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Abstract. The correct analysis of heat transport at nanoscale is one of the main reasons of new developments in physics and

nonequilibrium thermodynamic theories beyond the classical Fourier law. In this paper, we provide a two-temperature model

which allows to describe the different regimes which electrons and phonons can undergo in the heat transfer phenomenon.
The physical admissibility of that model is showed in view of second law of thermodynamics. The above model is applied
to study the propagation of heat waves in order to point out the special role played by nonlocal and nonlinear effects.
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1. Introduction

Modern ultrafast laser-assisted manufacturing technology is empowering the fabrication of miniaturized
nano/microscale devices for electronics, optics, medicine and energy applications [1,2]. A continuous
control of the temperature’s rise should be required to avoid any possible problem in the laser-assisted
nanoscale manufacturing. The analysis of heat transport in those situations (which may be also labeled
as extreme, since they are “very far from equilibrium”), indeed, requires the use of theoretical models
which go beyond the classical Fourier law; the heat transport, in fact, might be no longer diffusive
(and therefore describable by the classical Fourier law), but ballistic, or hydrodynamic [3–10], since
miniaturized nano/microscale devices usually show characteristic dimensions which are comparable to
(or smaller than) the mean free path of the heat carriers.

This paper deals, therefore, with the heat transport phenomenon at nanoscale which is a very hard,
but compelling and fashionable research playground. In modeling that phenomenon, indeed, one should
also observe that:

i. although with a different importance, in common materials used at nanoscale both the electrons
and the lattice vibrations (i.e., the phonons) are the heat carriers [11–14]. Both heat carriers are
not in an equilibrium state during the heat transfer;

ii. thermodynamic constitutive equations containing nonlocal and nonlinear spatial terms are needed
when the attention is put on systems subjected to important spatial gradients [4,15–18].

According with the above observations, by regarding the electrons and the phonons as a mixture of
heat carriers flowing through the crystal lattice, and assuming that they are endowed with their own
temperatures [19,20], here we propose a theoretical model based on the following equations which allow
to take into account memory, nonlocal and nonlinear effects:
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In Eqs. (1):
• θe and θp are, respectively, the electron temperature and the phonon temperature. They are related

to the internal energy of electrons ue and that of phonons up, respectively, by the constitutive
assumptions

ue = ce
vθ

e (2a)

up = cp
vθ

p (2b)

with ce
v and cp

v being, respectively, the specific heat of electrons and of phonons [19,20]. The two
above contributions to the internal energy (per unit volume) u of the whole system are such that

u = ue + up (3)

whereas the total specific heat is cv = ce
v + cp

v.
• qe

i and qp
i are, respectively, the electron contribution and the phonon contribution to the local heat

flux qi [19,20]. These two different contributions are such that

qi = qe
i + qp

i (4)

• Qe
ij and Qp

ij are second-order tensors representing, respectively, the electron contribution and the
phonon contribution to the flux of qi [4,21–23]. These two different contributions are such that the
flux of heat flux Qij of the whole system is

Qij = Qe
ij + Qp

ij (5)

• τ1e and τ1p are, respectively, the relaxation time of qe
i and of qp

i .
• τ2e and τ2p are, respectively, the relaxation time of Qe

ij and of Qp
ij .

• λe and λp are, respectively, the thermal conductivity of electrons and of phonons.
• �e and �p are, respectively, the mean free path of electrons and of phonons.
The framework of the present paper is the following. In Sect. 2, we prove the thermodynamic com-

patibility of the theoretical model introduced by Eqs. (1). In Sect. 3, we use that model to study the
propagation of heat waves in a rigid body, pointing out the role played by nonlocal and nonlinear effects.
In Sect. 4, we provide final comments and point out the application limits of the proposed model.

2. Thermodynamic considerations

Equations (1) represent the basic tool in this paper: in Sect. 3, in particular, they will be used to analyze
the propagation of heat waves at nanoscale. Although some comments on physical grounds about Eqs. (1)
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will be given in Sect. 4, we here underline that they do not follow from a rigorous microscopic derivation.
As a consequence, it is necessary to primarily check their physical admissibility (in order to avoid any
possible violation of the basic principles of continuum physics). In this section, therefore, we prove the
thermodynamic compatibility of the theoretical model expressed by Eqs. (1). To this aim, we put ourselves
in the context of extended thermodynamics [4,15,21,24,25] and assume the following state space:

Σ =
{
θe; qe

i ;Q
e
ij ; θ

p; qp
i ;Qp

ij

}

Then we start from the local balance of the specific entropy s, that is,

ṡ + Js
i,i = σs (6)

wherein Js
i is the specific entropy flux and σs is the specific entropy production.

According with the classical Liu procedure for the exploitation of the second law of thermodynam-
ics [26], a linear combination of the specific entropy production and of Eqs. (1) (which represent the
constraints introduced by the state–space variables) has to be always non-negative along any admissible
thermodynamic process. As a consequence, from the coupling of Eqs. (1) and the left-hand side of Eq. (6),
we have that the following extended entropy inequality
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≥ 0 (7)

has to be always fulfilled, whatever the thermodynamic process is. In the extended entropy inequality
above the functions Λe, Λe

i , Λe
ij , Λp, Λp

i and Λp
ij are the so-called Lagrange multipliers; they may depend

on the whole set of state–space variables, in principle.
The agreement of Eqs. (1) with second law of thermodynamics cannot be checked until constitutive

assumptions on s and Js
i have been given, since the latter functions do not belong to the state space.

In order to remain on a very general level and let the second law give information about them, here we
assume

s =s
(
θe; qe

i ;Q
e
ij ; θ

p; qp
i ;Qp

ij

)
(8a)

Js
i =Js

i

(
θe; qe

i ;Q
e
ij ; θ

p; qp
i ;Qp

ij

)
(8b)

The insertion of Eqs. (8) into inequality (7) leads (by straightforward calculations) to the following
sets of necessary and sufficient conditions which guarantee that second law of thermodynamics is always
fulfilled

∂s

∂θe
− Λe = 0 (9a)

∂s

∂qe
i

− Λe
i = 0 (9b)

∂s

∂Qe
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∂s
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i
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i = 0 (9e)
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∂Qp
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ij = 0 (9f)
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and
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together with the following reduced entropy inequality:
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According with the thermodynamic restrictions in Eqs. (8)–(10), by direct calculations it is indeed
possible to verify that the two-temperature model based on Eqs. (1) always agrees with second law if,
for example, the following generalized forms of the specific entropy and specific entropy flux are used,
respectively,
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wherein s0 (θe; θp) is the local equilibrium entropy, and

αe
i = αe (θe)

qe
i

|qe
i |

(13a)

αp
i = αp (θp)

qp
i

|qp
i | (13b)

are suitable vector-valued functions, with αe = αe (θe) and αp = αp (θp) being suitable scalar-valued
functions of the indicated arguments, and |qe

i | and |qp
i | being the moduli of the indicated vectors.

The above considerations allow us to claim that the two-temperature model introduced by Eqs. (1)
has well-posed theoretical basis.

3. Heat wave propagation

Advanced materials could experience very low temperatures, or extremely high-temperature gradients,
for which a precise heat transport model should be considered to capture temperature’s rise from thermal
wave propagation. Therefore, starting from Eqs. (1), in this section we study the propagation of heat (H-)
waves. From the practical point of view, H-waves can be generated by periodically varying in time the
temperature in a point of the medium at hand with respect to its steady-state reference level. A solitary
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H-wave, instead, comes into being and travels along the medium when the latter is heated with a heat
pulse.

For our convenience, here we use the tool of the acceleration (A-) waves, namely traveling surfaces S,
across which all the state–space variables are continuous, but their space and/or time derivatives suffer at
most finite discontinuities. For some mathematical details about the use of A-waves, we refer the readers
to Ref. [27] (see therein the Appendix section). A very outstanding reference about the A-waves is also
the book by Straughan [28].

We also suppose that the region ahead S is such that

θe (xk; t) ≡ θp (xk; t) = θ0 qe
i (xk; t) ≡ qp

i (xk; t) = q0i (14)

∀t ∈ R
+, with θ0 and q0i being stationary constant reference levels.

3.1. Heat wave speeds

By taking the jump of each of Eqs. (1), we firstly have
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once the use of the classical Hadamard relations [27–29] has been made. In Eqs. (16), the functions
Θe (t) = [[θ,ini]], Φe

i (t) = [[qe
i,j

nj ]], Ψe
ij (t) = [[Qe

ij,k
nk]], Θp (t) = [[θ,ini]], Φp

i (t) = [[qp
i,j

nj ]] and
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Ψp
ij (t) = [[Qp

ij,k
nk]] are the A-wave amplitudes. Moreover, therein V means the A-wave speed (or, equiv-

alently, the H-wave speed), and ni means the normal unit to the A-wave front.
By straightforward calculations, it is possible to obtain that Eqs. (16) do not only admit the trivial

solution if, and only if, the following relation holds:
(
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p
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)

= 0 (17)

Equation (17) allows us to claim the following result: the two-temperature theoretical model, intro-
duced by Eqs. (1), predicts that a periodical variation of the local temperature in a point of the system
generates two different A-waves which propagate with different speeds. Those speeds are given by
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wherein we have introduced the following speeds
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and the following nondimensional scalar-valued functions
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Throughout the present paper, we use the appellation electronic heat (EH-) wave for the A-wave
whose speed is given by Eq. (18a) and the appellation phononic heat (PH-) wave for the A-wave whose
speed is given by Eq. (18b).

As it is clearly showed by Eqs. (18), the EH-wave speed diverges either when τ1e → 0 or when τ2e → 0.
Similarly, the PH-wave speed diverges either when τ1p → 0 or when τ2p → 0.

Below we comment about the role played by nonlocal and nonlinear effects.

3.1.1. Nonlocal effects and heat-wave speeds. Nonlocal effects influence both the EH-wave speed, and
the PH-wave speed. According to Eqs. (18), those effects, in fact, are introduced by ψe in Ve and by ψp

in Vp. Since those functions are always positive, it is possible to claim that nonlocal effects enhance the
speeds of propagation. In fact, when nonlocal effects are negligible, i.e., if we may set ψe = 0 and ψp = 0
in Eqs. (18), those speeds become

Ve = Ve
0

(√
φ2

e + 1 − φe

)
(21a)

Vp = Vp
0

(√
φ2

p + 1 − φp

)
(21b)

3.1.2. Nonlinear effects and heat-wave speeds. Throughout the present paper, we use the appellation
positive (+) for the H-wave which is propagating in the same direction of the average heat flux q0j and
the appellation negative (−) for the H-wave which is propagating in the opposite direction of the average
heat flux q0j .
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Nonlinear effects influence both the EH-wave speed, and the PH-wave speed. According to Eqs. (18),
those effects, in fact, are introduced by φe in Ve and by φp in Vp. Since the sign of the scalar product
q0j nj depends on the direction of propagation, from Eqs. (20) it follows that

• φe > 0 and φp > 0 for positive A-waves
• φe < 0 and φp < 0 for negative A-waves

As a consequence, from Eqs. (18) it follows that both Ve and Vp depend on the direction of propagation
of the H-waves. In particular, from the above results we have Ve

+ ≤ Ve
− and Vp

+ ≤ Vp
−.

When nonlinear effects are negligible, i.e., when φe = 0 and φp = 0, Eqs. (18) become

Ve = Ve
0

(√
1 + ψe

)
(22a)

Vp = Vp
0

(√
1 + ψp

)
(22b)

and both those speeds no longer depend on the direction of propagation.

3.2. Heat wave amplitudes

When the A-wave amplitude becomes infinite, we may claim that the A-wave becomes a shock wave.

Differentiating with respect to time each of Eqs. (1) and then evaluating their jumps through S, we
have
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which leads to
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when the Hadamard relations [27–29] are employed in a recursive way. Observing that from
Eqs. (16a), (16c), (16d) and (16f), one, respectively, has

VΘece
v = Φe

i ni (25a)

Ψe
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by coupling Eqs. (24a)–(24c) and Eqs. (24d)–(24f), respectively, the following Bernoully-type ODEs arise:

δΘe

δt�
+ αeΘe + βeΘ

2

e = 0 (26a)

δΘp
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2
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For the sake of computational convenience, in writing ODEs (26) we introduced the following nondi-
mensional variable

t� =
t
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= t

(
1
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+

1
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)
(27)
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as well as the following nondimensional functions
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once Eqs. (18)–(20) have been taken into account. If γe �= 4φe and γp �= 4φp, then ODEs (26) can be
solved to find

Θe (t�) =
Θ0

eαet�

+ Θ0εe

(
eαet� − 1

) (29a)

Θp (t�) =
Θ0

eαpt�

+ Θ0εp

(
eαpt� − 1

) (29b)

wherein Θ0 = Θe (t� ≡ 0) = Θp (t� ≡ 0) are the initial conditions, and

εe =
2φeγ

2
e

γ2
e + τ�

e ψe

√
τ�
e

ψe
(30a)

εp =
2φpγ

2
p

γ2
p + τ�

p ψp

√
τ�
p

ψp
(30b)

When γe = 4φe, one simply has Θe (t�) = 0, ∀t� ∈ R
+, and when γp = 4φp, one simply has Θp (t�) = 0,

∀t� ∈ R
+.

Although in the very general case the initial condition on the temperature-wave amplitude Θ0 may be
either positive or negative, here we assume Θ0 ∈ R

+. Holding this assumption, below we comment more
in detail some results arising from Eqs. (29).

3.2.1. Positive heat waves. According with the observations made in Sect. 3.1.2, we start to observe that
from Eqs. (28) one may have that

• γe > 4φe ⇒ αe > 0, and γp > 4φp ⇒ αp > 0
• γe < 4φe ⇒ αe < 0, and γp < 4φp ⇒ αp < 0

whereas from Eqs. (30) it follows that εe > 0 and εp > 0, when positive H-waves are propagating through
the medium. In this situation, the main cases below may occur.

1. If γe > 4φe and γp > 4φp, then both Θe, and Θp will decay to zero. We may claim, therefore, that
in this case both the EH-waves, and the PH-waves will be damped.

2. If γe < 4φe and γp < 4φp, then both Θe, and Θp will blow up, respectively, at the following finite
values

t�e = −α−1
e ln

(
1 +

1
Θ0εe

)
(31a)

t�p = −α−1
p ln

(
1 +

1
Θ0εp

)
(31b)
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We may claim, therefore, that in this case both the EH-waves, and the PH-waves will become
shock waves.

3.2.2. Negative heat waves. According with the observations made in Sect. 3.1.2, we start to observe
that in the case of negative H-waves from Eqs. (28) one has αe > 0 and αp > 0, whereas from Eqs. (30)
one has εe < 0 and εp < 0. By indicating with εm = min (|εe| ; |εp|), and with εM = max (|εe| ; |εp|), in this
situation the cases below may occur.

1. If Θ0 ∈ (
0; ε−1

M

)
, then both Θe, and Θp will decay to zero. We may claim, therefore, that in this case

both the EH-waves, and the PH-waves will be damped.
2. If Θ0 = ε−1

M , then
a. Θe will decay to zero, and Θp will always remain constant (i.e., Θp = −εp, ∀t� ∈ R

+), when
εp < εe. We may claim, therefore, that in this case the EH-waves will be damped, and the
PH-waves will not change their shapes.

b. Θe will always remain constant (i.e., Θe = −εe, ∀t� ∈ R
+), and Θp will decay to zero, when

εe < εp. We may claim, therefore, that in this case the EH-waves will not change their shapes,
and the PH-waves will be damped.

3. If Θ0 ∈ (
ε−1
M ; ε−1

m

)
, then

a. Θe will decay to zero, and Θp will blow up at the finite value t�p given by Eq. (31b), when
εp < εe. We may claim, therefore, that in this case the EH-waves will be damped, and the
PH-waves will become shock waves.

b. Θe will blow up at the finite value t�e given by Eq. (31a), and Θp will decay to zero, when
εe < εp. We may claim, therefore, that in this case the EH-waves will become shock waves,
and the PH-waves will be damped.

4. If Θ0 = ε−1
m , then

a. Θe will always remain constant (i.e., Θe = −εe, ∀t� ∈ R
+), and Θp will blow up at the finite

value t�p given by Eq. (31b), when εp < εe. We may claim, therefore, that in this case the
EH-waves will not change their shapes, and the PH-waves will become shock waves.

b. Θe will blow up at the finite value t�e given by Eq. (31a), and Θp will always remain constant
(i.e., Θp = −εp, ∀t� ∈ R

+), when εe < εp. We may claim, therefore, that in this case the
EH-waves will become shock waves, and the PH-waves will not change their shapes.

5. If Θ0 > ε−1
m , then Θe will blow up at the finite value t�e given by Eq. (31a), and Θp will blow up at

the finite value t�p given by Eq. (31b). We may claim, therefore, that in this case both the EH-waves
and the PH-waves will become shock waves.

4. Conclusions

From the theoretical point of view, the analysis of heat transport at nanoscale is not an easy task, owing
to several very complex mechanisms involved in that phenomenon which, however, has been one of the
driving forces in the shaping of modern physics and modern nonequilibrium thermodynamic theories
[3,4,8,15,16,18,21,22].

A general model of heat transport at nanoscale should not only include a detailed account of nonlocal
and nonlinear effects (since at nanoscale the characteristic size may be comparable to the mean free path
of heat carriers and consequently some the thermal properties might change), but it should also take
into account the possibility that the electron temperature (due to electron–electron collisions) may be
different from the phonon temperature (due to phonon–phonon collisions) [30].

In this paper, we therefore proposed the two-temperature model in Eqs. (1) in order to describe heat
transport at nanoscale when the contributions of the different heat carriers (namely, the electrons and
the phonons) are taken into account; in fact, according to Eqs. (3)–(5) in that theoretical model we have
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decomposed in the electron and phonon contributions, respectively, the specific internal energy of the
whole system u, the local heat flux qi and the flux of heat flux Qij . Along with the approach of the
kinetic theory [3], in that theoretical model the heat carriers have been regarded as a gas-like collection,
flowing through the crystal lattice [3,19,20], similar to a mixture of gases wherein all the constituents
have their own temperature and obey the same balance laws as a single fluid [31,32].

Equations (1) allow to introduce both nonlocal effects (by means of the terms �eq
e
i,j

and �pq
p
i,j

) and

nonlinear effects (by means of the terms
2qe

j q
e
i,j

ce
vθ

e
and

2qp
j qp

i,j

cp
vθp

). The role played by those effects has been

pointed out in the propagation of heat waves; the analysis carried out in Sect. 3 displays, in particular,
that those effects influence both the speed of the heat waves (which can be different, depending on the
direction of propagation), and the wave amplitudes in such a way that a thermal wave may also become
thermal shock wave. It seems worth noticing that Eqs. (1) also encompass the possibility that in some
situations nonlocal and/or nonlinear effects may influence only one of the heat carrier collections. For
example, if they have a vanishingly small influence on the electrons, then Eqs. (1) become

θ̇e +
qe
i,i

ce
v

= 0 (32a)

q̇e
i +

qe
i

τ1e
+

λeθ
e
,i

τ1e
= 0 (32b)

θ̇p +
qp
i,i

cp
v

= 0 (32c)

q̇p
i +

qp
i

τ1p
+

λpθ
p
,i

τ1p
− 2qp

j qp
j,i

cp
vθp

− Qp
ij,j

τ1p
= 0 (32d)

Q̇p
ij +

Qp
ij

τ2p
− �2pq

p
i,j

τ2p
= 0 (32e)

whereas one would have

θ̇e +
qe
i,i

ce
v

= 0 (33a)

q̇e
i +

qe
i

τ1e
+

λeθ
e
,i

τ1e
− 2qe

j q
e
j,i

ce
vθ

e
− Qe

ij,j

τ1e
= 0 (33b)

Q̇e
ij +

Qe
ij

τ2e
− �2eq

e
i,j

τ2e
= 0 (33c)

θ̇p +
qp
i,i

cp
v

= 0 (33d)

q̇p
i +

qp
i

τ1p
+

λpθ
p
,i

τ1p
= 0 (33e)

if nonlocal and nonlinear effects do not play any relevant role on phonos. Intermediate situations can be,
however, also possible.

Concerning the thermodynamic aspects, we have pointed out that Eqs. (1) yield that both the specific
entropy s, and the specific entropy flux Js

i contain nonclassical contributions related to the fluxes and
their corresponding higher-order fluxes.

At the very end, we draw again the attention of the readers on the possible implications in practical
applications of theoretical models beyond the classical Fourier law: they could allow a continuous control
of the temperature and avoid any possible rise of it. Owing to this, further comments about Eqs. (1), as
well as about the limit of application of the two-temperature model introduced in the present paper, are
needed.
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4.1. Comments on the origin of Eqs. (1)

As we previously observed, Eqs. (1) do not follow from a rigorous microscopic derivation, although their
physical admissibility has been proved by exploiting the second law in Sect. 2. Indeed, without going
very deep in the physical details, but still remaining on a general level, we note that on microscopic
ground both electrons, and phonons may be viewed as a free particle gas in a box [3]. Both of them can
be described through the Boltzmann transport equation. In that equation, the equilibrium distribution
function f0 is given by the Bose–Einstein distribution function (BEdf) in the case of phonons, whereas
in the case of electrons f0 is expressed by the Fermi–Dirac distribution function (FDdf), i.e.,

f0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝e

�ω

kBT − 1

⎞

⎟
⎠

−1

(BEdf)

⎛

⎝e

εi − μ

kBT + 1

⎞

⎠

−1

(FDdf)

where � = h/ (2π) with h as the Planck constant, ω is the angular frequency, kB is the Boltzmann
constant, εi is the energy of the single-particle state and μ is the chemical potential. As it can be easily
seen, the BEdf changes the plus one in the denominator of the FDdf into minus one. It is possible to
find several situations, as, for example, whenever εi − μ 
 kBT , in which one can ignore the ±1 in the
denominator, in order that both distributions reduce to the Boltzmann distribution function [3]. In these
cases, on intuitively ground, the solution of the Boltzmann equation both for phonons, and for electrons
would lead to equations which display the same mathematical behavior. Therefore, the mathematical
structure of Eqs. (1a)–(1c) (holding for the electrons) is similar to that of Eqs. (1d)–(1f) (holding for the
phonons).

4.2. Comments on the flux of heat flux

In the theoretical model introduced by Eqs. (1) an important role is played by the flux of the heat flux
Qij , which is indeed decoupled therein in its electron contribution Qe

ij and in its phonon contribution
Qp

ij , according to Eq. (5). Theoretical considerations about Qe
ij and Qp

ij can be found in Ref. [23] (see
therein Sect. 5), for example. The physical concept of Qij , indeed, might be not very clear at a first
view, but it is simple to understand from a microscopic perspective. The heat flux qi is the convective
energy flux, proportional to the integral of �ωki over the κ-distribution function, with ki as the wave
vector, indicating the direction of the speed. In an analogous way, the flux of heat flux Qij is related to
the integral of the tensor �ωkikj . In the kinetic theory of gases, the corresponding microscopic operators

for qi and Qij would be, respectively,
mc2ci

2
and

mc2cicj

2
, m being the mass of the particle and ci the

peculiar velocity of the particle with respect to the barycentric speed of the gas [4].

4.3. Comments on the relaxation times

From the theoretical point of view, in the proposed two-temperature model the crucial role also played
by the four relaxation times τ1e, τ2e, τ1p and τ2p is very clear: they guarantee, in fact, the hyperbolic
behavior of Sys. (1).

In practical applications, the modeling of the relaxation times still represents an open and very com-
pelling problem [4,29,33,34]. In principle, they should depend on the whole set of state–space variables
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[27], as well as the other material functions (i.e., the thermal conductivities and the mean free paths); in
Ref. [4] (see, therein, Chap. 6), for example, generic nonlinear expressions for the thermal conductivity
and for the relaxation time as functions of the temperature and of the heat flux have been derived from
the maximum entropy formalism for harmonic chains, electromagnetic radiation, as well as in the case
of classical and relativistic ideal gases. If those material-function dependences were taken into account, a
very general nonlinear analysis would have been achieved. In this paper, however, we assumed constant
values for all material functions in order to only emphasize the effects of the genuinely nonlinear terms
2qe

j q
e
i,j

ce
vθ

e
and

2qp
j qp

i,j

cp
vθp

(contained in Eqs. (1b) and (1e), respectively) since nonlinear terms accounting for

products of the temperature gradient (or the heat flux) should be also taken into consideration, owing to
the possibility that in nanosystems small temperature differences could lead to high values of tempera-
ture gradient. These “genuinely” nonlinear terms may be important in all situations wherein the different
thermophysical quantities only display vanishingly small changes with the temperature, i.e., when the
material functions can be practically assumed constant.

4.4. Comments on the electron–phonon coupling

A more important limit in possible applications of Eqs. (1) is strictly related to the electron–phonon
coupling. We note, in fact, that in the proposed two-temperature model the two different species of heat
carriers (i.e., the electrons and the phonons) have been completely decoupled; indeed, the interactions
between electrons and quantized lattice vibrations in a solid represent one of the most fundamental
realms of study in condensed matter physics. It is well known that the electron–phonon interactions
in graphene, for example, play an important role in understanding anomalies of photoemission spectra
observed in graphite and graphene, the nonlinear high-energy electron transport in carbon nanotubes, as
well as phonon structures in graphite and carbon nanotubes [35,36]; therefore, the absence of an electron–
phonon coupling in Eqs. (1) clearly sets a limit in the application of the two-temperature model proposed
in this paper.

Although the electron–phonon interactions can be introduced in several ways in the model equations
[13,19,34,37], it has to be noted that their accounting might not lead to an easy task from the practical
point of view. In Eqs. (1) (which have to be meant, therefore, only as a first attempt towards a more
refined theoretical model), we neglect the electron–phonon interactions in order to reduce to a simpler
level the analysis of nonlocal and nonlinear effects, the role of which in the propagation of heat waves is
clearly pointed out in this approximation.
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