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SUMMARY 

The sensitivity theory is a suitable approach for assessing the room thermal response. It results in the 
‘sensitivity coefficients’ (SCs) which, as derived here, evaluate the variation of the thermal load due to 
a fluctuation in a given design parameter around its nominal value. In this paper the general method is 
presented and a number of SCs are derived to evaluate the sensitivity of the building energy demand to the 
window surface area, to the overall transmittance and mass thermal capacity of a given wall, and to other 
structural data. 

INTRODUCTION 

For a number of purposes and especially when seeking optimum design, it is required to observe the system 
response following a modification in a given design parameter. For example, in the case of building thermal 
analysis, one should wish to know to what extent the thermal load is responsive to fluctuations in the window 
surface area or in the overall conductance of a given wall or in its thermal capacity, and so on. Once such 
relationships are available, the designer can manage to achieve the best thermal performance through the 
slightest of alterations in the design variables. 

So far, ‘parametric analysis’ has been used to this end: it involves tentative changes in some variables being 
assigned and plenty of computer simulations being carried out until some relationship between the variable 
in question and the thermal response of the building arises. If optimization is the aim, this process should go 
on until a satisfactory design is attained. 

It is self-evident that such a procedure is cumbersome and labour-intensive. 
A more appropriate and straightforward approach comes from ‘sensitivity theory’. This is suitable for 

a linear model (as outlined below) and results in the ‘sensitivity coefficients’ (SC) defined as the (percentage) 
change in a state variable (e.g. the thermal load) when a given design parameter undertakes a fluctuation 
around its nominal value (Frank, 1978). 

Previous work (Cammarata et al., 1983,1987) reports on the mathematical model for the building thermal 
response to be used here and on the sensitivity analysis of rooms not under thermostat constraint 
(Cammarata and Marletta, 1990). 

This paper deals with the thermal load sensitivity to a number of design parameters. 

MATHEMATICAL APPROACH 

It is well known that the dynamic behaviour of linear systems can be described by a ‘state equation’ of the 
following type (Cadzow and Marteus, 1970): 

Ci.1 = CAI [TI+ CB1 CVl ( 1 )  
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In the present case [ T] is the state vector and [ f'] its time derivative. Both enclose the state variables. In the 
lumped parameter models (LPM) for building analysis, the element Tj of vector [TI is the temperature ofjth 
wall. [ V] is the input vector, containing the functions of the boundary conditions, i.e. the external forces 
acting on the system, such as outdoor temperature, solar radiation etc. [A]  and [B], respectively referred to 
as the state array and the input array, include the system structural data. 

In the linear system theory (Cadzow and Martens, 1970) it can be shown that equation (1) can be solved 
through the following relationship: 

CTlr= CKl[Tlr-~r + CDlCulr (2) 
Here T is the time and AT the temporal step of integration. 

1 970). 

system parameters 4i(i = 1, 2, ..., r). Then 

Both [ F ]  and [D] are matrices derived from [A]  and [B]  as given in the literature (Cadzow and Martens, 

In general the item q( j  = 1 s m )  of the state vector [TI is a time varying r-dimensional function of the 

7;. = f j ( q i ,  z) ( j  = 1 im; i = 1 + r )  

The thermal load can be assessed by an equation of the type: 

Q ( T )  = g ( q ,  4i) 

Let us introduce the following sensitivity coefficient: 

This quantifies the change in the temperature of the jth wall due to an arbitrarily small fluctuation in the 
system parameter qi around its nominal value qi. Similarly we can refer to: 

as the sensitivity coefficient of the thermal load, Q. 
The relationship between Aij and oi is provided by the chain rule: 

Moreover, after equation (I) and since [ V ]  is independent of qi:  

Now, by inversion of the order of derivation we get 

Therefore 

Let 
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Hence equation (4) becomes: 

CAI = CLI 14 + [MI L-UI 

cA'll CAI 2 

..* 1; 

... 

CBI 1 

This equation is formally similar to equation (1) and therefore can be solved likewise. 
Moreover it can be seen that the state equation (1) is included in (5). As a result, once equation (5) is solved, 

one gets the dynamic behaviour of the system (i.e. the temperature of walls) and any desired sensitivity 
coefficient, with considerable savings in computer time. Clearly the L i j  obtained will be used to withdraw 
oi by means of equation (3). 

It is to be understood that the SCs, as previously derived, are time-dependent and therefore not practicable 
for design purposes and/or for characterzation of the room thermal response. 

To this end it seems more appropriate to introduce the averaged-values over a suitable time period, t: 

0 

Furthermore, as a consequence of the definition, every single SC has its own dimensions. On this basis, 
comparisons among different SCs are not possible. Hence it seems reasonable to introduce the normalized 
value: 

which quantifies the change in the thermal load caused by a _+ 10% deviation of 4i from its nominal value qi. 

ROOM DESCRIPTION AND SIMULATIONS 

The above mentioned method was applied to assess the SC of the room thermal load with respect to the 
following design parameters: window surface area (Sw), overall transmittance (U) and thermal capacity (mc) 
of the external wall, as well as convective coefficients for both internal (ai) and external (ae) surface of the same 
wall. 

The investigation deals with a room under thermostat constraints and with regular shape (6 x 6 x 3 m3). 
All walls were supposed to have the same structure and to be adjacent to rooms at the same temperature 
(internal partitions), except one facing due south with a window on it. 

This arrangement seems suitable to make the results easier to understand as it protects the room from heat 
transfer contributions other than that through the external wall. 

The thermal load, Q was evaluated for a number of room configurations: different window size, lightweight 
or heavyweight wall structure, with and without thermal insulation, for summer and winter conditions 
(indoor air temperature respectively T, = 25 "C and T, = 20 "C) of a typically mediterranean climate. 
Selected structural data are summarized in Table 1. The simulations were carried out by means of a lumped 
parameter model, described in Cammarata and Marletta et al. (1983) and Cammarata and Marletta (1990). 

THE RESULTS 

Figure 1 shows the temporal evolution of the SC of the thermal load, Q, to window area, dQ/dS,, overall 
transmittance, dQ/dU and mass thermal capacity, dQ/d(mc) for the south wall of a room with lightweight 
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Table 1. Structural data 

Structure weight 

External wall Light Medium Heavy 

U ( W/m2 "C) 2.03 1.07 0.82 
mc (kJ/m2 "C) 122 200 282 

ai ( W/m2 "C) 8 
a, ( W/m2 "C) 20 

structure and 25% window to wall ratio. Figure l(a) refers to summer and Figure l(b) to winter operation. 
(The same division into part (a) representing summer and part (b) representing winter performance applies to 
Figures 2 to 8 also.) 

The dynamic behaviour of SCs can be understood looking at Figure 2, where the following functions are 
shown: thermal load, Q,  temperature difference between indoor and outdoor air, (T, - T,), time derivative 
dT/d t  of the wall internal temperature. 

It should not escape the reader that dT/dr is proportional to the energy storage in the wall, mcdT/dt. 
Apparently both dQldS, and dQ/dU behave rather similarly to (To - T,) as well as dQ/d(mc) to (dT/dr);  

this means that (T, - T,) acts as a driving force with respect to dQ/dS,  and dQ/dU.  Similarly one can think 
about dQ/d (mc) versus the thermal energy stored in the wall (mcdT/dr). 

A similar approach can be used for the analysis of Figures 3 and 4. They both refer to a room of 
heavyweight structure and allow us to perceive the dumping effect of the thermal capacity on the room 
thermal response. 

The same effect can be seen in Figure 5 ,  which gives dQ/dU as a function of the window surface area S,. It is 
realized that for any given typology (lightweight or heavyweight structure) a diminishing amount of solid 
wall surface area makes dQ/dU decrease as S ,  increases. 

From Figure 6 one can assess the relationship between dQ/dS,  and the window overall transmittance (K,). 
As one can observe, doubling K ,  makes dQ/dS,  almost double as well. 

In Figure 7 the sensitivity function of thermal load, Q,  to the convective coefficient a, is given. As a general 
remark one can see that the values attained by dQ/da,  are rather high, as compared with those of other SCs. 
That implies the high sensitivity of Q to a, and ultimately to the wind conditions of the site. Furthermore, this 
time the heavyweight structure is affected by the highest fluctuations in dQ/da,. This happens because heavy 
walls have lower overall transmittance, U ,  in comparison to light walls (see Table 1). 

For comparison, the sensitivity of Q to the internal convective coefficient ai is reported in Figure 8. 
Now let us consider the mean values of the SC. Primarily it must be observed that, because of the wavy 

shape of SC curves, it would not be suitable to get them by averaging over the whole day (24 hours). In this 
case indeed such values will be next to zero, resulting in misleading information. It is necessary to adopt more 
appropriate criteria; for example, one can average over the time period in which the thermal load is either 
negative or positive. 

In Figures 9 and 10, mean values are given for winter (Q > 0) and summer conditions (Q < 0). It can be 
seen that mc curves in Figure 9 referred to as 'lightweight', 'mediumweight' and 'heavyweight' lie extremely 
close to each other, which means that dQ/dS, is nearly independent of the thermal mass. As to dQ/dU (Figure 
lo), it is realized that it attains in general much lower values than dQ/dS,  and does depend on S,. 

In conclusion, the thermal load, Q, of the room is much more sensitive to the window surface area than to 
the wall transmittance and even less to the wall thermal capacity. The dependence of Q upon a, is also not 
negligible. 

Similar information can be valuable in optimum design strategies. 
In Table 2 the standard deviations are summarized for winter and summer operation. 
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SUMMER (Q < 0) WINTER (Q > 0) 

Wall structure Wall structure 

Light Medium Heavy Light Medium Heavy 

(W/mZ "C) (W/mZ "C) (W/m2 "C) (W/m2 "C) (W/mZ "C) (W/m2 "C) 

9.5 9.1 8.9 4.6 4.5 4.4 
18.5 18-0 17.8 8.9 8.8 8.7 
25.5 25-2 25.0 12.9 12.8 12.7 

4.1 2.3 1.6 1 *9 1 -5 1 $2 
2.8 1.5 1.1 1.3 1 .o 0.8 
1.5 0.8 0.6 0.7 0 5  0.4 

U = 2.03 U = 1.07 U = 0.82 U = 2.03 U = 1.07 U = 0.82 

(WI 
Mean value of dQ/dSw 
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................................................................................................................... 
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Table 2. Standard deviation of dQJdS, and dQ/dU 
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FINAL REMARKS 

It is worth mentioning that, in most cases, numerical checks came out with 

This implies that whenever the parameter under investigation appears in both the following equations 

Q ( T )  = g(Tj,  4i) (6) 

Tj = f j ( q i ,  z) ( j  = 1 +m; i = 1 +r)  (7) 
the building sensitivity to the thermal load may be studied with reasonable approximation through equation 
(6), which is algebraic, instead of equation (7), which is indeed a set of differential equations. 

Provided that such a result is also obtained from a DPM (distributed parameter model) (Cammarata and 
Marletta, 1987bwhich is a much more accurate prediction tool than the LPM (lumped parameter model) 
used here-problems such as the ‘model reduction and parameter ident$cation’ for building analysis could be 
faced on the basis of a LPM instead of a DPM, with a consistent reduction in computational efforts. 

At the present a great deal of research work is being devoted to this aim from our group and other scientific 
communities. 

Results in this topic will be reported in a future note. 

CONCLUSIONS 

The sensitioity analysis can be stated from a linear model and allows the sensitivity coefficients to be drawn, 
which can assess how much a fluctuation in a given design parameter affects the system performance. As 
derived here, the approach is quite general and highly rigorous and, as such, it is a sound alternative to the 
traditional parametric analysis. Finally, by means of SCs, it is possible to consciously lead the design process 
and especially the optimization strategies. 
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