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Abstract
Measurements of delay time relative to the signal transferred from a modulated
beam F2 to an unmodulated one F1, both of which operate with a microwave
carrier at ∼9.3 GHz, are reported and interpreted. The observed behavior is open
to two possible interpretations: one is based on a purely stochastic model that
consists of zigzag random paths; the other is based on a more conventional elec-
tromagnetic approach, although it maintains some of the characteristics of the
stochastic model. The anomalous behaviors here studied can have significant
applications in photonics and electro-optics.
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1 INTRODUCTION

An anomaly consisting of an unexpected transfer of modulation from a modulated beam to an unmodulated one has
been well demonstrated and evidenced in previous and recent works.1-3 Only in a recent paper, however, the origin of this
phenomenon has become better focused and a role played by stochastic processes hypothesized.4

However, notwithstanding the detailed results reported therein, one aspect remained unexplored, namely, the behav-
ior of the delay-time relative to the signal transferred to the unmodulated beam. An aspect, this latter, that is of particular
importance in relation to fundamental, but even to practical applications. Although in a preliminary report the hypothe-
sis of superluminal behavior was given,2 more accurate results, as those reported in the present work, support completely
different conclusions.

The connection with superluminality, as carefully examined in a variety of situations in Reference 5, is based on the
fact that the involved mechanism—namely a stochastic process6—is essentially the same; other situations of superluminal
behavior were already reported, see f.i. References 7-10.

The purpose of the present work is simply that of reporting the results of the delay-time measurements. The data
obtained show a rather unexpected, irregular behavior which, in a certain sense, reinforces the hypothesis of the presence
of stochastic processes. This represents a novel result since it is presumably the first time in which a direct experimental
demonstration of a stochastic behavior in this kind of systems, as already theoretically predicted, has been observed. This
will enable us not only to formulate a model based on such an assumption but also to compare it with a more conventional
electromagnetic approach.

A third way of considering these results is offered by Feynman’s transition-element theory,11 which can be considered
an alternative to the stochastic approach, even in relation to the weak-measurement theory.12 Even if the intensity of the
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detected signal is decidedly less than the one of the emitted beams, the number of the involved photons continues to be
very high, so that its behavior remains essentially classical.

Although the interest in this kind of results is mainly of fundamental type, it is not excluded the possibility of an
applicative perspective. As for what concerns the applications of these anomalous behaviors (mainly but not only the
superluminal one13), we can recall that they are largely connected to photonics and electro-optics. In this context, disper-
sive engineering researches have been conducted on metamaterials that are currently considered a new class of materials
for manipulating waves.14,15 In particular, many potential engineering applications based on the transformation electro-
magnetics have benefit from superluminal studies.16 These include the possibility of transferring superluminal signal
over short distance17,18 and the superluminal propagation through one-dimensional photonic crystal.19

2 EXPERIMENT

The experimental set-up is essentially the same as the one adopted in Reference 4 and is reported in Figure 1. Measure-
ments of delay time, versus the distance 𝜌 (≥ 𝜌i, 𝜌i being the initial value of 𝜌) between the F1 (c.w.) launcher (9× 8 cm2

horn antenna) and receiver (6× 8 cm2 horn antenna), were performed by comparing the signals taken both before the F2
modulated beam (14× 11 cm2 horn antenna) and after the receiver antenna, respectively. Both beams were derived by the
same generator at ∼ 9.3 GHz; the F2 beam was modulated by a squared wave with a repetition frequency Ω of ∼ 800 Hz.
The delay measurements were performed over the rise or the fall time (of the order of nanoseconds) of the square wave.
The accuracy of the measure was of a few tens of picoseconds, when using a temporal-resolution digital oscilloscope (Tek-
tronix 2440 or TDS 680B). Results relative to four determinations, each one obtained as an average between rise- and fall-
time measurements, are reported in Figures 2 and 3. The F2 beam is obtained as the near field emerging from a composed
pupil that shows a relatively narrow diagram: see Fig. 2 in Reference 20. This implies that the region of overlapping with
the F1 beam (∼4 cm), region in which a typical interference occurs, is smaller as compared to previous cases (∼10 cm).1-3

3 THEORETICAL MODELS

As previously anticipated, we note a rather irregular shape in the delay time. Such behavior is possibly open to different
interpretations:

1. One, which is more properly based on stochastic processes, interprets the delay time as resulting from checker-
board or zigzag random paths experienced by the “particle”: a kind of motion that is equivalent to the telegrapher’s
equation.6 Alternatively, we can adopt the transition-element theory.11

2. A more conventional electromagnetic approach interprets the delay data as showing an undulating shape, with a
relatively long spatial period, that results from the “competition” between the two fields (F1 and F2), in accordance

F I G U R E 1 The experimental set-up, which operates at 9.3
GHz, consists of two horn antennas as launchers for the F1 c.w. field
and the F2, Ω modulated field, traveling through a composed pupil.
The latter consists of two paraffin lenses and a paraffin torus situated
in the center of a circular aperture. The receiver antenna is
positioned at distance 𝜌. All dimensions are expressed in centimeters
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F I G U R E 2 Two determinations of delay time
measured as a function of the distance 𝜌 between F1

launcher and the receiver antenna. The heavy line
represents 2𝜎(t) where t = 𝜌∕v is determined for v≡ 3
cm/ns. Typical paths with reversals are represented in
(ar, at) plane of the inset, according to Reference 21

F I G U R E 3 Two additional determinations of
delay time measured, as a function of the distance 𝜌

between the F1 launcher and the receiver antenna. The
continuous line was obtained by using Equation (3) for
parameter values as given in the text

with a model already formulated in Reference 22, the same adopted also in Reference 4 in order to interpret the shape
of the signal intensities of this system.*

According to interpretation 1, the motion is believed to happen within a two-dimensional temporal space described
by a density distribution g(r, t), where t is the normal time and r is a randomized time.23 The asymptotical form of g(r, t)
is a Gaussian, the standard deviation of which is given simply by 𝜎 =

√
t∕a, where a is the dissipative parameter entering

the telegrapher’s equation24,25 (see Appendix for some analytical details).
By rewriting the standard deviation as

a 𝜎 =
√

a
v
𝜌, (1)

where 𝜌∕v = t and v is the velocity, from the periodicity of the measured delay-time versus 𝜌, we find that the ratio a/v
should be ∼1/3. In fact, according to the stochastic model, the argument of the involved circular function is given by

*It can be easily observed that a normal interference resulting in a spatial period T of ∼10 cm would require a nonplausible tilting angle 𝛿 between the
F1 and F2 beams of about 40◦, as resulting from the relation T ≡ N𝜆 = cos 𝛿

1−cos 𝛿
𝜆, where N = 3.25 and the microwave wavelength 𝜆 = 3.2 cm.



4 of 7 CACCIARI et al.

2a(𝜌 − 𝜌i)∕v. For a given spatial period T, we have a∕v = 𝜋∕T which, for T ≃ 10 cm, gives a/v≃ 0.314 cm−1. In this way we
can determine from Equation (1) that, for 𝜌 = 48 cm, at = 16, hence a𝜎 = 4. If we select the value of 109 s−1 for a (hence
v= 3 cm/ns), we can evaluate the curve 2𝜎(t), as shown in Figure 2, which represents the border line of the half area that
contains the paths with a probability of ∼95%. The same curve represents 𝜎(t), if we select a= 0.5× 109 s−1, hence v= 1.5
cm/ns, and the probability will be of ∼68%.

Thus, the delay-time data of Figure 2 can be reasonably considered to be representative of the hypothesized zigzag
random paths. As for an estimate of the extension of Δ𝜏 average steps of these paths,26 according to the Gaussian form
of g(r, t), we may conclude that for r2 = 𝜎2 = t∕a, for r ≈ t we obtain r = Δ𝜏 ≃ a−1.21 This means that in our case, for
a≃ 0.5× 109 s−1, Δ𝜏 ≃ 2 ns and the corresponding Δ𝜌 = vΔ𝜏 ≃ 3 cm, values which are roughly comparable with the
corresponding variations in Figure 2. The involved velocity, v= 1.5 cm/ns, may appear to be an extremely low value,
even in comparison with an average velocity of the process v ≃ 45∕6 = 7.5 cm/ns, which is only 1/4 of the light velocity
in vacuum, c= 30 cm/ns. However, the above-mentioned values of v must to be comparable with the slope of the local
variations in Figure 2. As disclosed above, we can assert that—according to this type of interpretation—the results shown
in Figure 2 give a direct demonstration of the presence of a stochastic process in this system, as theoretically predicted in
previous works. See, in particular, the shape of the paths as represented in the ar versus at plane by the inset in Figure 2
as taken from Reference 21.

On the other hand, if we adopt interpretation 2 in accordance with the model formulated in Reference 22, we would
have to consider Equation (9) for the delay therein reported, which can be rewritten as

𝜏𝜑

T
= d𝜑

d(kl)
=

(E2∕E1)2 + (E2∕E1) cos kl
1 + (E2∕E1)2 + 2(E2∕E1) cos kl

, (2)

where E1 and E2 are the field-amplitude relative to F1 and F2 beams, respectively, T is now the temporal period and kl
the propagation constant. Relation (2) is the result of a vector diagram in the phase space for components E1 and E2 with
dephasing kl. The resulting field has amplitude E and phase 𝜑.

Under the assumption that E1 ≫E2 (in our case E1 ≃ 10 E2), Equation (2) tends toward the simplified form 𝜏𝜑∕T ≃
(E2∕E1) cos kl. By assuming that in our case kl is still given by 2a(𝜌 − 𝜌i)∕v, as previously anticipated, and by taking into
account the similarity with other expressions relative to the stochastic model or to a transition-element theory (see below),
we arrive at the following expression, which is suitable for describing the experimental data:

𝜏(𝜌) = A cos[2a(𝜌 − 𝜌i)∕v]e−𝜌∕𝜌0 + B𝜌 + C (3)

where e−𝜌∕𝜌0 accounts for an evident attenuation of the oscillation amplitude and the second term for a linear increase
in the average delay time. The resulting curve, obtained for A= 5 ns, a/v= 0.3 cm−1, 𝜌i = 12.4 cm, 𝜌0 = 25 cm, B= 0.08
ns/cm, and C = 1.5 ns as an acceptable offset of the data, is depicted in Figure 3 and represents a rough but plausible
description of the experimental results, there reported.

4 DISCUSSION AND CONCLUDING REMARKS

We can therefore conclude that this latter hybrid model (Equation 3) seems to be capable of interpreting the anoma-
lous transfer of modulation observed between the two microwave beams. Of particular interest is the fact that the
observed behavior of delay time in the transferred signal is far from the observed behavior of the near field emerg-
ing from the composed pupil, which shows a marked superluminal feature.27 In the present case, although the
involved mechanism is essentially the same, that is, a stochastic model, the obtained results demonstrate a sub-luminal
behavior.

However, at present, as discussed in Reference 4, we have no sufficiently conclusive theoretical arguments for sup-
porting the above conclusion. One considered possibility is that the transfer of energy from F2 to F1 beam is due to a
photon-photon scattering mechanism occurring in the crossing area. This hypothesis could be justified by the fact that
the photon rest mass is not exactly zero,28 but it is practically so.29

Another plausible interpretation of the effect observed could be due to a mechanism of a local breaking of the Lorentz
invariance as invoked for an alternative interpretation of superluminal behavior in systems of this kind:30,31 an alternative
with respect to more canonical electromagnetic interpretations.32
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However, the presence of a virtual nonlinear medium previously invoked as being in the crossing area of the
two beams1,3 is now not yet required being merely represented by the detector following the receiver antenna, the
characteristic of which is an almost quadratic one.4

Further experimental work is planned in order to discriminate between the proposed models, although a hybrid
mixing, between interpretations 1 and 2 in Section 3, is likely to be the most plausible.

In this perspective, it is useful to recall that situations of wave propagation of a single beam in presence of solid supports
(such as dielectrics or metals), including or not the contribution of losses, were previously analyzed in Reference 22. The
present case does not fall within those cited in Reference 22 because it occurs in “free space.”

Moreover, we have to mention that scaling the carrier frequency from ∼10 GHz to 1–2 GHz, as well as increasing the
spatial separation to some meters,33 did not produce any substantial change in the delay measurement, relative to a single
beam employing a suitable horn antennas (mouth sizes 76× 59 cm2), other data can be found in Reference 34 for other
results. On the other hand, when the horn antennas were substituted by ten-turns helical ones, operating in the same
frequency range (1− 2) GHz, the superluminal behavior previously obtained was not confirmed.
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APPENDIX A. SOME ANALYTICAL DETAILS

According to Reference 23, the solution to the telegrapher’s equation can be expressed by a quadrature in which the
two-variable function g(r, t) enters the integrand. This function is the density distribution of a randomized time r, while
t is the normal time, and tends asymptotically, for t ≫ r, to a Gaussian

g(r, t) ≃
√

a
2𝜋t

exp
(
−ar2

2t

)
, (A1)

where a, as stated above, is the dissipative parameter entering the wave equation. The standard deviation of (A1) is given
by 𝜎 =

√
t∕a. More exactly, g(r, t) is given by two Gaussians with half amplitude of (A1), one centered at r = 0, the other

at r = 1/a, in accordance with the fact that the average values of r is given by25

⟨r⟩ = 1
2a

(1 − e−2aL∕v), (A2)

L being the traveled distance and v the velocity.
In some situations, such as the present case of near-field propagation, we observe an inversion of roles between r and

t, in the sense that r becomes the observable quantity.†In particular, in classically forbidden processes (tunneling), by
operating an analytical continuation to imaginary time,35 we have that the delay (or traversal) time becomes a complex
quantity, the real part of which is given by36

†This can be interpreted according to weak-measurement theory as done in the case of Reference 27.
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ℜ⟨t⟩ = 1
2a

[1 − cos(2aL∕v)]. (A3)

As an alternative to the stochastic model, we can adopt another approach to this kind of problem, one based on the
transition-elements by Feynman.11 In this case, we obtain that the real part of the traversal time is given by37

ℜ⟨t⟩ ≃ L
v
[1 − A cos(2aL∕v)]e−𝛼L, (A4)

where A ≃ a∕2𝜔, 𝜔 being the circular frequency and 𝛼 being the attenuation constant. Before being adopted for the
purpose of describing the experimental data of delay time, the form of Equation (3), is substantially identical to this last
Equation (A4).


