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Correlation model of mixed ionic–electronic
conductivity in solid oxide lattices in the presence of
point and line defects for solid oxides fuel cells
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SUMMARY

This paper concerns a 3D mathematical model about the mixed ionic–electronic conductivity in solid oxides in the
presence of point and line lattice defects. It is known that the presence of vacancies increases the ionic conductivity;
moreover, there is experimental evidence that samples with large compression strains exhibit higher conductivity,
which supports the idea that the ion mobility inside the solid oxide is enhanced by a high density of dislocations.
The present model aims to show that the diffusion rate of ions is enhanced by the lattice stress field of dislocations
properly oriented with respect to the electric potential gradient. Simple considerations quantify the interaction of
the ions with the stress field and demonstrate that the presence of dislocations in the crystal lattice causes a drift
force additional to that due to the concentration and electric potential gradients; thus, explaining the increase of
conductivity experimentally evidenced. Although the model concerns for simplicity a homogeneous and isotropic
single crystal of solid oxide, the information provided is of direct interest also for the case of polycrystalline solid
oxides with grain boundaries. Copyright r 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the main challenges of the SOFC technology is

to design a solid oxide electrolyte with ion conductivity

of the order of 0.1 S cm�1 at low-intermediate tem-

peratures in the range of 300–6001C. Unfortunately,

conductivities of this order of magnitude are today

achieved at higher temperatures only; e.g. about

10001C is necessary for yttrium-stabilized zirconia,

whereas doped ceria electrolytes have comparable

conductivity at temperatures of the order of 8001C.

Thin film electrolytes allow to reduce further the

working temperature down to about 7001C; however,

with serious problems of microstructural degradation

at long service times. Moreover, innovative nano-scale-

structured materials prospect the chance of acceptable

conductivity at even lower temperatures that encou-

rage new market perspectives for the SOFC commer-

cialization. In this scenario of multidisciplinary

research, the contribution of theoretical modelling on

the mechanisms of ion transport in solid oxides to

rationalize the experimental activity appears especially

useful. The computer modelling aims in general to

understand the basic mechanisms that control the

performances of the fuel cells. A great variety of

models is reported in the literature on catalysis [1],

chemisorption [2], mechanisms of oxygen reduction [3],

porosity of composite electrodes [4] and ion transport

in nanocrystalline materials [5]. An outline of multi-

scale modelling as a predictive tool for various

engineering aspects of fuels cells is reported in [6].

Moreover, electrochemical impedance techniques are

also simulated by means of atomic scale computer

models that exploit Monte Carlo probabilistic calcula-

tions of jumping events based on known reaction rates

[7]. Usually in atomic scale models the number of

atoms used for the simulation is upper limited by the

computing time; the functional density theory partially

removes the mathematical difficulty arising from the

many body potential term, introducing the particle

density in the corresponding ground quantum state

wave function. Hence, the observables, in particular
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the ground state energy, are a functional of particle

density that fulfils the condition of minimizing the total

energy. Drastic approximations are, however, neces-

sary to carry out these kinds of calculations. As a valid

alternative, the macro-scale models exploit the known

transport equations in the presence of an electric

potential gradient to provide useful information in the

cases where very large numbers of atoms/ions are

necessarily involved. This kind of approach is intro-

duced in the present paper to explain why a high

density of dislocations properly oriented with respect

to the potential gradient enhances the ionic conductiv-

ity of solid oxides; the experimental evidence that

samples with large compression strains exhibit higher

conductivity [8] indeed supports the idea that the local

modification of the stress field around a dislocation is a

leading mechanism responsible for the enhanced

conductivity. The present model shows that the stress

field induced by the presence of edge and screw

dislocations in the lattice of solid oxides affects the

diffusion rate of charge carriers. The model assumes a

homogeneous and isotropic solid oxide single crystal at

constant equilibrium temperature T. For simplicity,

phase transitions are excluded at the temperature

considered.

2. PHYSICAL BACKGROUND OF THE
MODEL

Consider first a single crystal lattice of non-porous and

defect-free solid oxide at time t and temperature T.

This preliminary assumption, initially introduced

having in mind the bulk region of one ideal grain

only, will then be gradually extended to the more

complex and realistic case of a polycrystalline solid

oxide and implemented to account for the presence of

point and line lattice defects too. Starting with the

simplest case, the 3D mass drift/diffusion equation

under electrical and chemical potentials reads

Jmass
i ¼ �Di=ci �

si
zie

=f; Di ¼ Diðci;TÞ;

ci ¼ ciðx; y; z; tÞ; si ¼ siðx; y; z; tÞ;
f ¼ fðx; y; z; tÞ

ð1Þ

where Di is the diffusion coefficient of the ith species, ci
the concentration, si the conductivity, f the electrical

potential and zie the charge carried by the species. Di is

assumed not to depend on the orientation of the crystal

planes in isotropic solid oxides; regarding it as an

average value avoids introducing it as a tensor. In

addition, the following considerations should more

properly deal with activities rather than concentrations

of charge carriers present in the lattice; yet the

mathematical features of the model remain basically

the same irrespective of either way to regard ci. Let the

concentrations be expressed as mol per unit volume;

then the fluxes Jmass
i and J

charge
i of mass and charge of

the ith charge carrier, having physical dimensions of

number of moles and charges per unit surface and

time, are linked by J
charge
i ¼ zieJ

mass
i . In Equation (1)

Jmass
i is a linear combination of diffusion and ohmic

terms Jdiffi ¼ �Di=ci and Johmi ¼ �si=f=zie describ-

ing the charge fluxes under effect of concentration and

electric potential gradients; here si ¼ ðzieÞ
2ciDi=kT .

According to the scheme reported in [9] let us

introduce also the mass continuity condition, i.e. there

are neither sources nor sinks of carriers in the

electrolyte, and the Poisson electric potential equation.

As zieci has physical meaning of charge carried by the

current number of moles per unit volume, it is possible

to write

= � Jmass
i 1

@ci
@t
¼ 0;

� ðere0ÞH2f ¼
X
j

ezjðcj � c0j Þ; c0i ¼ ciðt ¼ 0Þ
ð2Þ

where e0 is the permittivity of vacuum and er the

relative dielectric constant of the solid oxide. The

second equation yields the electric potential as a

function of the total charge density; the notation aims

to avoid possible confusion between the index i that

labels a particular ion and the summation index j over

all the ions. The constants c0i introduce the initial

equilibrium concentrations of ions uniformly distrib-

uted in the crystal lattice, whereas ezic
0
i represent the

respective charge per unit volume around the point of

the solid oxide where the ith ion is initially located;

similarly, ezici represents the charge density around the

point where ci is defined. Thus, by definitionP
j zjec

0
j ¼ 0, because of the initial electro-neutrality

of the oxide crystal before the change of ion

concentration due to the electric potential-driven

charge flow; this assumption ensures the boundary

condition f5 const5 0 at t5 0 required for the

potential, in general defined as an arbitrary constant

apart. The equation describing the total charge flux

that completes the system of Equations (1) and (2) is

J
charge
tot ¼

X
j

J
charge
j �

=f
kT

X
j

ðezjÞ
2cjDj

This equation includes the displacement flux due to the

effect of a time-varying electric field, for instance that

superimposed during electrode impedance measure-

ments. This result is immediately obtained multiplying

both sides of the first equation in Equation (1) by zie

and summing up to all ions; the first addend is the

concentration gradient-driven flux, the second is the

electric potential-driven flux that vanishes if f is

constant or null. The literature models report that

under proper simplifying assumptions, e.g. 1D ap-

proach, these equations are solved in order to

introduce an applied time-varying electrical field and

then to simulate the flow of charges as in the

experimental conditions of electrode impedance
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technique, e.g. [9]. In this case, the Nernst–Einstein

equation is appropriately exploited to express Di as a

function of si and solve Equation (1) with respect to

quantities determinable by experimental electrochemi-

cal measurements. Having, however, relevant theore-

tical interest, a different approach aimed to correlate

directly ionic conductivity and microstructure of the

solid oxide. For this purpose, it is more convenient to

replace Di instead of si; hence, Equation (1) becomes

Jmass
i ¼ �Di =ci1ai

zieci

kT
=f

� �
The electrical term also introduces a correlation co-

efficient ai relating self-diffusion and ionic conduction.

Although this coefficient typically varies between 0.5

and 1 and is usually ignored [10], it is retained here to

enhance the completeness of the present model. Hence,

= � Di =ci1ai
zieci

kT
=f

� �h i
�
@ci
@t
¼ 0 ð3Þ

Hence, Equation (3) describes the ion transport of the

ith element in a solid oxide electrolyte as a function of

its microstructure through Di explicitly retained. It is

known that the microstructure determines the value of

the diffusion coefficient, a complex quantity dependent

in general on the concentration through the activity

coefficient bi of the diffusing species. The Darken

equation expresses the transport rate as a function of

the chemical potential gradient m, more appropriately

than via the concentration gradient; it is easy to show

that [11]

Di ¼ Li
@mi
@ci
¼ kT

Li

ci
11

@ ln bi
@ ln ci

� �
;

mi ¼ kT lnðcibiÞ

where mi is the chemical potential and Li the product of

concentration and average mobility Bi of the ith ion;

the latter is defined as the ratio between drift velocity

and applied force, then Bi 5Li/ci. Since the product

kTLi/ci has physical meaning of diffusion coefficient

according to the Einstein equation Di 5BikT, a useful

form of diffusion coefficient is

Di ¼ 11
@ ln bi
@ ln ci

� �
Doi expð�Eai=kTÞ;

Doi ¼ DoiðniÞ

ð4Þ

This expression contains three factors: the first

related to the chemical potential gradient via bi and ci
that reduces to 1 if the activity coefficient is constant,

the second related to the jump frequency ni, the third to

the jump activation energy Eai. Equation (4) shows the

basic ingredients that link at any temperature the dif-

fusion coefficient to the microstructure in the presence

of lattice point defects under electric and concentration

gradients. It is useful to highlight how Di of Equation

(2) is related to that concerned here. Consider first c0i in

a defect-free ideal perfect crystal; Equation (4) yields

then a value D0id
i . In the real case of a crystal with

vacancies, D0
i 4D0id

i even though assuming the same c0i
as before because now ni4nidi and EaioEid

ai . Therefore,

D0
i is the common diffusion coefficient measurable

experimentally for each ion in a dislocation-free solid

oxide with a given chemical composition. If ci4c0i one

expects that the higher amount of ions flowing in the

crystal increases the local lattice strain and then the

related number of point defects, so that Di4D0
i ; this is

typically the case where ions are generated at the

electrodes of a fuel cell and cross the solid oxide elec-

trolyte under an electric potential. Note that a vacancy

is regarded in general as a particle occupying a definite

site in the solid oxide electrolyte; as emphasized by the

Kröger–Vink notation, a local excess of p-type or

n-type charge with respect to the neutral lattice can be

assigned to it even if no current circulates in the

electrolyte. A typical case particularly important, the

oxygen vacancy concentration in a solid oxide with

homovalent or aliovalent dopants, stimulates defining

for the sake of generality one among the initial ith

concentrations, say c0i� , as amount of localized charge

originally existing in the lattice by consequence of its

point defect structural features [12]. Then, when the

cell is working and the ion current strains dynamically

the lattice along its path, one expects also a current of

charges driven by the cloud of newly formed vacancies;

according to this idea c0i� increases to ci� whereas the

model concerns in fact flows of ions coupled with flows

of vacancy-driven electric charges, both crossing the

electrolyte by effect of the electrochemical potential.

For brevity only, the whole flow of charge carriers will

be referred to in the following as ion flow. Without

considering the lattice line defects, therefore, Di of

Equation (2) is a complicated function DiðT ;bi; ci;Eai

; ni;f; x; y; z; tÞ of the microstructure and working

conditions of the cell, e.g. its operating temperature.

Note that here we have considered the lattice strain due

to the increased concentration of ions in the crystal

only, neglecting however that due in principle also to

the presence of the vacancies themselves; owing to the

local character of lattice perturbation induced by these

latter, Di is adequately described by appropriate values

of Eai and ni. In the presence of dislocations, even

though this is no longer true; long-range stress action

at distances much higher than the crystal spacing is to

be expected. This fact justifies the efforts reported in

the literature to modify the ionic conductivity of solid

oxides through heat treatments aimed to control the

carefully amount and nature of lattice defects. An in-

teresting example is that related to the concept of ion

highway [13]: the ionic conductivity of thin film elec-

trolytes (50–290 nm thick) of YSZ is significantly in-

creased by dislocations structured in order to allow

high mobility of O�2 ions via a proper annealing

treatment enabling elimination of point defects and

growth of dislocations [14]. Let us account, for this

experimental situation introducing first into Equation

(3), the stress field of one edge dislocation only; the
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preliminary simulation of possible fast transport in the

crystal of solid oxide can then be generalized to

account for an arbitrary number and orientation of

dislocations. Some basic concepts of materials physics

can reasonably be exploited for this purpose; the

mechanisms responsible for the lattice stress–displace-

ments are not specific on a particular class of materials

only, but rest on general principles of the elastic theory

of solids. It is known that the shear stress component

sxy of an edge dislocation on the plane at distance y

above the slip plane is [15]

sxy ¼
Gb

2pð1� nÞ
sinð4yÞ
4y

where G is the shear modulus, b5 |b| with b the

Burgers vector, y the lattice distortion angle induced by

the dislocation on the neighbour crystal planes and n
the Poisson modulus. The force per unit length of edge

dislocation related to the shear stress is F5 bsxy. This
result, valid to calculate the force acting on another

dislocation, is exploited here to estimate the force to

which an ion interacting with the stress field of the

dislocation is subjected. If l is the line length of the

dislocation, then

F ¼
Gb2l

2pð1� nÞ
sinð4yÞ
4y

bun; b ¼ bbun

where bun is a unit vector oriented like the Burgers

vector. The force F, linearly decreasing far from the

slip plane, has an interaction range typically of the

order of 10�4 cm in metals [16]; it is reasonable to

expect that within this range it perturbs the motion of

the ion and then modifies its drift velocity, as in effect

the lattice defects interrupt the regular stack of crystal

planes and thus somehow perturb the flux of charge

carriers running through the lattice. This means

regarding F as a generalized thermodynamic force

present in a real crystal of solid oxide, whose effect is

to modify the ion drift velocity allowed in a perfect

lattice by a feature component vdi . Hence, once having

justified from a micro-scale point of view the idea that

the lattice defects affect the ion flow, the results just

obtained allow inserting also this force in the present

macro-scale model. Recall in this respect the basic

assumption of diffusion theory Jmass ¼ �Bc=m; i.e. the
mass flow Jmass is related to the gradient of chemical

potential m, which in turn introduces the known con-

cept of thermodynamic force through the mobility

coefficient B [11]. It is also known that the force Fm ¼
�=m introduces the diffusion coefficient Dm ¼ kTL=c
taking into account the concentration c of the diffusing

species [11]; it is easy to show that Dm is related to the

Darken equation written as D=Dm ¼ 11@ logðbÞ=@ log

ðcÞ so that, owing to Equation (4), Dm is also linked to

the jump activation energy and frequency. It is there-

fore reasonable to assume that analogous reasoning

holds also for a charge carrier flowing in the perturbing

field of defects, so that it is possible to write for the

ith ion

Dd
i ¼ kTLi=ci; vdi ¼ BiF

d
i ; Jdi ¼ civ

d
i

The dislocation induced mass flow Jdi is then

Jdi ¼ ciF
d
i D

d
i =kT

This result could be more directly inferred from the

definition of mass flux Jdi , replacing vdi via the Nern-

st–Einstein equation that links vdi ¼ BiF and Dd
i ¼

kTBi to describe how the dislocation affects the ion

transport; this gives indeed Jdi ¼ ciFD
d
i =kT . Let us

return now to Equation (3) that for f5 0 it is the well-

known diffusion equation in a perfect lattice or in a

lattice with defects depending on how Di is defined

according to Equation (4); for f 6¼0 this equation

contains an additional term that accounts for the

applied electric potential and turns into the sought

form including the drift effect during the operating

conditions of an electrolyte in a fuel cell. Note that the

local Jdi is additive with respect to Jmass
i of Equation (1)

in the unperturbed lattice far from the dislocation

stress field; moreover, the diffusion coefficient is un-

iquely defined in a given experimental situation, where

Jmass
i describes the total mass flux including the con-

centration gradient and electric drift contributions of

the first equation (1) plus the lattice stress contribution

Jdi oriented with the Burgers vector b. Hence, it is

possible to omit the superscript and write simply Di

even in the presence of the dislocation: in fact Di ¼
Diðx; y; z; tÞ of each ion includes in principle the local

deviation of its value with respect to that of the un-

perturbed lattice. The same holds of course also for ci;

although formerly introduced in the equations of a

perfect solid oxide lattice, from now on they must be

intended as concentrations pertinent to a real lattice in

the presence of an applied potential. Since Equation (1)

have introduced the dependence of Di on the local

coordinates through ci, it follows that concentration

profile and stress field of the dislocation are in effect

correlated. In conclusion, Jmass
i including all of the

contributions just mentioned is given by

Jmass
i ¼ �Di =ci1ai

zieci

kT
=f�

ciF

kT

� �
ð5Þ

so that Equation (3) reads

= � Di =ci1ai
zieci

kT
=f�

ciF

kT

� �� �
�
@ci
@t
¼ 0 ð6Þ

The solution of this equation provides one with the

necessary information about how the charge carriers

move in the presence of electric field, stress field of

dislocations and lattice vacancies through Hf, F and

Di. For instance, splitting this vector equation into its

corresponding x, y, z scalar equations identifies the

most favourable dislocation orientation that optimizes

the ion drift velocity in agreement with the given Hf;
thus, revealing how the respective components of b
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affect ci. Equation (5) shows that the electric and stress

fields additional to the diffusive gradient term have

analogous form, since F can be certainly expressed as

the gradient of a proper scalar potential; this is not

surprising since both have been introduced through the

Nernst–Einstein equation not dependent on the

specific nature of the driving force that defines the

mobility. This result suggests therefore the existence of

an effective field drift force

F
el;d
i ¼ aizie=f� F ð7Þ

At this point, even without solving explicitly Equation

(6) together with Equations (2) and (4), some simple

considerations are evident in principle. The dislocation

stress field can cooperate with or oppose the electric

potential gradient in controlling the dynamics of the

charge carriers in the crystal depending on how the

gradient is oriented with respect to the Burgers vector.

Intuitive energy considerations suggest that the lattice

compression due to the dislocation creates preferential

ion drift directions: for instance, ion jumps across the

extra plane of an edge dislocation plane are hampered,

whereas they should instead be favoured jumps parallel

to the extra plane. The lattice dynamics of the dis-

locations is well known in physical metallurgy and

controls important phenomena like precipitation

hardening or work hardening of alloys. These pheno-

mena are also of present interest: for the same reason a

potential energy barrier U such that dU=dr ¼ �F
makes less efficient or more efficient the coexisting

mechanism of jump driven ion drift depending on its

vector sum with the electric potential gradient. Hence,

the output of a simulation model should confirm that

the presence of dislocation lines oriented in order to

confine the ion drift along the electric gradient en-

hances the conductivity with respect to any random

walk stimulated by vacancy-driven jumps only.

Moreover, an additional ion channelling effect might

also be expected along the lower boundary of an edge

dislocation because the cell parameter just below the

extra-plane is stretched with respect to that of the

perfect lattice; also this effect could account for pre-

ferential channelling conditions that feature the con-

cept itself of ion highway. Computing and numerically

substantiating these effects should confirm the intuitive

considerations so far shortly sketched, while providing

a better understanding of the ion dynamics. From a

macroscopic point of view, however, the local details

on the actual motion of the ions are skipped, being

instead relevant the fact that any microstructural

change increasing the local values of diffusivity entails

in principle enhanced values of conductivity in agree-

ment with si ¼ ðzieÞ
2ciDi=kT . The approach of the

present paper avoids, therefore, describing at the

micro-scale level the ion transport mechanisms in

the solid oxide that determine the values of Di, which

are thus regarded as input data of the model and

specify the kind of solid oxide. The model focuses

instead on the correlation between the various quan-

tities that affect the values of the various Di; it is

interesting in this respect the fact that the lower the

temperature, the more any given increase of Di tends to

enhance si; thus, confirming the importance of the

diffusivity and related microstructure of the solid oxide

to decrease the operating temperature of the cell. It is

eventually worth noticing that even the presence of

several dislocations is in principle easily taken into

account, in particular, if the force bsxy exerted by a

unit dislocation length on a similar one can be

neglected; it could be the case of an annealed solid

oxide lattice. If so, it is enough to replace F in Equa-

tion (6) with an averaged sum of terms
P

n Fn extended

to the actual number of dislocations with respective

Burgers vector bn; the effective force then reads

F
el;d
i ¼ aizie=f�

X
n

Fn

* +

In this way, the solution of the system of 3D differ-

ential equations is certainly much more difficult from

the mathematical point of view, yet certainly more

realistic. Nonetheless simple considerations help to

infer interesting information in principle on the effect

of the stress field of any number and orientation

of dislocations. In the following T will be assumed

constant throughout.

3. THE MODEL

For simplicity, let us regard F from now on as the

resultant stress field induced by many point and line

lattice defects of the solid oxide crystal, i.e. implicitly

assuming that the considerations concerning one

dislocation only still have statistical meaning even in

the presence of several dislocations. Consider prelimi-

narily f5 0 in Equation (6) and the particular case of

plain diffusion of the ith species, the position ciF=kT ¼
ai=ci yields = � ½ð1� aiÞDi=ci� � @ci=@t ¼ 0, being ai
dimensionless proportionality constants. This result

can still be regarded as a diffusion equation where Di is

replaced by an effective value (1�ai)Di, so that

f ¼ 0; F ¼ ai=mi; = � ½D�i =ci� � @ci=@t ¼ 0;

D�i ¼ ð1� aiÞDi; mi ¼ kT logðci=c0i Þ
ð8Þ

The proposed definition of F leads to a reasonable

result: the force exerted by the stress field of the

dislocation on the ith species is proportional to the

gradient of a scalar potential, i.e. the chemical

potential mi of the ith ion due to its change of

concentration in the solid oxide from the initial

equilibrium value c0i to the current value ci. Hence, in

the presence of dislocations an effective diffusion

coefficient D�i is defined as a consequence of this stress

field, whereas the constants ai that link the various mi to
F control the diffusion behaviour of the respective ions
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in the solid oxide. Let us now examine the problem

more in general and rigorously, to show that a similar

result still holds even in the presence of the electric

potential term. Starting again from Equation (6), let us

exploit the following considerations to infer the

possible form of F: (i) the effect of a force field around

a dislocation on the ion of mass mi travelling with local

drift velocity vi is obviously to change its current

velocity, i.e. mi _vi; (ii) the presence of a dislocation

modifies the local concentration of the ith species

(recall for instance the Cottrel atmospheres surround-

ing the dislocations [17]) so that one expects a link

between force and local concentration gradient, i.e. ci
F=kT / =ci as done in Equation (8); (iii) the modified

concentration of the ith charged species around the

dislocation certainly affects the local electric potential

as well; hence, one also expects that electric potential

and F ¼ FðfÞ are linked by a proper function defined

by the former. In conclusion, these positions suggest

ciF

kT
¼ ai=ci1Gi1

mici _vi
kT

; Ci ¼ CiðciÞ;

vi ¼ viðciÞ
ð9Þ

where the vectors Ci are the sought functions that link

the various charge concentrations around the disloca-

tion to the local electric potential. Inserting this

expression of the force into Equation (6), one finds

= � Di ð1� aiÞ=ci1ai
zieci

kT
=f� Ci

� �
1
mivi

kT

@ðDiciÞ
@t

� �

¼
@Ci

@t
;

Ci ¼ ci1
mi= � ðciDiviÞ

kT

ð10Þ

The second equation (10) introduces new concentra-

tions Ci related to the respective ci through the

divergence of the vector ciDivi representing an energy

per unit surface. This result strongly suggests that this

vector is solenoidal, i.e. its divergence is null so that

actually Ci � ci; this means that each charged species

moves as an incompressible fluid whose net flow across

any closed surface within the electrolyte is null, in

agreement with the fact that the early diffusion

equation (6) requires neither sink nor sources of charge

carriers within the solid oxide. Before proving this

conclusion, the notation Ci is still used. Let us rewrite

now the first equation (10) exploiting the following

positions

=ci1
zieci

kT
=f ¼

zieci

kT
=mtoti ; mtoti ¼

mi
zie

1f;

ai ¼ 1� ai

The fact of having found through the position at left-

hand side the term mtoti including the electrical

equivalent mi=zie of the chemical potential, formerly

introduced in [9], supports the present choice to define

the coefficients ai that characterize F. With these

positions Equation (6) reads

= �
mivi

kT

@ðDiciÞ
@t

�DiCi1
Dizieci

kT
ai= f1

mi
zie

� �� �

¼
@Ci

@t
ð11Þ

Introduce now the functions Ci as follows

�Ci1
zieci

kT
ai= f1

mi
zie

� �
¼

ziefoi

kT
ai=ci;

foi ¼ foiðciÞ

ð12Þ

where the functions foi have physical dimension of

electric potential; actually this position does not yet

define Ci, which are merely expressed through new

functions foi. Hence, Equation (10) reads

= �
mivi

kT

@ðDiciÞ
@t

1
ziefoi

kT
aiDi=ci

� �
¼
@Ci

@t
ð13Þ

This yields eventually, with the help of the previous

definition of Ci in Equation (10),

= � ½ðD�i 1D
x
i Þ=Ci� ¼

@Ci

@t
; D�i ¼

ziefoi

kT
aiDi;

mivi

kT

@ðciDiÞ
@t

¼ D�i = Ci � cið Þ1D
x
i HCi

ð14Þ

As expected, the first equation (14) shows that the

initial diffusion equation (6) is modified by Equation

(9) as in Equation (8): the plain diffusion coefficient Di

of the ith ion in the solid oxide introduced in Equation

(4) is replaced by the effective value Deff
i ¼ D�i 1D

x
i

that takes into account the total driving force acting on

the ith ion in the presence of concentration and electric

potential gradients. The physical meaning of D
x
i and

Deff
i is highlighted considering the third Equation (14);

the scalar product of both sides of this equation by the

operator = yields with the help of Equation (10),

�
@ci
@t
�

mi

kT
= � ciDi

@vi
@t

� �
¼ �= � ½D�i =ci� ð15Þ

This result suggests putting

mi

kT
ciDi

@vi
@t
¼ �Dxi =ci1Bi; Bi ¼ Biðx; y; z; tÞ ð16Þ

In principle this position agrees with the idea that the

vector ciDi@vi=@t has physical dimension of energy

flowing along the direction of @vi=@t; being kT=mi an

energy per unit mass, the ratio on the left-hand side is

an energy flow normalized to energy per unit mass,

namely it is a mass flow. This justifies the presence of

the diffusion coefficient on the right-hand side; the

vector term accounts for the fact that the flow on the

left-hand side is not necessarily diffusive only. Thanks

to the fact that in particular the diffusion coefficient is

put just equal to D
x
i of the third Equation (14),
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Equation (15) turns into

@ci
@t
¼ = � ½ðD�i 1D

x
i Þ=ci�; Deff

ci
¼ D�i 1D

x
i ;

= � Bi ¼ 0 ð17Þ

i.e. a diffusion equation also for ci with the same

effective diffusion coefficient Deff
i . Thus, the position

16 makes consistent the first and third Equation (14).

Comparing with these equations, one infers that Ci and

ci must differ by a constant or coincide; the latter

chance has particular interest as it agrees with the

solenoidal character of the vector ciDivi previously

remarked about Equation (10), which effectively

justifies Ci � ci. Hence, it is possible to write

mi

kT

@vi
@t
¼ �

D
x
i

Di

=ci

ci
1

Bi

ciDi
;

HDeff
i � =ci ¼

@ci
@t
�Deff

i =2ci ð18Þ

The first equation shows that the acceleration of the ith

ion is controlled by the ratio D
x
i =Di times the

concentration gradient; the second equation defines

Deff
i as a function of the concentrations ci. Thus the

following equations hold

= � ðciDiviÞ ¼ 0; vi ¼
kT

mi

D
x
i

@ðciDiÞ=@t
=ci ð19Þ

Note that Equations (18) and (19) are mutually self-

consistent. Deriving with respect to time the diver-

gence equation it must be true that = � ½vi@ðciDiÞ@t1
ciDi@vi=@t� ¼ 0, which is indeed verified. Deriving now

vi of Equation (19) with respect to time and comparing

with _vi of Equation (18), one finds

mi _vi
kT
¼
@

@t

Hci
ci

D
x
i

Di

1

@ logðciDiÞ=@t

 !
¼ �

=ci

ci

D
x
i

Di
1

Bi

ciDi

The differential equation can be integrated in closed

form to find the explicit expression of D
x
i =Di. It is easy

to verify that the solution has the form

D
x
i

Di

=ci

ci
¼ Ai1

Z
Bi dt

� �
@ðciDiÞ
@t

ðciDiÞ
�2;

Ai ¼ Aiðx; y; zÞ

ð20Þ

The vector Ai is the time-integration constant having

physical dimensions of mol� length�2. Hence,

vi ¼
kT

mi

Ai1
R
Bi dt

ciDi
;

_vi ¼
kT

mi
Ai1

Z
Bi dt

� �
@ðciDiÞ

�1

@t
1

Bi

ciDi

� �
;

= � Ai1

Z
Bi dt

� �
¼ 0

ð21Þ

Equation (17) compels = � Ai ¼ 0. Moreover, noting

that _vi ¼ �vi@ logðciDiÞ=@t1kTðmiciDiÞ
�1Bi the first

equation is directly verified. Both Equation (21)

describe the dynamics of the ith ion in the solid oxide

and show that vi has the same direction as =ci; as the

gradient identifies the direction of greatest change of

scalar field, it follows that the ion moves towards the

maximum concentration difference. The acceleration

has instead a different direction unless putting in

particular Bi ¼ 0, in which case the driving force on the

left-hand side of Equation (16) would have a mere

diffusive character. Note that the second Equation (18)

defines the angle between the vectors =Deff
i and =ci,

which shows that even the maximum change of Deff
i

does not match the velocity vector. Hence, it is

reasonable to conclude that the ion acceleration is

affected by the gradients of both Deff
i and ci. In general,

the acceleration and velocity with different orienta-

tions indicate that the ions do not move along a

straight line. Clearly the concepts of ‘straight’ and

‘curved’ paths have mere statistical meaning, without

any concern ofto the actual motion at the microscopic

level. Yet it is reasonable to guess that in the case of an

edge dislocation the ion motion lies on a plane parallel

to the extra plane, because climbing along the Burgers

vector would require more energy. The ion motion is

expected to be more complex instead in the case of a

screw dislocation because of its spiral shape. These

remarks show that the vector Bi is directly related to

the microstructure of the solid oxide. The vector Ai is

now determined in order to fulfil a boundary condition

of the problem. With regard to this point, note first

that Equation (20) determines the ratio D
x
i =Di, which

enables Deff
i =Di to be calculated by summing up with

D�i =Di of Equation (14). The key idea for this purpose

still rests on the Nernst–Einstein equation, expressed

however as a function of this Deff
i . Since

seffi ¼ ðkTÞ
�1ðzieÞ

2ciD
eff
i , it follows

seffi ¼
Deff

i

Di
si; si ¼

ðzieÞ
2ciDi

kT
ð22Þ

The ratio Deff
i =Di is therefore a multiplicative factor of

the basic conductivity si corresponding to the plain

diffusion coefficient Di without applied electric poten-

tial in a dislocation-free solid oxide. The second

Equations (14) and (20) yield

seffi

si
¼

ziefoi

kT
ai1
jAi1

R
Bi dtj

ðciDiÞ
2

@ðciDiÞ
@t

ci

j=ci j
;

sefftot ¼
X
j

seffj ð23Þ

Let the electric potential f be switched on at t5 0, so

that jAi1
R
Bi dtj is determined in order to fulfil the

boundary condition seffi ! s0i ¼ ðzieÞ
2c0i D

0
i =kT at

t5 0; since the integral is defined as
R t
t¼0 BiðtÞ dt, then
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with obvious meaning of symbols

Ai ¼ 1�
zief

0
oiai

kT

� �
ðc0i D

0
i Þ

2 j=ci jt¼0
c0i

@ðciDiÞ
@t

����
t¼0

� ��1
;

Ai ¼ jAi j; t ¼ 0 ð24Þ

It will be shown below, see Equation (29), that foi ¼
foiðciÞ with f0

oi ¼ foiðc
0
i Þ ¼ 0; hence, D0

i being the

diffusion coefficient in the solid oxide lattice in the

absence of electric potential, as sketched in Section 2,

Equation (24) suggests that Ai ¼ Aiðx; y; zÞ is related to

the ion velocity at t5 0, i.e. according to Equation (21)

jv0i j ¼ kTðmic
0
i D

0
i Þ
�1Ai. Note at this point that all the

formulae so far introduced are in some way expressed

as a function of Di, ci, c0i and =ci. This is not

surprising, rather this conclusion is a mere conse-

quence of the number of equations and unknowns

hitherto introduced. Once assuming known Di and

having defined ai in the range 0:5paip1, consider

Equation (13) inferred from Equation (11) and

including through the position 12 both the electric

potential gradient and the stress field of the dislocation

with which the ion carriers interact. In Equation (13)

appear four unknown functions: the electric potential

f and Ci related to the functions foi, the concentra-

tions ci, the drift velocities vi of each ion; considering

also the unknown functions D
x
i are in total 5. The

equations available are 4: the Poisson Equation (2),

the couple of Equation (19) and the diffusion

Equation (18) that defines Deff
i . The mathematical

problem has therefore one redundant unknown func-

tion with respect to the number of equations, which

introduces a freedom degree in determining one

function of the problem; this redundancy allows to

express the unknowns just mentioned as a function

of ci. The following considerations concern the way

to find the concentrations ci. As in general

c�1i =ci ¼ = logðci=giÞ, with gi appropriate constants,

Equation (12) gives

�
Ci

ci
1

zie

kT
ai= f1

mi
zie

� �
¼

ziefoi

kT
ai= log

ci

gi

� �
ð25Þ

Define Ci, not yet explicitly specified in Equation (12)

as follows:

Ci

ci
¼

zie

kT
ai log

ci

gi

� �
=foi ð26Þ

This is the equation enabling ci to be defined. Equation

(25), combined with Equation (12), reads

= f1
mi
zie

� �
¼ = foi log

ci

gi

� �
ð27Þ

The right-hand side of Equation (27) could be

identically rewritten =½foi logðci=giÞ1const�; thus, f is

defined as an arbitrary constant apart, as it must be,

here put by definition equal to zero as emphasized in

Section 2. With the given definition of Ci, Equation (27)

enables the electric potential f to be calculated as a

function of foi

f ¼ foi log
ci

gi

� �
�
kT

zie
log

ci

c0i

� �
ð28Þ

By definition f is therefore the local potential due to

the amount of charges flowing in a given point of the

electrolyte at a given time. Let us now determine the

functions foi in order to fulfil the second and third

Equation (2). Since H2f involves a sum of concentra-

tions, a reasonable form of foi should be

foi ¼ log
ci

gi

� �� ��1

�
kT

zie
log

ci

c0i

� �
1
X
j

F0j log
cj � c0j

g0j

 !( )
;

g0j ¼ g0jðtÞ ð29Þ

where F0j are constants having physical dimensions of

electric potential. As the second Equation (2) gives

f ¼
X
j

F0j log
cj � c0j

g0j

 !
;

H2f ¼
X
j

F0jH2 log
cj � c0j

g0j

 !
¼
X
j

qjðcj � c0j Þ;

qj ¼ �
zje

ere0
ð30Þ

the constants F0j link the electric potential of the cell to

the concentrations of charge carriers. The solution in

closed form of Equation (30) for each ith ion is

ci ¼ c0i 12F0iq
�1
i j2½tanhðxi1jxx1jyy1jzzÞ

2 � 1�;

j2 ¼ j2
x1j2

y1j2
z ð31Þ

where jx, jy, jz and xi are x-, y-, z-integration

constants. Regard, therefore, them as follows:

jx ¼ jxðtÞ; jy ¼ jyðtÞ; jz ¼ jzðtÞ; xi ¼ xiðtÞ;

jxðt ¼ 0Þ ¼ jyðt ¼ 0Þ ¼ jzðt ¼ 0Þ ¼ 0 ð32Þ

Equation (32) fulfils the boundary condition ci ¼ c0i for

any x, y, z at t5 0. Equations (31) and (32) are useful in

particular to describe the charge flows in electrolytes

interested by multi-ion conduction mechanism, where

ions of opposite charges move towards opposite

directions depending on the electrode where they are

generated; for instance, H1 moves from anode to

cathode, whereas O�2 moves from cathode to anode.

One expects therefore that the concentration profile

along the z-axis of positive ions decreases from the

anode where they are generated to the cathode, whereas

the opposite holds for negative ions. This holds for any

coordinates x and y, which suggests introducing one

x	 y plane for instance at z5 0 defined as electrolyte

boundary; also, it seems reasonable to fix a further

electrolyte boundary on a plane at z ¼ zo parallel to the

former. Clearly these planes identify the interfaces

between the electrolyte of thickness zo and the
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electrodes. Equation (31) describes therefore the con-

centration profile of positive and negative ions flowing

through the solid oxide if written more expressively as

follows with obvious meaning of symbols

c�l ¼ c0l 12F0lq
�1
l j2½tanhðx1jxx1jyy1jzzÞ

2 � 1�;

0pzpzo; x � xi ð33aÞ

c1
k ¼ c0k12F0kq

�1
k j2½tanhðx1jxx1jyy� jzz

0Þ2 � 1�;

z0 ¼ zo � z; 0pz0pzo; x ¼ xi � zo ð33bÞ

The indexes l and k refer to any ions of the respective

signs. Both Equation (33) are solutions of Equation

(30); they simply rewrite Equation (31) in order to

emphasize that z0 changes from zo to 0 when z changes

from 0 to zo. Clearly the thickness of electrolyte zo is an

input of the problem. It is now possible to calculate

Equation (24); trivial calculations show that

j=ci j
@ci=@t

¼
j2 tanhðwÞ

_j� j_w tanhðwÞ
; w ¼ x1jxx1jyy1jzz

ð34Þ

In general, the ratio on the left-hand side is a function

of x; y; z; t that defines a differential equation involving
_w and w. Here we are interested in particular in the limit

required by Equation (24). As Ai 6¼ 0, otherwise

according to Equation (21) the ions would be at rest

at t5 0, Equation (24) compels the existence of a finite

value for j=ci jt¼0ð@ci=@tÞjt¼0 ¼ rðx; y; zÞ 6¼ 0 that at this

limit must agree with j! 0 too. This condition is

fulfilled determining appropriately the time profiles of x
and jx, jy, jz, not yet specified. Assume without loss

of generality that in agreement with Equation (32) _jx,
_jy, _jz tend to zero, whereas _x does not; then _w tends to
_x for t! 0, so that in this limit the right-hand side of

Equation (34) reduces to a differential equation

containing the time only. This differential equation

integrated in closed form yields

j ¼
rðx; y; zÞ coshðxÞR t

0 sinhðxÞ dt
; t! 0

One verifies that if xðtÞ tends to infinity for t tending to

zero, for instance like 1/t, then j tends to zero, as

required by Equation (32); this does not cause any

divergence problem in Equation (31) because tanhð1Þ¼1
for t! 0, whereas the time profile of x confirms that

effectively w reduces to x in this limit. In conclusion,

noting that foi of Equation (29) tends to zero,

Equation (24) yields

rðx; y; zÞ ¼
j=ci jt¼0
@ci=@tjt¼0

; Ai ¼ c0i D
0
i rðx; y; zÞ ð35Þ

Hence rðx; y; zÞ is nothing else but the function related

to the modulus of the vector Ai introduced above; if

for instance the components of Ai have the form

Axi ¼ Axiðy; zÞ, and analogously for the other compo-

nents, then rðx; y; zÞ can be regarded as the modulus of

the vector rðx; y; zÞ having components rx ¼ rxðy; zÞ
and so on. The function Bi is determined thanks to the

continuity condition, which is therefore fulfilled even

though the ion motion does not have a mere diffusive

character. With the mass flow civi calculated by means

of Equation (21), Equation (2) yields

kT

mi

Ai1
R
Bi dt

	 

� =ci

D2
i

¼
@ci
@t

In principle Bi defined by this equation can be

calculated by means of standard computational

techniques once knowing Ai. Let us justify now why

g0i have been introduced in Equation (29) as time

functions rather than as mere constants. Consider that

ci ! c0i for t! 0; hence, divergent terms would appear

in the potential expression of Equation (30). Yet, if in

this limit g0i ! 0 as well, the log term remains finite

even at t5 0. It is easy to verify that this happens if g0i
tends to zero like g0i ¼ Zij

2ðtanhðxÞ2 � 1Þ with Zi
arbitrary coefficients. If so, the limit of f for t5 0 is

given by
P

j F0j logð2F0jq
�1
j Z�1j Þ. A proper choice of

the coefficients F0i such that 2F0j ¼ Zjqj fulfils thus

fðt ¼ 0Þ ¼ 0, as required. Moreover the fact that f40

is related to values ci4c0i allows a correct choice of gi
according to Equation (29): terms like logððcj � c0j Þ=g

0
jÞ

logðci=giÞ never diverge if gioc0i , while it also follows

that foi tend to zero at t5 0. Note now that the time

does not enter explicitly in Equation (31), but through

the functions jx, jy, jz and x only; then nothing

hinders to define these functions in order that they

vanish also at an arbitrary time tend, for which hold all

the considerations carried out for t5 0. In particular it

is true that ciðtendÞ ¼ c0i , so that fðtendÞ ¼ 0 as well,

while holding again the consequences of Equation (34),

i.e. Equation (35) and foi ¼ 0 at t ¼ tend as well; thus

one must have to this purpose xðtÞ / t�1ðtend � tÞ�1.
With this boundary condition the various ci describe

an ideal thermodynamic cycle of a perfectly reversible

electrochemical cell that starts working at t5 0 and is

switched off at t ¼ tend, while the concentrations of

charge carriers having initial values c0i increase to ci
when the electrochemical reaction generates energy

and then returns back exactly to their initial values c0i
when the cell stops working. In agreement with the

boundary conditions at the times corresponding to

ramp up and ramp down of the cell power, x was

defined in order to tend to infinity; yet at intermediate

times x can be determined in order to give a prefixed

time profile of both concentrations and potential.

Clearly the time profile of the function x is an input of

the simulation problem. Moreover, the functions jx,

jy, jz control how the ion concentrations occur in

various points of the electrode/electrolyte interface; for

instance jx ¼ jy entails ciðx; y; z; tÞ ¼ ciðy; x; z; tÞ i.e.

x,y symmetry at any z,t; instead jx ¼ jy ¼ 0 and thus

j2 ¼ j2
z describe a one dimensional flow of charges

and so on. Clearly jx, jy, jz are also input functions,

i.e. freedom degrees of the model that allow a wide

variety of operating conditions of the cell to be

simulated. The positions above, in particular Equation

Correlation model of mixed ionic–electronic conductivityS. Tosto

1064 Int. J. Energy Res. 2011; 35:1056–1074 r 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/er



(28), help to calculate the effective diffusion coefficient

that determines each ion drift velocity and thus, via

Einstein’s equation, the characteristic conductivity as

well. According to Equation (14) and (28)

D�i
Di
¼ ai log

ci

gi

� �� ��1

� log
ci

c0i

� �
þ
X
j

F0jzje

kT
log

cj�c0j
Zjj2 tanhðxÞ2�1

	 

 !( )

ð36Þ

So, thanks to Equations (20), (21) and (23), the

effective conductivity due to the ith ion reads

seffi

si
¼ai log

ci

gi

� �� ��1

� log
ci

c0i

� �
1
X
j

F0jzje

kT
log

cj� c0j

Zjj2 tanhðxÞ2�1
	 


 !( )

1
mi jvi j
DikT

@ðciDiÞ=@t
j=ci j

ð37Þ

This expression is easily calculated as a function of ci
with the help of Equation (34) and (35). Note that

seffi =si consists of three addends: the first two are

monotonic increasing functions of ci, the third one is

proportional to the ion velocity and additive to the

former two; as it must be true that seffi increases with

the velocity of the ion, the positive sign of the time

derivative is required for increasing values of ci. In

effect this conclusion, self-evident if Di is approxi-

mately constant, is in general fulfilled determining

appropriately the constants Foi of Equation (33) and

the functions jx, jy, jz and x to establish the correct

sign of _j�j_w tanhðwÞ in Equation (34). According to

Equation (23), therefore, enhanced conductivity during

service life of the cell with respect to the characteristic

initial value of the solid oxide is to be expected as a

function of the local values of ci and c0i because D
x
i 1

D�i 4Di for ci4c0i . To calculate the power supplied by

the cell note that f2s has physical dimensions of power

per unit length; so, if S is the surface of plane electrodes

zo apart, one finds

W ¼S�1
Z Z

S

dx dy

Z zo

0

f2sefftot dz;

f¼
X
j

F0j log
cj� c0j

Zjj2 tanhðxÞ2�1
	 


 ! ð38Þ

The integral on z takes into account the concentration

profile of the various ions that reach the electrode after

having travelled through the electrolyte, which gives

the power corresponding to one of these paths in a

given point of the electrode boundary; the surface

integral averages this power over the paths of ions

generated everywhere in the respective electrodes. Thus

the formula yields the average power due to all ions

that flow in the cell under electric potential profile

controlled by the input time function x and by the

coefficients Zi. These Appears in this result the link

between physico-chemical properties and perfor-

mances of the electrolyte; in summary, the correlation

stems from the concentrations c0i and ci controlling:

(i) the electrolyte conductivity seffi through Deff
i , (ii) the

electric potential f and (iii) the total power W

consistent with the amount of charge carriers flowing

in the electrolyte. Also, Equation (28) highlights the

correlation between ci and the electrochemical poten-

tial fec¼f1mi=zie of each charge carrier, with mi
introduced in Equation (8); this means that the ion

concentration profiles within the electrolyte are con-

trolled by fec and by consequence W depends on how

the ions spread crossing the electrolyte through the

integrand factor ci� c0i . The present model was focused

mostly on the charge transport in the electrolyte;

yet the performances of the whole cell clearly depend

also upon the environment experienced by the ions

crossing the cathodic and anodic materials and upon

the properties of the respective electrode/electrolyte

interfaces.

4. DISCUSSION

A full model of ionic conductivity should start from

the physico-chemical properties of the solid oxide

electrolyte (dopant composition, crystal symmetry,

grain size, nature of the grain boundaries and so on)

to calculate the performances of a fuel cell under

well-defined working conditions, e.g. at a given

temperature. This ultimate task implicitly assumes

known the physical link between microstructural

properties of the solid oxide and mobility and

concentration profiles of the charge carriers. Actually

this correlation has been sketched in principle only; the

Darken equation was introduced in section 2 just to

highlight shortly how the microstructure of the solid

oxide enters into the problem through Di, yet without

detailed considerations at the microscopic level about

the sought link for each ion. The same holds for the

velocity and acceleration of the ions defined in

Equation (21) as a function of ci. It has been

emphasized that the local value of Di depends on ci
because the presence of an increased concentration of

ions crossing the lattice affects the global amount of

crystal defects, which explains why in principle D0
i 6¼

Di and justifies the concept of effective diffusion

coefficient Deff
i in the presence of dislocations and

electric potential too. In practice, however, Equation

(37) can be calculated putting as a first approximation

Di 
 D0
i , which is justifiable if ci do not deviate too

much from c0i . Moreover, Ai defining the ion velocity

in Equation (24) have been calculated as a consequence

of the position of Equation 16, thus concluding that

the edge or screw character of the dislocation affects

the conductivity through Deff
i . Hence, the model makes
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explicit reference to the microstructural aspects of the

problem, in particular about the correlation between

D0
i experimentally measurable and Di function of ci.

Clearly investigating this topic would require a

separate micro/nano-scale theoretical model propae-

deutic or complementary to the calculation scheme so

far described and utilizing an approach conceptually

different; otherwise stated, including the micro-scale

aspects of the global problem in the present context

would compel merging together two models intrinsically

dissimilar. So the mathematical scheme outlined in

Section 3 merely aims to show the correlation between

the main parameters characterizing the ion conduction

in a solid oxide electrolyte, whose microstructure

remains however hidden in the macroscopic parameter

Di assumed known ‘a priori’ and thus necessarily

regarded as input information. Nevertheless, the

model accounts for how ion velocity and concentration

affect the conductivity, see Equations (22) and (37).

It is worth noticing in this respect that usually the

Fick equation is solved for the concentrations to

calculate the amount of charge flowing through the

electrolyte. Here this standard approach is in fact

reversed. Rather than speculating on how to formulate

Deff
i ¼ Deff

i ðci;f;FÞ and solve by consequence the Fick

equation, the model introduces first the perturbation

induced by the lattice defects on the ions moving under

a given electric potential; the diffusion-like behaviour

of the ion is then required by necessity because of the

concentration gradients expected for ions travelling

through the electrolyte from one electrode to the other.

Equation 33 calculated at t40 as a function of z or z0

depending on the charge of the ion at any x; y show

decreasing z-profiles between the boundaries of the

electrolyte, the highest concentration being of course at

the interface with the electrode where the ion is

generated. The effective diffusion coefficient is there-

fore identified by definition as the function of ci and f
that makes the force field of Equation (9) consistent

with the known form of the Fick equation. In effect,

the positions of Equations (9) and (26) replace the

microscopic stress field of dislocation shortly sketched

in Section 2, whereas the electro-chemical potential, on

the left-hand side of Equation (27), is a by consequence

of the expected driving energy of the cell. The main

peculiarity of any macroscopic approach is that

average statistical quantities, e.g. temperature or

diffusion coefficient, replace microscopic details diffi-

cult to be modelled without valid hypotheses and

drastic simplifying assumptions; so the present ap-

proach introduces in a natural way the crucial concept

of temperature dependence of ion conductivity simply

thanks to the Nernst-Einstein equation that contains

the factor kT . The information provided by this

equation includes at least three points: (i) the

conductivity is not the same everywhere in the solid

oxide, as it depends on the local value of ion

concentration ci; (ii) it is immediate to describe as a

function of the temperature the most significant

working parameters of a fuel cell, i.e. ion conductivity

and total power of the cell; (iii) drift speed, acceleration

and concentration of the ions appear mutually

correlated according to Equation (21). In the char-

acteristic way of any thermodynamic model, the

available information concerns essentially the energy

balance of the whole process, regardless of the

microscopic details: the Fick and Nernst-Einstein

equations and the continuity condition are proven

enough to bypass the detailed knowledge of the local

microstructure. Thanks to these equations elementary

considerations avoid preliminary hypotheses about

how electric potential and lattice defects determine

the effective diffusion coefficient; even without carry-

ing out explicit numerical calculations Deff
i is found to

depend on the local mobility and concentration of the

ions, thus confirming that effectively the lattice defects

actually related to the presence of these ions control

the performances of the cell. Neglecting the lattice

strain field around one vacancy, the diffusion process is

quite simply accounted for in both cases of ideal crystal

and real crystal: either case being essentially controlled

by jump frequency and activation energy, the problem

regards the diffusion coefficient only. In the presence

of dislocations the problem is more complex, because

the stress field affects the neighbouring lattice for the

reasons sketched in section 2; in particular, the long

range action changes the chance of accommodating

ions in zones squeezed by the extra plane. Ions

climbing an edge dislocation and ions travelling

alongside its extra plane cannot be described simply

changing their jump frequency and activation energy,

as the vector character of the stress introduces

preferential directions of motion in the lattice intui-

tively related to the Burgers vector. It is not surprising

therefore that the considerations about Equation (16)

compel remarking the edge or screw character of the

dislocations, as either of them entails a different kind

of long range action and thus a different expression of

ion velocity inside the electrolyte. Hence, the lack of

microstructural information is a feature of the model

rather than a conceptual incompleteness; it simply

suggests the usefulness of formulating a micro-scale

model, at the moment in progress, to valuably

implement the physical information hitherto outlined.

The strategy of focusing on the correlation between ion

mobility and concentration while skipping the micro-

structure of the solid oxide, on the one side greatly

simplifies the formulation of the mathematical model;

on the other side it also suggests how to extend the

model, initially conceived under the simplifying

assumptions of infinite and isotropic single crystal of

solid oxide, to the case of a real polycrystalline

material with grain boundaries too. It is known that

the physico-chemical properties of these latter differ

from that of the grain bulk by chemical composition

(e.g. because of grain boundary segregation), amount
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of stresses (e.g. because of the mismatch between

grains with different orientations), amount of defects

(e.g. vacancies and voids because of the altered local

stoichiometry and fast grain growth in non-equili-

brium conditions) and so on; if all these properties

affect the ion diffusion, as it is reasonable to expect,

the microstructural properties of grain boundaries or

nano-phased materials can be taken into account by

simply changing appropriately the values of D0
i and c0i

in selected zones of a single crystal that correspond to

the presence of grain boundaries with the desired

physico-chemical properties. The model has initially

assumed that the values of D0
i and c0i are constant

everywhere in the crystal, which appears therefore as

an infinite body of homogeneous matter. Yet, exploit-

ing the fact that Di ¼ DiðciÞ and Deff
i ¼ Deff

i ðciÞ, it is

possible to delineate grain boundaries in a single

crystal introducing local values of D0
i and c0i purposely

altered in order to simulate their distinctive space

charges and defects; Figure 1 sketches schematically an

ideal cross section of the solid oxide emphasizing the

presence of grain boundaries that in turn outline

various crystal grains. In a macroscopic model this

means regarding the grain boundaries simply as

peculiar zones of solid oxide characterized by their

own initial composition and microstructure. Recall in

this respect the possibility of regarding Ai, by defini-

tion a basic property of the solid oxide in the absence

of electric potential, as a constant vector or as a vector

uniquely defined as a function of the coordinates. In

the former case Ai are mere simulation parameters that

enter into the problem of an infinite single crystal, in

the latter they are functions of space coordinates

able to describe grains of desired size and grain

boundaries of desired width; the coordinate depen-

dence of Aiðx; y; zÞ corresponds in this way to the zones

of solid oxide where it is defined the anomalous values

of D0
i and c0i . While in principle the mathematical

model remains basically the same, the main task is how

to define appropriately the new local values in order

that they represent correctly the chemistry of the grain

boundaries. In this respect it appears especially useful

the aforesaid micro/nano-structural model, whose

formulation is clearly motivated and outlined by the

present results. Once having emphasized the role of

point and line lattice defects on the ionic conductivity,

the model stimulates further considerations based on

elementary concepts of electrochemistry and solid-state

physics. It is known that sliding and pile-up of tangled

dislocations at the grain boundaries typically occur

under mechanical and thermal stresses of sintering and

that the dislocation flow occurs preferentially along

definite crystal planes; TEM observations have con-

firmed the occurrence of this flow, see for instance [18]

for Al2O3 whose slip system is ½0001�h11�20i[19]. In

ceramics, dislocation pinning is also allowed to occur

by solute atoms and at the grain boundaries that act as

a barrier to gliding [20]; tangled dislocations form by

consequence. Moreover, the interaction of ions with

the grain boundary defects appears also significant; for

instance it has been experimentally found that hydro-

gen is trapped by tangled dislocations in Fe [21], which

prospects the reasonable possibility that other ions also

could exhibit an analogous behaviour even in ceramics.

These considerations have general character; whatever

the specific kind of solid oxide and its initial micro-

structure might be, they allow to guess the environ-

ments experienced by an ion moving from the grain

bulk towards a neighbor grain. Excluding for simpli-

city possible micro-voids or micro-cracks one expects:

first a pile-up layer of tangled dislocations facing the

grain boundary, then the different elemental and defect

concentration typical of the grain boundary itself and

subsequently an analogous situation reversed in the

next grain. However well-known materials processing

techniques suggest a possible chance to enhance the

transport properties through the boundary layers,

e.g. rearranging the tangled dislocations through

appropriate annealing heat treatments leading to

ordered arrays of dislocations via polygonization

mechanism; such a process, well known in physical

metallurgy, is described in [22] for Al2O3, whereas

stacking fault annihilation and grain growth in X-SiC is

reported in [23]. Despite this, the actual grain

boundary physics appears far more complicated than

that of defect-free ideal grains, and so the ion transport

mechanisms through these boundary layers as well, the

calculation plan previously outlined can be similarly

replicated if it is known or at least somehow

hypothesized the local input values of c0i;gb and D0
i;gb

0 0,
i i

D c

0 0,i iD c

0 0,i iD c

0 0,
i i

D c

0 0,i iD c

0 0,i iD c

0 0,i iD c

0 0,i iD c

0 0,i iD c

0 0,
i i

D c′ ′

0 0,i iD c′′ ′′

Figure 1. Schematic view of grains and grain boundaries on an

ideal cross section of a polycrystalline solid oxide. The input

data of the model, D0
i and c0i , are shown in various zones of the

figure with notations emphasizing possible inhomogeneities of

the solid oxide that segregate at the grain boundaries. The input

values in general differ from point to point of these latter

because of the diffusion coefficient-driven segregation, in turn

dependent on the orientation of the crystal planes with respect

to the cross section.
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replacing c0i;core and D0
i;core; these latter are nothing else

but c0i and D0
i of section 3 rewritten with notation that

emphasizes their meaning of grain core property. For

instance one could guess c0i;gb4c0i;core if the aforesaid

‘trapping effect’ of tangled dislocations is really

operating, in which case the reduced mobility of the

ith carrier in the local stress field of dislocation network

would require D0
i;gboD0

i;core. A practical difficulty to

quantify these ideas arises from the lack of selective

experimental data that define the former couple of

grain boundary input values from which ci;gb and Deff
i;gb

could be in principle calculated. The importance of

micro-scale models able to calculate ‘ab initio’ the

missing input data for any solid oxide/dopant system is

thus highlighted by the ability of the present model to

motivate and indicate specifically the kind of informa-

tion necessary to proceed further with macro-scale

calculations; quantifying the possible reasons that

entail Deff
i;gboDeff

i;core means indeed understanding the

mechanisms that unfortunately compel seffi;gboseffi;core.

Note eventually that in any case the model can also be

exploited in a self-consistent way, e.g. fixing a series of

arbitrary initial values of c0i;gb and D0
i;gb in agreement

with the inequalities above to simulate how much

various levels of grain boundary segregation affect the

grain boundary conductivity; in this way, comparing

the calculated power with the experimental values

provides indirect information about the grain boundary

defect system. Of course these results can be repeatedly

obtained at various temperatures by simply setting

pertinent values of the factor kT that appears in the

formulae above. In conclusion, the solution of the

system of Equation (2) provides one with a road map to

predict the ion transport in the solid oxide before and

after appropriate heat treatments enabling point and

line lattice defects designed in order to optimize the

performances of ITSOFCs. A systematic computer

simulation of the results so far obtained is at present in

advanced progress in parallel with the development of a

further micro/nano-scale model.

5. PRELIMINARY SIMULATION
TESTS

Let i regard for simplicity of two ions of opposite sign

only. The preliminary simulation tests concern the

concentration profiles ci=c0i of these ions at x ¼ 0; y ¼
0 as a function of the ratio 0pz=zop1 and at y ¼ 0 as

a function of x=xo for selected values of z=zo; the

arbitrary length xo expressing the x-coordinate in a

dimensionless way is introduced simply defining jx ¼
j0xðtÞ=xo in Equation (31). The following considera-

tions on the concentration profiles are important

because the concentrations are just the starting points

to calculate the consequent values of Deff
i and seffi by

standard numerical procedures. Before showing that

the results are useful here are some remarks to clarify

what to expect from the simulation. The first remark is

that Equation (33) have a maximum as a function of x

at any z and y given by xmax
1 ¼ �ðx1yjy1zjzÞ=jx and

xmax
2 ¼ �ðx1yjy1ðzo � zÞjzÞ=jx; hence, when calcu-

lating for instance the x-profile of the ion 1, one

expects at any time a bell-shaped curve whose

maximum shifts along the x axis as a function of z

from �ðx1yjyÞ=jx to �ðx1yjy1jzÞ=jx. If jz is

positive, Equation (33) describe the peak positions of

the ion displacing leftwards as long as it crosses

through the electrolyte; if instead jz is negative, the

concentration peaks shift rightwards. It is reasonable

to regard the maximum concentration of the bell-

shaped curve as the most probable position of the ion,

i.e. its chance to pile up somewhere in the lattice. In

both cases the concentration x-profiles indicate a

confinement mechanism in the presence of disloca-

tions: from a mathematical point of view, however, this

really happens when the input function jx is chosen

large enough to have xjx � x at increasing values of

x; if instead jx is so small to have xjx � x for a large

range of values of x then the x-profiles are flat, i.e. ci
depend so weakly upon x that the concentration

peak in fact disappears. In the former case the

confinement effect is operating, in the latter case it

does not. The preliminary simulation tests reported

below aim to explain the physical meaning of these

features of ci that, in agreement with the behaviour of

the ion in the lattice, have a dynamical character

because of the time dependence of the functions of

Equation (31). Note in this respect that the solution of

the second Equation (30) can also be expressed as

follows

ci ¼ c
ð1Þ
i ðx

ð1Þ;jð1Þ;jð1Þx ;j
ð1Þ
y ;j

ð1Þ
z Þ1acð2Þi

�ðxð2Þ;jð2Þ;jð2Þx ;j
ð2Þ
y ;j

ð2Þ
z Þ;

c0i ¼ c
0ð1Þ
i 1ac0ð2Þi

ð39Þ

where a is a proper coefficient and each c
ðjÞ
i has the

form of Equation (31); it holds of course the relation-

ship ðjðjÞx Þ
21ðjðjÞy Þ

21ðjðjÞz Þ
2 ¼ ðjðjÞÞ2 for both terms. Let

j(1)
z be positive and j(2)

z negative. The first term of the

linear combination alone describes the ion displacing

leftwards at increasing z, the second term alone the ion

displacing rightwards; the linear combination of both

terms suggests therefore the possibility of describing,

with appropriate a, ions confined between two

potential barriers in the lattice and thus moving

statistically straightforward from one electrode to the

other under electric potential gradient. These features

of Equation (39) are not mathematical artefacts, they

can be understood with reference to the explicative

Figure 2 that highlights the chance of the ions to be

piled up in the presence of dislocations. Consider first

two edge dislocations only, imagined for simplicity

crossing through the electrolyte, arbitrarily apart and
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with extra-planes oriented perpendicularly to the

anodic and cathodic interfaces. This figure suggests

two possible ion confinement mechanisms: small ions,

e.g. typically H1 are likely to tunnel in the stretched

zone towards the opposite electrode; moreover, the

high energy necessary for heavier ions to climb above

the dislocation extra-planes makes less probable their

spreading through the most favourable crystal planes

of the lattice. Both mechanisms of confinement appear

advantageous for the overall efficiency of charge

transport, because the channelling tends to reduce

the ion scattering far from the most straightforward

path between the electrodes. Hence, Figure 2 concerns

a heavy ion bouncing rightwards and leftwards by

effect of the boundary stress fields; it also shows an ion

at the bottom that interacts weakly with the disloca-

tion or, depending on its real position, does not

interact at all. Clearly the ability of the linear

combination of Equation (39) to balance and combine

into a resulting concentration profile the ion propen-

sity to both lateral displacements previously evidenced

at different z, should also consequently ensure the

average straightforward path between the electrodes.

Moreover, the y dependence of ci, for which hold of

course the same considerations carried out for

the x axis, accounts for similar effects along the third

dimension as well; so the x-confinement suggested by

Figure 2 can actually turn into an even more efficient

x,y effect in the realistic case of a 3D array of several

dislocations sketched schematically in Figure 3, well

known and experimentally observed. As noted before,

the values of jx and jy of Equation (31) enable to

switch on or off the confinement effect just described:

clearly flat x-profiles are consistent with extra planes of

the dislocations of Figure 2 oriented normally to the

electric potential driven ion flow, which prevents both

confinement mechanisms. This also shows that the way

to define the input time profiles of jx and jy with

respect to x is actually representative of the average

orientation of the Burgers vector with respect to the

ion flow. Finally, Figure 2 suggests itself that the

average information provided by the present model

must statistically account not only for the chance

of ion confinement but also for the chance that the

confinement mechanism is not effective, even though in

principle allowed, for ions travelling far from the

dislocation stress field. Hence, together with the

possible existence of bell-shaped profiles, one also

expects ci4c0i everywhere in the electrolyte; indeed the

concentration boost is anyway indicative of electric

potential f40 and working condition of the cell even

if some among the ions interact weakly or not at all

with the dislocations. In fact, Figures 4–7 show the

results of simulation carried out through Equation (39)

that verify all of the features of ci hitherto concerned.

Figure 4 shows the concentration profiles ci=c0i at x ¼
0; y ¼ 0 vs z=zo; the profiles have been calculated

Figure 2. Schematic view of two edge dislocations oriented along a common direction. The figure shows how two ions moving

normally to the Burgers vector can be channelled in the stretched zone and in the stress field of the extra-planes.

Figure 3. Schematic view of an array of grain boundary edge

dislocations formed from tangled dislocations after polygoniza-

tion heat treatments.
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assigning arbitrarily trial values to the time functions x,
jx, jy, jz to emphasize in the simplest way the kind of

information provided by the model. The simulation

parameters are quoted in figure. As expected, the anion

generated at the anode has a decreasing profile while

migrating towards the cathode; the same occurs for the

cation travelling from the opposite electrode. More

interesting are the x-profiles calculated at any y for

various values of z=zo. To simplify the graphic

presentation of the results, we still assume y ¼ 0 to

visualize 5 profiles of ci=c0i vs x=xo for as many selected

values of z=zo; an appropriate choice of xo makes the

0
i

i

c

c

/ oz z

anode electrolyte thickness cathode

1ion +

2ion −

Figure 4. Concentration profiles of positive and negative ions at x ¼ 0; y ¼ 0 calculated through Equation (39) vs z=zo. The z axis is

normal to the interface planes between the electrodes. The trial values of the time functions, here introduced as fixed simulation

parameters at one arbitrary time, are equal for both ions: xð1Þ ¼ xð2Þ ¼ 1, jð1Þx ¼ jð2Þx ¼ 1, jð1Þy ¼ jð2Þy ¼ 2, a ¼ 6; moreover, jð1Þz ¼ 1,

jð2Þz ¼ �0:01. The parameter a ¼ �1 summarizes all constant factors appearing in Equation (31).

1
0
1

c

c

/ ox x

Figure 5. Concentration profiles of the ion 1 of Figure 4 as a function of x at y ¼ 0 calculated with Equation (39). The x axis is defined

on the interface plane between electrode and electrolyte perpendicularly to the z axis.
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x-scale of Figures 5–7 representative of the average

mutual distance of the dislocations of Figure 2 with

respect to the actual size of the electrolyte for ions 1

and 2 of Figure 4 respectively. Figure 5 shows

bell-shaped x-profiles at any z=zo; as expected, the

peak values are well aligned at increasing z=zo. The
integral on x=xo of each curve, proportional to the

respective concentration of ion 1 at y ¼ 0, agrees with

the statistical trend sketched in Figure 4. Figure 6

confirms these results: the ion 2 is also described

by bell-shaped profiles aligned along a straight

direction through the electrolyte. These results sub-

stantiate therefore the previous considerations about

Equation (39). It is remarkable the fact that the stress

field of properly oriented dislocations provides a

‘focusing’ effect on the ions, whose explanation is

2
0
2

c

c

/ ox x

Figure 6. Same as Figure 5 for the ion 2 of Figure 4. Also in this figure the functions jð1Þx and jð2Þx of anion and cation are equal.

Because of this simulation choice, the peak of the ion represented here coincides with that of Figure 5.

0
i

i

c

c

/ ox x

1ion+
2ion−

Figure 7. Concentration x-profiles of the ions of Figure 4 calculated with Equation (39). Here the functions jð1Þx and jð2Þx of anion and

cation are different: for the cation jð1Þx ¼ jð2Þx ¼ 1 as in Figure 5, whereas for the anion jð1Þx ¼ jð2Þx ¼ 2. For clarity of comparison, the

figure reports both profiles to evidence the different positions of their concentration peaks on the x axis.
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simple: whether the ions are channelled in the stretched

zones or bounce between the extra-planes, it is

reasonable to expect that the side components of their

velocity are progressively damped by anelastic colli-

sions with the atoms/ions of the surrounding lattice,

e.g. converting into heat the kinetic energy loss,

whereas the forward component is practically unaf-

fected. The fact that the in-depth profiles of both ions

overlap with good approximation justifies the concept

of channelling, thanks to which the dislocations

provide an efficient effect of directional focusing.

Of course shape and position of the profiles are time

dependent during the working life of the cell because of

the functions defining ci; yet further simulation tests

indicate that the figures reported here, although

obtained with a unique set of values of x, jx, jy, jz

corresponding to one time only, are elucidative of the

kind of information achievable through Equation (39).

Hence, rather than reporting similar plots for further

values of y, it seems more useful to highlight how the

model accounts for the more complex dynamics of the

ions in the presence of screw dislocations or, mostly

important, in the stress fields of several dislocations.

Let us generalize Equation (39) introducing the linear

combination of an arbitrary number of functions c
ðkÞ
i

having the form of Equation (31):

ci ¼
X
k

akc
ðkÞ
i ;

c
ðkÞ
i ¼ c

ðkÞ
i jðkÞ; xðkÞi ;j

ðkÞ
x ;j

ðkÞ
y ;j

ðkÞ
z

� �
;

ðjðkÞÞ2 ¼ ðjðkÞx Þ
21ðjðkÞy Þ

21ðjðkÞz Þ
2

ð40Þ

The last condition ensures the validity of such a

solution, whereas now c0i ¼
P

k akc
0ðkÞ
i fulfil the

boundary condition of initial concentration of the ith

species. The arbitrary coefficients ak and the time

functions can be exploited in various ways: for

instance, to combine the concentration profiles of

Equation (31) into a unique ‘flat’ or ‘top-hat’ x-profile

convolution of several bell-shaped profiles. In this case,

however, the flat profile is not due to the unfavourable

orientation of the dislocations, rather it is a cumulative

feature of their particular arrangement; alternatively,

indeed, it is also possible to obtain several bell curves

spaced with each other so as to simulate as many ion

confinement micro/nano-channels like that of Figures

5 and 6 expected with the array of several dislocations

of Figure 3. So in a situation like that schematically

depicted in this figure one reasonably expects that

between two grains transits a ‘grid’ of micro/nano ion

spots corresponding to the channels made available by

the local arrangement of grain boundary dislocations;

the grain size appears fundamental to fix the space

scale of the ion grid. This focusing effect could be

the basic feature of the so-called ion highways, as the

reduction of lateral spread enhances the efficiency of

charge transport between the electrodes; in other

words, the previous considerations suggest that the

high concentration ratio peak/ground of Figures 5 and 6

provides itself an indirect proof of the increased

charge transport efficiency attainable via dislocation

driven channelling. This chance is in fact realistic from

an experimental point of view, as the dislocation

structures of Figure 3 are indeed obtainable in practice

with appropriate heat treatments of the solid oxide. In

principle, the ion micro-beams coming out from one

grain can or cannot match an analogous structure of

favourably oriented dislocations in a neighbour grain;

if not, the straightforward ion highway breaks off and

the grain boundary resistivity increases. Either chance

is easily quantified simply repeating the previous

calculations in a grain boundary with choice of jx

and jy with respect to x typical of favourably or

unfavourably oriented dislocations with respect to the

ion flow coming out from the former grain; after that,

the respective values of seffi;gb can be calculated with

appropriate input values of c0i;gb and D0
i;gb and then

compared. The coefficients ak add therefore further

freedom degrees that account for the way any

dislocation arrangement and orientation affect the

ion transport. Of course, exactly as shown before, each

mathematical strategy of simulation defines the corres-

ponding z-profiles of concentration and eventually the

total statistical distribution of each charge carrier in

the electrolyte; this procedure finds its own outcome

ending into the respective expressions of electric

potential and power, Equations (30) and (38), to which

each numerical test is correlated through the ci
themselves. A closing comment concerns the positions

on the x-axis of the concentration peaks of Figures 5

and 6. With the given simulation parameters indicated

in Figure 4, deliberately chosen equal for ions of both

signs, the concentration peaks fall with good approxi-

mation on the same position of the x axis despite

in general xmax
1 6¼ xmax

2 ; although the half maximum

widths of the curves around the peaks are slightly

different, it is possible to conclude that with the present

choice statistically both ions share a similar path in the

lattice. Typical ions for which this idea is intuitively

reasonable are H1 and O¼; as shown in Figure 2, the

same two dislocations could channel the former in the

stretched zone and the latter between the extra-planes

because of stress field. In any case, the concentrations

of ions sharing the same path through the most

favourable crystal planes and vacancies are related to

each other; with the mathematical choice of equal time

functions defining both ci, therefore, it is not surprising

that the well-known condition t11t� ¼ 1 holds. In

addition, it is reasonable to think that in this case the

ion conduction can occur in the same phase. Yet, if in

general the set of time functions is different for the

various ions, the concentration peaks correspond to

different points of the x and y axes; i.e. the most

probable ion paths along the z-axis of the electrolyte

resulting from Equation (39) are different. An example

Correlation model of mixed ionic–electronic conductivityS. Tosto

1072 Int. J. Energy Res. 2011; 35:1056–1074 r 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/er



is reported in Figure 7 for the x axis only, which shows

that the peaks of positive and negative ions can be

effectively simulated to describe different paths in the

lattice. With a different choice of all simulation

parameters, however, the physical constraint t11t� ¼
1 does not necessarily hold longer as there is no direct

mathematical link between ci of the various ions:

moreover, it is natural to justify the splitting of the

most probable paths of anion and cation as a

consequence of their motion in different phases, e.g.

grain bulk and grain boundaries; thus the appropriate

choice of xo and the respective simulation parameters

controlling the peak splitting, here arbitrarily chosen

for mere clarification purposes, reflects in fact defined

physical considerations, e.g. a grain size of specific

interest. This figure evidences therefore the possibility

of simulating even the more complex dislocation array

of Figure 3 in a completely analogous way through the

more flexible Equation (40) with trivial numerical

methods of curve fitting. In conclusion, the present

model recognizes and distinguishes important conduc-

tion mechanisms to be simulated and compared.

6. SUMMARY AND CONCLUSION

The paper emphasizes that, in addition to the etero/

aliovalent doping, a key topic of the SOFC science is

also the lattice defect structure of the solid oxides with

which the charge carriers interact. The macro-scale

model provides a systematic approach to describe how

lattice defects and chemical composition of solid oxides

affect the ion/multi-ion conductivity. No special

hypothesis has been made on the nature or physical

properties of the solid oxide, hence, the mathematical

scheme introduced in section 3 holds in principle for

any kind/grain size of solid oxide. Owing to the 3D

mathematical formalism, the simplest case of a single

crystal or large crystal core is straightforwardly

extended to the more interesting and realistic case of

a polycrystalline solid oxide with grain boundaries of

desired width; geometrical considerations define the

grain sizes as volumes of solid oxide around which are

introduced layers with altered chemical composition

and defect structure. In both cases the mathematical

approach exploits two input data only that embody

and summarize microstructural details, i.e. the diffu-

sion coefficients of various charge carriers and their

initial concentrations in the solid oxide. The model

introduces also integration constants and time depen-

dent functions to be regarded as input parameters of

simulation: for instance the arbitrary function xðtÞ
introduced in Equation (31) controls the time profile of

the cell power, in particular of the ramp up and ramp

down transients, while the functions jxðtÞ, jyðtÞ, jzðtÞ
characterize the spread of ion paths through the

electrolyte. The first equations (30) and (38) define

then f and W resulting as a function of these transport

features. The input information can be provided by

experimental measurements or calculated through

separate micro-scale models. The latter chance is

particularly valuable when the required information

is difficult to be experimentally obtained. On the one

hand, any approach ‘ab initio’ is by itself a unique

source of knowledge allowing to justify the altered

values of the boundary layers and to quantify them; on

the other hand, the limit on the number of atoms

realistically tractable with reasonable computing times

makes it difficult to extend the outcomes of atomistic

models to the macro-scale. As the previous considera-

tions emphasized that the grain boundary defect

structure depends on the point and line defect

dynamics along selected lattice planes, the global ion

conductivity of practical interest is in fact a statistical

property as a result of by many different grains

randomly oriented with respect to the average direc-

tion of ion flow under the applied electric potential.

Since just this kind of information is typically

achievable through a macro-scale approach, the

obvious conclusion is that linking together the out-

comes of both theoretical models is the most rational

and exhaustive route towards the design of advanced

electrolytes and electrode/electrolyte interfaces.
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