in
the PLS-PM community as centroid and factorial schemes. Both criteria are defined
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as a function of the correlation matrix of the LVs scores. These monotony properties
make it easy to establish the monotone convergence of the Hanafi–Wold’s procedure.
Here, monotony convergence refers that the values obtained iteratively by the two
criteria define a real sequence that is convergent.

The present paper proposes generalizations of some properties already established
in the literature (Hanafi 2007) and from which additional convergence results for
Hanafi–Wold’s procedure will be established.

The paper is organized as follows. Section 2 describes briefly Hanafi–Wold’s pro-
cedure for the computation of LV scores and summarizes their monotony properties as
obtained by Hanafi (2007). A generalized forms of these properties will be provided
in Sect. 3. Conclusions and future research are presented in Sect. 4.

2 Hanafi–Wold’s procedure

The basic idea of Hanafi–Wold’s procedure was initially proposed by Wold (1985,
pp. 586) in the particular case of six blocks, and extended by Hanafi (2007, pp. 280)
considering (i) any number of blocks and (ii) any conceptual design model.

Let C = [ck,l] be a (K,K) symmetric matrix, which takes into account the link
between the LVs. It is defined from the conceptual design of the model. The elements
of the matrix C are defined as follows : ck,l = cl,k = 1 if there is an arrow between
the LVs ξ k and ξ l , and ck,l = cl,k = 0 otherwise.

Overall, it is a symmetrical procedure (Dolce et al. 2018) that concerns the com-
putation of the values of wk vectors of weights, associated with zk = Xkwk(1 ≤
k ≤ K), with the constraints that these LV scores are centered and have unit variance

(
w

′
kX

′
kXkwk
N = 1).

The Hanafi–Wold’s procedure consists of building iteratively a sequence of LV
scores z(s)

k = Xkw
(s)
k , (1 ≤ k ≤ K) and (s = 0, 1, 2, . . .), as follows :

For k0 = 1, 2, . . . , K :

1. for the block Xk0 , r (s)
k0,l

=
{
r(z(s)

k0
, z(s+1)

l ), if l ≤ k0

r(z(s)
k0

, z(s)
l ), if l > k0

, where r denotes the

Pearson correlation coefficient

2. θ
(s)
k0,l

=
{
sign(r (s)

k0,l
) (centroid)

r (s)
k0,l

(factorial)

3. Z(s)
k0

= �
k0−1
l=1 ck0,lθ

(s)
k0,l

z(s+1)
l + �K

l=k0+1ck0,lθ
(s)
k0,l

z(s)
l

4. w̃(s+1)
k0

= (X
′
k0
Xk0)

−1X
′
k0
Z(s)
k0

5. w(s+1)
k0

= √
N

w̃(s+1)
k0∥∥∥Xk0 w̃

(s+1)
k0

∥∥∥

6. z(s+1)
k0

= Xk0w
(s+1)
k0

The procedure begins with an arbitrary choice of initialization. Suppose that
z(s+1)
1 ,z(s+1)

2 , . . . , z(s+1)
k0−1 are computed for the blocksX1,X2, . . . ,Xk0−1, z

(s+1)
k0

,z(s+1)
k0+1 ,
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. . . , z(s+1)
K are computed following Steps 2, 3, 4 and 5. The process is iterated over

(s) until the quantity
∑K

k=1 ||z(s+1)
k − z(s)

k ||2 is smaller or equal to a fixed threshold.

Clearly, the procedure depends on two schemes (step 2) depending on how θ
(s)
k0,l

elements are calculated. In step 4 is considered here only the calculation of the weights
using the so-called mode B. Another alternative for the weights calculation, known as
mode A (see Hanafi 2007), can also be used, but the present work is limited only to
mode B.

TheHanafi–Wold’s procedure can be presented in a compact form, depending on the
two chosen schemes (i.e., centroid or factorial). For the centroid scheme, the procedure
can be presented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�k−1
l=1 ck,l sign(r(z(s)

k , z(s+1)
l ))(X

′
kXk)

−1X
′
kXlw

(s+1)
l +

+�K
l=k+1ck,l sign(r(z(s)

k , z(s)
l ))(X

′
kXk)

−1X
′
kXlw

(s)
l = λ

(s)
k w(s+1)

k

w′(s)
k X

′
kXkw

(s)
k

N = 1

k = 1, 2, ..., K ,

(4)

where
⎧
⎨

⎩
λ

(s)
k = 1√

N

∥∥∥∥Xk

(
X′
kXk

)−1
X′
kZ

(s)
k

∥∥∥∥ ,

Z(s)
k = �k−1

l=1 ck,l sign(r (s)
k,l )z

(s+1)
l + �K

l=k+1ck,l sign(r (s)
k,l )z

(s)
l .

(5)

For the factorial scheme, the procedure can be presented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�k−1
l=1 ck,l |r(z(s)

k , z(s+1)
l )|(X′

kXk)
−1X

′
kXlw

(s+1)
l +

+�K
l=k+1ck,l |r(z(s)

k , z(s)
l )|(X′

kXk)
−1X

′
kXlw

(s)
l = μ

(s)
k w(s+1)

k

w′(s)
k X

′
kXkw

(s)
k

N = 1

k = 1, 2, ..., K ,

(6)

where

⎧
⎨

⎩
μ

(s)
k = 1√

N

∥∥∥∥Xk

(
X′
kXk

)−1
X′
k Z̃

(s)
k

∥∥∥∥
Z̃

(s)
k = �k−1

l=1 ck,lr
(s)
k,l z

(s+1)
l + �K

l=k+1ck,lr
(s)
k,l z

(s)
l .

(7)

The compact forms (4) and (6) are obtained straightforwardly by substituting step
4 in step 3 in the Hanafi–Wold’s procedure.

Hanafi (2007) establishes two monotony properties for the iterative procedure pre-
sented above. These two properties are summarized in the following theorem.
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Theorem 1 (Hanafi 2007, pp. 282)

(i) Let z(s)k = Xkw
(s)
k (1 ≤ k ≤ K ), s = 0, 1, 2, . . ., be a sequence of LV scores

generated by Hanafi–Wold’s procedure. When the centroid scheme is considered,
then the following inequalities hold:

∀s f
(
z(s)1 , z(s)2 , . . . , z(s)K

)
≤ f

(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
, (8)

where f is given as the following :

f
(
z1, z2, . . . , zK

) =
K∑

k,l=1,k �=l

ckl
∣∣r

(
zk, zl

)∣∣ (9)

(ii) Let z(s)k = Xkw
(s)
k be a sequence of LVs generated by theHanafi–Wold’s procedure.

When the factorial scheme is considered, then the following inequalities hold:

∀s g
(
z(s)1 , z(s)2 , . . . , z(s)K

)
≤ g

(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
(10)

where g is given as the following:

g
(
z1, z2, . . . , zK

) =
K∑

l �=k k,l=1,

cklr
2 (

zk, zl
)

(11)

As a direct consequence of Theorem 1, monotony convergence of Hanafi Wold’s
procedure was established.

The Corollary 1 (respectively, Corollary 2) in Hanafi (2007, pp.284–287), estab-
lished the monotony convergence of Hanafi Wold’s Procedure. That is to say, that

the real sequence a(s) = f
(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)
(respectively, the real sequence

b(s) = g
(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)
converges.

3 Generalization of Hanafi’s Theorem 1 and its consequences

The present section provides a generalisation of Hanafi’s Theorem 1.

Theorem 2 (i) Let z(s)k = Xkw
(s)
k (1 ≤ k ≤ K), s = 0, 1, 2, . . ., be a sequence of

LVs scores generated by Hanafi–Wold’s procedure, when the centroid scheme is
considered the following equality holds:

f
(
z(s+1)
1 , z(s+1)

2 , · · · , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , · · · , z(s)
K

)
= 1

N

K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
(12)
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where f is given in (9) and λ
(s)
k is given in (5).

(ii) Let z(s)k = Xkw
(s)
k (1 ≤ k ≤ K), s = 0, 1, 2, . . ., be a sequence of LVs generated by

Hanafi–Wold’s procedure, when the factorial scheme is considered the following
equalities hold:

g
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− g

(
z(s)1 , z(s)2 , . . . , z(s)K

)

= 1

N

K∑

k=1

μ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2

(13)

where g is given in (11) and μ
(s)
k is given in (7).

Theorem 2 generalizes Theorem 1. Indeed, it is sufficient to note that the right side
of the Eq. (12) in the Theorem 2(i) is always positive:

⎧
⎪⎨

⎪⎩

λ
(s)
k ≥ 0

∥∥∥z(s+1)
k − z(s)k

∥∥∥
2 ≥ 0

⇒ λ
(s)
k

∥∥∥z(s+1)
k − z(s)k

∥∥∥
2 ≥ 0 ⇒

K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z(s)k

∥∥∥
2 ≥ 0 (14)

It follows that:

f
(
z(s+1)
1 , z(s+1)

2 , · · · , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , · · · , z(s)
K

)
= 1

N

K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2 ≥ 0

(15)

As a consequence, inequalities (8) in Theorem 1(i) hold.
In the same way, the right side of the Equalities (13) in the Theorem 2(ii) is also

always positive:

g
(
z(s+1)
1 , z(s+1)

2 , · · · , z(s+1)
K

)
− g

(
z(s)
1 , z(s)

2 , · · · , z(s)
K

)
= 1

N

K∑

k=1

μ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2 ≥ 0 (16)

As a consequence, inequalities (9) in Theorem 1(ii) hold.

Proof of Theorem 2 (i) For k = 1, 2, . . . , K , let fk be the function defined by:

fk (wk) =
∑

l<k

ckl
∣∣∣r

(
Xkwk, z

(s+1)
l

)∣∣∣ +
∑

l>k

ckl
∣∣∣r

(
Xkwk, z

(s)
l

)∣∣∣,
1

N
w′
k

(
X′
kXk

)
wk

= 1

It is worth noting that fk can be also written as the function of Z(s)
k given in (5), as:

fk (wk) = cov(zk,Z
(s)
k ),

where cov denotes the covariance.
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Hanafi (2007, pp. 281) shows that fk
(
w(s)
k

)
≤ fk

(
w(s+1)
k

)
with

w(s+1)
k = √

N

(
X′
kXk

)−1
X′
kZ

(s)
k∥∥∥∥Xk

(
X′
kXk

)−1
X′
kZ

(s)
k

∥∥∥∥
, with

λ
(s)
k =

∥∥∥∥Xk

(
X′
kXk

)−1
X′
kZ

(s)
k

∥∥∥∥
√
N

.

Evaluating fk respectively in w(s+1)
k and w(s)

k as follows:

fk
(
w(s+1)
k

)
= (z’(s+1)

k Z(s)
k )

N
= (w’(s+1)

k X’kZ
(s)
k )

N
= w’(s+1)

k (λ
(s)
k X’kXkw

(s+1)
k )

N

= λ
(s)
k w’(s+1)

k

(
X′
kXk

N

)
w(s+1)
k = λ

(s)
k .

and

fk
(
w(s)
k

)
= cov

(
z(s)
k ,Z(s)

k

)
= (w’(s)k X’kZ

(s)
k )

N
= λ

(s)
k w’(s)k

(
X′
kXk

N

)
w(s+1)
k

= λ
(s)
k r

(
z(s)
k , z(s+1)

k

)
,

it follows that

2
[
fk

(
w(s+1)
k

)
− fk

(
w(s)
k

)]
=λ

(s)
k

[
2 − 2r

(
z(s)
k , z(s+1)

k

)]
= λ

(s)
k

N

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
.

(17)

Considering the following equalities:

f
(
z(s+1)
1 , z(s)

2 , . . . , z(s)
K

)
− f

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
[
f1

(
w(s+1)
1

)
− f1

(
w(s)
1

)]

f
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s)
K

)
− f

(
z(s+1)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
[
f2

(
w(s+1)
2

)
− f2

(
w(s)
2

)]

. . .

f
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− f

(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K−1 , z(s)

K

)

= 2
[
fK

(
w(s+1)

K

)
− fK

(
w(s)

K

)]
,
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and summing over k, it follows

f
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
K∑

k=1

[
fk

(
w(s+1)
k

)
− fk

(
w(s)
k

)]
. (18)

Substitution (16) in the right of the equality (17) gives:

f
(
z(s+1)
1 , z(s+1)

2 , · · · , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , · · · , z(s)
K

)
= 1

N

K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2

Proof of Theorem 2 (ii) For k = 1, 2, . . . , K , let gk be the function defined by :

gk (wk) =
∑

l<k

cklr
2
(
Xkwk, z

(s+1)
l

)
+

∑

l>k

cklr
2
(
Xkwk, z

(s)
l

)
,w′

k

(
X′
kXk

n

)
wk

= 1

Hanafi (2007, pp. 285) shows that

w(s+1)
k = √

N

(
X′
kXk

)−1X′
k Z̃

(s)
k∥∥∥∥Xk

(
X′
kXk

)−1
X′
k Z̃

(s)
k

∥∥∥∥

w(s+1)
k can be written equivalently as

μ
(s)
k

(
X′
kXk

)
w(s+1)
k = 1

N
X′
k Z̃

(s)
k with μ

(s)
k =

∥∥∥Xk
(
X′
kXk

)−1X′
k Z̃

(s)
k

∥∥∥ .

Noting that

gk
(
w(s+1)
k

)
=

(
z’(s+1)

k Z(s)
k

N

)
= cov

(
z’(s+1)

k Z̃(s)
k

)

= μ
(s)
k w’(s)k

(
X′
kXk

)

N
w(s+1)
k = μ

(s)
k cor

(
z(s)
k , z(s+1)

k

)
,

it results that

2
[
gk

(
w(s+1)
k

)
−gk

(
w(s)
k

)]
=μ

(s)
k

[
2 − 2r

(
z(s)
k , z(s+1)

k

)]
= μ

(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
.

(19)
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The proof of the Theorem 2 (ii) is straightforward, just by observing the following
equalities:

g
(
z(s+1)
1 , z(s)

2 , . . . , z(s)
K

)
− g

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
[
g1

(
w(s+1)
1

)
− g1

(
w(s)
1

)]

g
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s)
K

)
− g

(
z(s+1)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
[
g2

(
w(s+1)
2

)
− g2

(
w(s)
2

)]

. . .

g
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− g

(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K−1 , z(s)

K

)

= 2
[
gK

(
w(s+1)

K

)
− gK

(
w(s)

K

)]

Indeed by summing over k these equalities, it follows:

g
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− g

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)

= 2
K∑

k=1

[
gk

(
w(s+1)
k

)
− gk

(
w(s)
k

)] (20)

and substituting Eq. (18) in right side of Eq. (19), it follows

g
(
z(s+1)
1 , z(s+1)

2 , · · · , z(s+1)
K

)
− g

(
z(s)
1 , z(s)

2 , · · · , z(s)
K

)
= 1

N

K∑

k=1

μ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2


�
Theorem 2 allows additional convergence results of Hanafi–Wold’s procedure, as

summarized in the following corollary.

Corollary 3 Let z(s)k be a sequence of LV scores generated byHanafi–Wold’s procedure,
then

(i) when the centroid scheme is considered, the sequence λ
(s)
k

(
z(s+1)
k − z(s)k

)
con-

verges to 0;

(ii) when the factorial scheme is considered, the sequence μ
(s)
k

(
z(s+1)
k − z(s)k

)
con-

verges to 0.

Proof of Corollary 3 As a matter of fact, starting from theorem 2(i) the following
inequalities hold for each k(1 ≤ k ≤ K ):

λ
(s)
k

N

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2 ≤ 1

N

K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
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= f
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)
.

Because f
(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)
converges, see Corollary 1 in Hanafi (2007, pp

284), then

f
(
z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
K

)
− f

(
z(s)
1 , z(s)

2 , . . . , z(s)
K

)
converges to 0. Therefore,

λ
(s)
k

(
z(s+1)
k − z(s)

k

)
converges to 0. 
�

The convergence of the sequenceμ
(s)
k

(
z(s+1)
k − z(s)

k

)
proceeds in the same manner

by updating f by g and λ
(s)
k by μ

(s)
k .

4 Conclusion and perspectives

The main contribution of the present paper is the generalization of some proper-
ties of Hanafi–Wold’s procedure established in Hanafi (2007). A generalized form of
Theorem 1 in Hanafi (2007) is given here by the Theorem 2. Moreover, additional
convergence results to those already established by Corollary 1 and Corollary 2 in
Hanafi (2007), are presented in the Corollary 3 of the present paper.

The results presented in this paper do not allow us to conclude that the sequence
z(s+1)
k − z(s)

k convergences to zero, but gives a substantial contribution towards this
achievement. Indeed, the Corollary 3 suggests to focus further work on finding a
strictly positive lower bounds for the sequences λ

(s)
k and μ

(s)
k . More precisely, under

the condition that there is a strictly lower bound for λ
(s)
k and μ

(s)
k , denoted τ and

κ , respectively, Corollary 3 allows to conclude straightforwardly that the sequences
z(s+1)
k − z(s)

k convergences to zero as following.
For centroid scheme, using Corollary 3 (i) it follows that for every k and every s,∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2 ≤ 1

τ

[
λ

(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
]
, which leads the sequences z(s+1)

k − z(s)
k

converging to zero. In the same way, for factorial scheme, using Corollary 3 (ii) it

follows that for every k and every s,
∥∥∥z(s+1)

k − z(s)
k

∥∥∥
2 ≤ 1

κ

[
μ

(s)
k

∥∥∥z(s+1)
k − z(s)

k

∥∥∥
2
]
,

which leads the sequences z(s+1)
k − z(s)

k converging to zero.
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