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Abstract Seismic evidence and thermal and topographic transients have led to the interpretation of
lithospheric removal beneath the Southeast Carpathians region. A series of numerical geodynamic experiments
in the context of the tectonic evolution of the region are conducted to test the surface-crustal response to
lithosphere delamination and slab break-off. The results show that a delamination-type removal (“plate-like”
migrating instability) causes a characteristic pattern of surface uplift/subsidence and crustal extension/shortening
to occur due to the lithospheric deformation and dynamic/thermal forcing of the sublithospheric mantle. These
featuresmigrate with the progressive removal of the underlying lithosphere. Model results for delamination are
comparable with observables related to the geodynamic evolution of the Southeast Carpathians since 10Ma:
the mantle structure inferred by seismic tomography, migrating patterns of uplift (>1.5 km) and subsidence
(>2 km) in the region, crustal thinning in the Carpathian hinterland and thickening at the Focsani depression,
and regional extension in the Carpathian corner (e.g., opening of Brasov basin) correlating with volcanism (e.g.,
Harghita and Persani volcanics) in the last 3Myr.

1. Introduction

Small-scale tectonics in response to active and diverse lithospheric deformation in the young Mediterranean
orogens motivate intriguing questions about geodynamic driving mechanisms that may be very different
from those driving global-scale plate tectonics. Retreating ocean subduction systems in the Mediterranean
are widespread, as are zones of back-arc extension [Le Pichon et al., 1981; Royden et al., 1983; Jolivet and
Faccenna, 2000; Göğüş, 2015] and postorogenic lithospheric removal, such as beneath the Apennines-
Tyrrhenian [Channell and Mareschal, 1989; Chiarabba and Chiodini, 2013], Carpathian-Pannonian [Girbacea
and Frisch, 1998; Houseman and Gemmer, 2007], Betic/Rif arc-Alboran [Docherty and Banda, 1995; Platt et al.,
1998; Seber et al., 1996], Aegean [Dewey, 1988; Jolivet et al., 2003], and eastern Anatolian regions [Göğüş and
Pysklywec, 2008b; Şengör et al., 2008] (Figure 1a). TheMediterranean paleogeographic settingwhere continental
blocks alternate with small oceanic basins favors episodes of subduction and lithospheric thinning (removal).
These and many other studies suggest that under certain rheological and boundary conditions (e.g., arc root
foundering and postorogenic stage), portions of the lithosphere became gravitationally unstable and subse-
quently descend into the underlying mantle.

Although a spectrum of lithospheric removal models is possible, two “end-member” geodynamic models
have been proposed to account for the distinct surface and crustal features in relation to deep lithospheric
removal mechanisms [Göğüş and Pysklywec, 2008a]: (1) delamination-type lithospheric removal, where
mantle lithosphere (with or without lower crust) peels away from the crust as a coherent slab [Bird,
1979], and (2) Rayleigh-Taylor-type viscous convective removal (“dripping” instability model) [Houseman
et al., 1981]. Numerical and analogue geodynamical experiments have been conducted to investigate
the conditions and controlling parameters for these two processes including the combined style of drip-
like delamination [Conrad and Molnar, 1997; Schott and Schmeling, 1998; Morency and Doin, 2004; Göğüş
et al., 2011; Gray and Pysklywec, 2012; Stern et al., 2013; Krystopowicz and Currie, 2013]. Further, a number
of studies consider ways in which the surface expression (e.g., topography) and magmatism are modified
by lithospheric instabilities [e.g., Neil and Houseman, 1999; Morency and Doin, 2004; Pysklywec and
Beaumont, 2004; Pysklywec and Cruden, 2004; Elkins-Tanton, 2005, 2007; Göğüş and Pysklywec, 2008a,
2008b; Lev and Hager, 2008; Pysklywec et al., 2010; Valera et al., 2011; Ueda et al., 2012; Wang and
Currie, 2015].
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In this work, we use numerical geodynamical experiments to test the applicability of the lithosphere delami-
nation (migrating instability) model to the postcollisional evolution of the Transylvanian basin and Southeast
Carpathians for the last 10Myr (Figure 1b). Model results are compared to available geological and geophy-
sical constraints of the Southeast Carpathian orogenic region, including the present-day lithospheric struc-
ture and surface topographic evolution.

1.1. Tectonic Problem and Significance

The Carpathian Mountains and intra-Carpathian domain/Pannonian Basin represent the easternmost exten-
sion of the Alpine orogenic system (Mediterranean Alpides) in central Europe. The later stages of the neotec-
tonic evolution of the Carpathian-Pannonian region are associated with continental collisions of irregular
continental fragments such as the Tsia-Dacia (south) and Alcapa (north) microplates and the European plate
that occurred in about middle-late Miocene [Burchfiel, 1980; Sandulescu, 1988; Schmid et al., 2008; Matenco
et al., 2007].

Prior to the collision, the Pannonian back-arc basin, a Mediterranean-type back arc, opened (E-W) in response
to the eastward retreat of the European ocean plate subduction while the Carpathian orogeny occurred
coevally during E-W convergence and the accretion/thrusting of nappes [Royden et al., 1983; Csontos et al.,
1992; Horvarth, 1993; Ustaszewski et al., 2008]. Since the early Miocene, this subduction resulted in the
development of the Carpathian volcanic arc and foreland fold-thrust belts, molasse basins, and flysch
deposits [Burchfiel, 1980; Matenco et al., 2007].

The focus of this work is on the southeastern section of the Carpathian range (Figure 2). The average peak
elevation in the Southeast Carpathians (Vrancea) is >1.5 km, and adjacent to the high Carpathians a 13 km
deep foreland basin developed (Focsani depression) [Tarapoanca et al., 2003]. Seismic refraction [Hauser
et al., 2007] and reflection [Mucuta et al., 2006; Fillerup et al., 2010] studies identify a fundamental tectonic
curiosity in this region: thinner crust (35 km thick) exists beneath the Transylvania basin and high
Carpathians and is underlain by a low-velocity upper mantle anomaly, while thicker crust (~ up to 46 km)
underlies the Focsani basin and is associated with lower surface topography that sits above a NE dipping
high-velocity upper mantle seismic anomaly extending from 70 km down to 400 km. The seismological
studies are interpreted as showing that the low-velocity upper mantle under the Carpathian hinterland is
ascending hot asthenospheric mantle [Russo et al., 2005; Martin et al., 2005; Ren et al., 2012] and the
high-velocity anomaly in the foreland—with intermediate-depth seismicity—is a remnant of the previously
subducted Vrancea slab [Fuchs et al., 1979; Oncescu et al., 1984; Wortel and Spakman, 2000; Ismail-Zadeh
et al., 2000; Sperner et al., 2001; Ren et al., 2012; Bokelmann and Rodler, 2014]. These observations may suggest
that the tectonics in the Southeast Carpathians have been controlled by lithospheric removal under the area.

Figure 1. (a) Generalized tectonic map of theMediterranean region showing regions of lithospheric removal, postorogenic extensional areas, and small ocean basins
(references are given in the text). (b) Proposed lithospheric delamination model (migrating instability) where mantle lithosphere with or without lower crust peels off
from the upper-middle crust (asymmetric removal).
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The postulated removal accounts for the high-velocity anomaly as a delaminating (migrating instability) or
dripping piece of the continental mantle lithosphere [Girbacea and Frisch, 1998; Sperner et al., 2004; Knapp
et al., 2005; Houseman and Gemmer, 2007].

The removal of the lower crust and mantle lithosphere from beneath the Southeast Carpathians is also sug-
gested by petrological and geochemical investigations of the 3–0.03Ma volcanic rocks. According to Downes
et al. [1995], Pb isotope geochemical analysis from the Persani (Prs) alkali basalts in the southeast corner of
the Carpathians (2.5 to 0.7Ma) suggests that these rocks are derived from an asthenospheric mantle source,
akin to ocean island basalts. Rosenbaum et al. [1997] and Harangi et al. [2006] also suggest that the Persani
volcanics are of asthenospheric origin and their magmamay have originated from plume-typemantle upwel-
ling under the subduction wedge. The authors postulate that the outpouring of alkaline volcanics postdates
the partial melting of subduction-related calc-alkaline magmatism. Corroborating with these interpretations,
Seghedi et al. [2005, 2011] suggest that the last ~3Myr of south Harghita volcanism (Sh) was produced by
asthenospheric doming due to the postcollisional deformations. Its chemical composition alternates from
calc-alkaline to alkaline chemistry where both slab-derived and asthenospheric mantle-derived melts are
found in younger volcanics. The transition from calc-alkaline compositions (subduction related) to alkaline
magmas in relation to the decompression melting of asthenospheric mantle has been interpreted as a ubi-
quitous process in the Alpine-Mediterranean region where the mantle lithosphere removal process seems
to be widespread. For instance, similar petrological evidence for removal exists at the Betic-Alboran domain
[Turner et al., 1999; Duggen et al., 2005], Aegean Sea-western Anatolia [Aldanmaz et al., 2000; Pe-Piper and
Piper, 2006], and Pannonian Basin-Carpathians [Harangi et al., 2006]. See Lustrino and Wilson [2007] for
more references.

Detailed geological studies indicate regional surface uplift and exhumation above the zone of lithospheric
removal and topographic depression adjacent to the inferred removal zone (i.e., Focsani foredeep)
(Figure 2). Apatite fission track work by Sanders et al. [1999] and Merten et al. [2010] indicates that the uplift
and exhumation of the Southeast Carpathians and subsidence of the Focsani basin occurred contempora-
neously, while a paired uplift and subsidence pattern migrates toward the southeast in conjunction with

Figure 2. Simplified geological map of Southeast Carpathians showing accreted units, late Cenozoic to present volcanics
(Prs = Persani and SH = South Harghita) and extensional Brasov basin. X-X′ represents the line for lithospheric-scale cross
section in Figure 11. See text for sources.
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the mobilization of the underlying slab [Leever et al., 2006; Matenco et al., 2007]. Interpretations of crustal-
scale seismic images suggest as much as 6 km of sedimentary deposition and southward depocenter migra-
tion for the Focsani foredeep basin since the Pliocene [Leever et al., 2006]. Subsidence analysis and tectonic
interpretations by Matenco et al. [2003] and Bertotti et al. [2003] postulate that the Focsani basin subsidence
rates were a maximum between ~15 and 10Ma and then decreased slowly since the Pliocene-Pleistocene
owing to postorogenic tectonic activity. In agreement with the geological work, geodetic studies conducted
by Van der Hoeven et al. [2005] indicate 0.25 cm/yr horizontal plate motion toward the southeast (European
platform) in the center of the Focsani basin. Moreover, vertical GPS velocities indicate negative anomalies
(basin depression) in the Focsani Basin (up to 1 cm/yr) and positive anomalies (surface uplift) of 0.5 cm/yr
in the Carpathians. Synthesis of field-oriented geological work and shallow seismic studies suggests that late
Miocene-Pliocene surface uplift also occurs to the west of the Carpathian Mountains (e.g., Transylvanian
basin) where isostatic uplift may be controlled by sediment unloading through surface erosion or gravita-
tional spreading [Sanders et al., 2002; Krezsek and Bally, 2006]. Girbacea and Frisch [1998] suggest that regional
uplift since the Pliocene occurred coeval with the extension and deposition of the Brasov basin in the
Carpathian corner following slab break-off and delamination. Overall, the increasing pattern of uplift and
subsidence without significant plate shortening/convergence suggests that vertical tectonics due to the
inferred lithospheric removal may have played an important role in the neotectonic evolution of the
Southeast Carpathians.

The main objective of this work is testing numerical model predictions against geological, geophysical, and
petrological interpretations where a number of studies reveal anomalous tectonic displacements in the
Southeast Carpathians as a response to postorogenic lithospheric removal. Using a series of high-resolution
2-D thermomechanical numerical experiments, we explore how surface topography and crustal thickness are
influenced by the deep lithospheric delamination process following plate collision in the Southeast
Carpathians. To address this, we quantitatively investigate deformation styles for a delamination-type litho-
spheric removal model because an abundance of geological evidence suggests that such process may
explain the migratory patterns of surface and thermal transients (i.e., postepisode of subduction, increasing
pattern of uplift and subsidence without shortening, and migration of volcanism). Alternatively, viscous
dripping-type lithospheric removal can also account for the paired uplift-subsidence pattern in the surface
topography but the model predictions may be more applicable for orogens associated with architectural
symmetry [Houseman and Gemmer, 2007; Göğüş and Pysklywec, 2008a; Lorinczi and Houseman, 2009].

Slab break-off (detachment) has also been put forward to explain various tectonic anomalies in most of the
Mediterranean Alpides, including the Southeast Carpathians [Nemcok et al., 1998;Wortel and Spakman, 2000;
Sperner et al., 2001]. Break-off is related to traditional subduction in some cases, but it can also occur during
the course of delamination [Göğüş and Pysklywec, 2008b]. Therefore, we also explore the effects of the break-
off process in the models. We note that the experiments are carried out in two-dimensional space so that the
models can treat the lithospheric dynamics in high resolution. However, this is recognized as an approxima-
tion to three-dimensional geodynamic processes in the Carpathians.

2. Geological Preconditions, Model Setup, and Material Properties

The numerical code employed here, SOPALE, uses arbitrary Lagrangian-Eulerian finite element techniques to
solve for the plane strain deformation of complex viscoplastic materials [Fullsack, 1995]. It is based on the arbi-
trary Lagrangian-Eulerian finite element technique and as such is useful for treating finite deformations and for
tracking boundaries (surface andMoho topography) and internal particles (P-T paths) [Fullsack, 1995; Göğüş and
Pysklywec, 2008b]. The configuration of the model is designed as a general representation for the lower crust
and gravitationally unstable mantle lithosphere delamination from the upper-middle crust.

2.1. Preconditions for the Gravitationally Unstable Mantle Lithosphere Beneath the
Southeast Carpathians

In our experiments, we used a high-density block to initiate delamination as a geological approximation for
the Neotethys ocean lithosphere subduction (heavy slab in the system) that transforms into continental
delamination after collision (Figure 3). The rest of the mantle lithosphere is denser than the underlying
asthenospheric mantle (ρml� ρast = 40 kg/m3), and there are two reasons we used such density difference
between these layers:
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1. The piece of delaminating slab (inferred by seismic tomography) under the Southeast Carpathians foreland
(Vrancea region) may largely be oceanic rather than continental lithosphere. Existing geological evidence
suggests that the ocean subduction terminated at 11Ma and “soft collision” occurred between the
Tizsa-Dacia microplate and the European plates in conjunction with the peak uplift and 4 km of exhuma-
tion [Burchfiel, 1980; Sanders et al., 1999; Matenco et al., 2007]. Though the surface geology suggests the
occurrence of late Miocene continental collision (references herein), according to the geological recon-
structions, Royden et al. [1983] and many others, inferred that high-velocity body—the Vrancea slab—
(shown in Figure 3) may largely be an ocean slab rather than a continental lithosphere [Girbacea and
Frisch, 1998]. Recent seismic tomography work by Bokelmann and Rodler [2014] argues that the Vrancea
(high-velocity body) sinking/delaminating slab is oceanic lithosphere. Considering the uncertain plate
characteristics of the sinking Vrancea slab into the mantle, (i.e., whether it is pulled by the ocean slab or
a continental slab), it may be reasonable to interpret that the Carpathians mantle lithosphere is denser
than the underlying asthenospheric mantle. According to integrated petrological melt modeling and geo-
physical interpretations by Afonso et al. [2007], the oceanic lithosphere may be ~40 kg/m3 denser than the
underlying mantle.

Figure 3. Proposed model for the neotectonic evolution Southeast Carpathians showing the transition from ocean litho-
sphere subduction to delamination [Girbacea and Frisch, 1998; Knapp et al., 2005].
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2. Progressive refertilization of the mantle lithosphere may have occurred under the Southeast Carpathians by
the injection of melts and fluids. Mantle xenolith studies from the alkali basalts in the Southeast
Carpathians by Vaselli et al. [1995] and Rosenbaum et al. [1997] suggest the enrichment of themantle litho-
sphere (metasomatized) by the infiltration of the melts and fluids derived from the upwelling of astheno-
spheric mantle and the sinking slab. Petrological investigations by Harangi et al. [2014] on the young
Persani volcanic rocks (mainly alkaline chemistry) are used to account for the asthenospheric mantle ori-
gin of basaltic magmas, enriched with Fe and its potential involvement with pyroxenite and eclogite
lithology. It is difficult to determine how extensively basaltic melts infiltrated the mantle lithosphere
under the region; however, according to recent work by Zheng et al. [2015], the lithosphere may be refer-
tilized through decompression melting. They suggest this would make the lithosphere 1.5% denser than
the underlying mantle depending on its initial thickness which should be less than<150 km. We propose
that the initial lithospheric thickness of the Carpathians before the presumed delamination event may not
be more than 150 km since the back-arc lithosphere has highly extended (<100 km) due to the eastward
migration of European subduction. Therefore, based on our estimates for the initial mantle lithosphere
density (ρml = 3300 kg/m3), a 1.5% density difference is nearly 50 kg/m3 and our choice of initial density
difference (40 kg/m3) may be in an acceptable range.

2.2. Model Setup and Material Properties

In our models, delamination begins with a 115 km thick and 150 km wide preexisting high-density ocean
lithosphere (ρ0 = 3400 kg/m3, purple) and a gap of sublithospheric mantle under the crust that initiates dela-
mination (Figure 4). This gap permits delamination such that a conduit of weak layer is necessary to allow
asthenospheric mantle infiltrate under crust and facilitate delamination [Bird, 1979; Göğüş and Pysklywec,
2008a]. In these experiments, we considered that a natural conduit of mantle upwelling may occur in a plate
collision where a lithospheric-scale fault may be produced.

Figure 4 shows the setup and geometry of the delamination model. Density, ρ, in the model is a function of
composition and temperature: ρ (T) = ρ0 (1� α (T� T0)), where α= 2× 10�5 1/K, is the coefficient of thermal
expansion, T0 = 25°C is the reference temperature, and ρ0 is the reference density that depends on material.
A series of experiments showed that α=3× 10�5 1/K accelerates the pace of the delamination process less
than t=1Myr; therefore, it has a relatively minor effect in these lithospheric-scale model calculations. In
the models, the 160 km thick lithosphere is made up of 28 km thick buoyant upper-middle crust
(ρ0 = 2840 kg/m3, pink), 17 km thick dense lower crust (ρ0 = 2990 kg/m3, yellow), and 115 km thick dense

Figure 4. Illustration of model setup for lithosphere delamination model including the dimensions, initial thermal
conditions, material types, and density for upper-middle crust, lower crust, mantle lithosphere, and underlying
sublithospheric mantle. X-X′ cross section line in Figure 2 corresponds to the left side (X) and right side (X′) of the model,
respectively.
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mantle lithosphere (ρ0 = 3300 kg/m
3, dark blue) overlying an upper mantle region (ρ0 =3260 kg/m

3, grey). For

rheological calculations we use laboratory measurements based on a viscous flow law of ε• ¼ Aσnexp �Q
RT

� �
.

Here ε• is the strain rate, T is temperature, σ is deviatoric stress, and the variables A, n, Q, and R are the viscosity
parameter, power law exponent, activation energy, and ideal gas constant, respectively. For continental crust
A=1.1 × 10�4MPa�4/s, n=4, and Q=223 kJ/mol are used, based on wet quartzite [Gleason and Tullis, 1995].
The wet quartzite rheology is an approximation for the general lithological characteristics of the
Transylvanian basin, where nappe stacks of the Southeast Carpathians and the foredeep basin rocks are predo-
minantly made up of sandstone and conglomerate [e.g., Merten et al., 2010]. The dense felsic granulite lower
crust also represents the weak lower crustal layer where decoupling between the mantle lithosphere and
upper-middle crust develops. Such layer is confined in the right side of the model where delamination occurs
after crustal thickening due to the plate collision. In addition to the viscous response, the crust and the mantle
lithosphere has a brittle Coulomb behavior. For the frictional plastic yield stress a Drucker-Prager yield criterion
is used, which is equivalent to the Coulomb criterion in plane strain [Fullsack, 1995; Beaumont et al., 2006]:

σy ¼ Psinϕ þ Cc crustð Þ
σy ¼ Cm mantleð Þ

For the crust an empirical weakening with the internal angle of friction varying dependent on the strain from
ϕ =15°–2° (over strain 0.25 to 1.5). Here P is pressure and ϕ = 15° is an effective internal angle of friction that
implicitly includes the effects of pore fluid pressure Pf in the crust. This is a regular approach in these
types/scales of models [e.g., Pysklywec et al., 2010; Gray and Pysklywec, 2012] in which critical Coulomb wedge
studies by Dahlen [1984] suggestϕ = 15° for the rocks in the fold-thrust belt of western Taiwan. Huismans and
Beaumont [2014] estimate that the ϕ = 15° for the upper crust at hydrostatic pore pressure conditions.

Furthermore, the crustal weakening employed in thesemodels takes into account the shear zone-related defor-
mations (e.g., cataclastic flow and fault gauges) [Beaumont et al., 1996]. The rheological parameters of mantle
lithosphere, asthenospheric mantle, and the lower crust for reference model are described in Table 1.

The numerical (width and depth) resolution is 201 × 101 Eulerian nodes and 601 × 301 Lagrangian nodes. Half
of the Eulerian and Lagrangian elements are concentrated in the top 160 km in order to enhance resolution in
the lithosphere. The model has a free top surface, allowing topography to develop as the model evolves. The
mechanical boundary conditions at the other three sides are defined by zero tangential stress and normal
velocity (i.e., “free slip”). We have extended the depth of the solution space into the lower mantle so that
the sinking mantle lithosphere material moves away from the lithosphere. In most of the models we did
not impose any plate convergence from the left or right margins of the lithospheric domain because there
are only minor far-field boundary stresses (plate shortening) for the Carpathians since the plate collision
(~10Ma). The initial geotherm for the experiments is laterally uniform and is defined by a surface tempera-
ture of 25°C, an increase to 550°C at the Moho, an increase to 1350°C at the base of the mantle lithosphere,
and an increase to 1525°C at the bottom of the model. The surface and bottom temperatures are held
constant throughout the experiments, and the heat flux across the side boundaries is zero. The initial tem-
perature profile is the same in all experiments. Thermal properties (thermal conductivity k= 2.25W/m/K
and heat capacity cp= 1250 J/kg/K) are the same for all materials, and we ignore radioactive heat production
and shear heating in the model.

Table 1. Rheological Parameters for Reference Experiment EXP-1: Dry Olivine Mantle [Hirth and Kohlstedt, 1996], Wet Quartzite Crust [Gleason and Tullis, 1995], and
Felsic Granulite Crust [Ranalli, 1997]a

Parameters Continental Upper-Middle Crust Continental Mantle Lithosphere Sublithospheric Mantle Lower Crust

A viscosity parameter 1.1 × 10�4 MPa�4/s 4.85 × 104MPa�3.5/s 4.85 × 104MPa�3.5/s 8 × 10�3 MPa�3.1/s
n power exponent 4.0 3.5 3.5 3.1
Q activation energy 223 kJ/mol 535 kJ/mol 535 kJ/mol 243 kJ/mol
φ effective internal angle of friction 15°–2° 0 0 15°–7°
ρ0 reference density 2840 kg/m3 3300 kg/m3 3260 kg/m3 2990 kg/m3

Cm/Cc plastic yield stress 1MPa 90MPa 0 0MPa
α coefficient of thermal expansion 2.0 × 10�5 K�1 2.0 × 10�5 K�1 2.0 × 10�5 K�1 2.0 × 10�5 K�1

aThe physical parameters for the oceanic lithosphere are the same with continental mantle lithosphere, except that its initial density is higher (ρ0 = 3400 kg/m3)
than the continental mantle lithosphere.
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3. Model Predictions: The Surface Response to Delamination and
Break-Off/Detachment of the Lithosphere

A series of numerical experiments (>100) of continental delamination and break-off were conducted with
varying controlling parameters. Here we show a selected group of these experiments that demonstrate
how the model behavior changes with modification to some of the primary modeling parameters (Table 2).

3.1. The Reference Experiment, EXP-1 (Delamination and Partial Slab Break-Off)

The reference model EXP-1 has σy= 90MPa plastic yield stress for the mantle lithosphere, and its geodynamic
evolution is shown with plots of surface topography and crustal deformation (Figure 5). We presume that the
delamination (subcrustal retreat) begins near the Carpathians suture zone where lithospheric peeling may be
a natural progression from retreating ocean subduction after the continental collision [Göğüş et al., 2011].
Figure 5a shows that by t=5.1Myr, the presubducted piece of ocean lithosphere has already broken off
and the delamination of the continental mantle lithosphere from the weak lower crust (felsic granulite) has
begun. Above the delaminated region, surface topography increases rapidly peaking at 2 km elevation due
to the upwelling of the hot-buoyant asthenospheric mantle and isostatic crustal thickening (Figure 5). A por-
tion of the lower crust (shown in yellow) has foundered with the descending mantle lithosphere, and the
underlying heavy slab has locally thickened the buoyant upper-middle crust to 40 km by pulling it inward
and downward.

As lithospheric delamination progresses, the descending slab is draped forward into the mantle without
detaching by t=8.9Myr. The process is similar to retreating slab subduction with retroplate motion of the
delaminating hinge-trench location except that during delamination the continental mantle lithosphere
peels away from the crust while allowing mantle flow circulation underneath it (e.g., subcrustal retreat).
The replacement of the mantle lithosphere with hot upwelling asthenospheric results in a broader area of
positive surface topography (x= 700–1000 km) with a surface elevation of more than 2 km. Adjacent to the
uplifted region, the surface subsides to �3 km elevation due to the downward pull of the delaminating slab.
Note that at this basin location, the underlying upper-middle crust is still relatively thick (~35 km). Conversely,
above the zone of delaminated lithosphere, where the surface elevation is positive, the upper-middle crustal
thickness is less than 35 km (e.g., x= 700–900 km) (Figure 5b).

At t=10.1Myr, nearly 300 km of mantle lithosphere and lower crust has delaminated from the upper-middle
crust and the delaminating slab is necking beneath the hinge location (Figure 5a). The steep hanging slab is
yielding at its weakest point at fairly shallow depths (~200 km). Our results are comparable to the numerical
results ofDuretz et al. [2012] andMagni et al. [2013] that test the alternating styles of slab detachment and dela-
mination with different rheological properties of the lithosphere after continental collision, and both studies
suggest relatively rapid slab detachment at depths ~300 km with appropriate physical conditions. The shallow
slab detachment depth also agrees well with the intermediate-depth seismicity of the Vrancea (Southeastern
Carpathian loop) earthquakes that occur at the maximum bending location of the slab [Ismail-Zadeh et al.,
2008] or at the viscous weakening of the dripping mantle lithosphere instability [Lorinczi and Houseman,
2009]. A broad region of crust has been exposed to hot, less dense mantle replacement/upwelling, and an area
of positive surface topography (x=700–1150 km) develops.

Persistent mantle upwelling produces an enhanced surface topography near the edge of the decoupling
zone that reaches a maximum amplitude of ~+3 km of elevation. The high elevation is due to the dynamic
and isostatic support, where actively upwelling asthenospheric mantle induces dynamic topography/uplift

Table 2. List of Numerical Experiments Shown in This Work

Experiment Difference From Reference Model

EXP-1 reference model, σy = 90MPa
EXP-2 decrease plastic yield stress of the continental mantle lithosphere, σy = 30MPa
EXP-3 increase plastic yield stress of the continental mantle lithosphere, σy = 150MPa
EXP-4 impose plate convergence velocity Vp = 2 cm/yr
EXP-5 decrease initial lower crustal density to ρ0 = 2800 kg/m3

EXP-6 decrease initial mantle lithosphere density to ρ0 = 3280 kg/m3

EXP-7 suppress strain softening for plastic response of the crust ϕ1 = 15° and ϕ2 = 15°
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and replacement of cold mantle lithosphere with hot asthenosphere and crustal thickening. Next to the
high positive peak, negative surface topography (�2 km) develops in response to the downward deflection
of the delaminating slab underneath crust. We note that the migratory and transitory pattern of the
uplift/subsidence “wave” continues until the end of the delamination. Partial detachment of the
delaminating/hanging slab causes the recovery of surface depression to �2 km. At this stage, a region of
extension and thinning occurs under the delaminated region between x= 600–900 km due to the crustal
weakening and stretching by advecting mantle and/or gravitational collapse of the previously thickened-
elevated orogenic region.

3.2. EXP-2 (Weaker Mantle Lithosphere)

In an alternate experiment (EXP-2) we explore the surface and crustal response to delamination of a weaker
mantle lithosphere where we explore the effects of the slab break-off process in the models (σy= 30MPa
compared to σy= 90MPa in the previous experiment); in all other respects the model is identical to reference
experiment EXP-1. Similar to EXP-1, this experiment begins with a dense subducting block that has been
completely detached from the rest of the mantle lithosphere layer, although this occurs 1.2Myr earlier
(Figure 6a). By t=5.1Myr, the delaminating slab and lower crust dip slightly into the sublithospheric mantle.
Inspection of the Lagrangian mesh elements indicates that the rising hot asthenosphere weakens the crust
and produces localized stretching between x=600 and 800 km. This upward rise of hot-buoyant mantle
creates surface uplift as high as 2 km between x= 600 and 1000 km (Figure 6b). Above the delaminating slab,
the maximum upper-middle crust thickening is 5 km less than that of the EXP-1, for the same time t=5.1Myr.

By t= 8.9Myr a small piece of a slab dips into the mantle at a high angle and the mantle flow pattern under
the crust develops more symmetrically compared to EXP-1. This is owing to circulating mantle flow that is
more confined to the far side of the delaminating margin (lithospheric gap) where downward bending,
and therefore the break-off process, of the hanging slab has been delayed. In the zone of delamination,
the hot mantle upwelling causes noticeable upper to middle crustal extension and thinning down to

Figure 5. (a) Geodynamic evolution of the reference experiment (EXP-1) where mantle lithosphere with plastic rheology
(σy = 90MPa) and lower crust delaminates. Each frame shows material colors (see Figure 4) and deformed Lagrangian
mesh. The latter is plotted at one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography
and variation of upper-middle crustal thickness at 5.1 Myr, 8.9 Myr, and 10.1 Myr.
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20 km crustal thickness and surface subsidence by �500m. Moreover, the crustal thickening above the
delaminating hinge is much less (35 km) than that of reference model at t=8.9Myr because the hanging
piece of slab is smaller.

As delamination evolves, by t=10.1Myr, a portion of delaminating mantle lithosphere and lower crust has
detached and that lithospheric piece descends deeper into the sublithospheric mantle (Figure 6a). The
surface expression of this underlying detachment process is minor since there is still ~1 km depression
(t= 8.9Myr). Furthermore, at this stage, the underlying mantle dynamics effectively causes significant crustal
extension (thinning by more than 15 km) and subsidence above the delaminated zone, whereas the shorten-
ing and thickening are still localized above the periphery of the hanging slab (Figure 6b).

3.3. EXP-3 (Stronger Mantle Lithosphere)

EXP-3 was conducted as an alternative end-member experiment where the yield stress of the mantle litho-
sphere is increased to σy=150MPa (Figure 7), in which the effects of the potential slab break-off in the course
of delamination are removed. Figure 7a shows that with a higher strength of the mantle lithosphere, the pro-
pensity of the mantle lithosphere to detach from the crust is reduced. This significantly changes the surface
topographic response. Slab bending is more pronounced because the lengthy slab continues curving until it
reaches its yield stress (Figure 7a). By t=5.1Myr, the delaminating slab and lower crust deflect the crust down-
ward under the hinge zone resulting in 1 km of surface subsidence and thickening ofmore than 40 km (Figure 7
b). At the delamination zone, more than 1.5 km of surface topography develops above the upwelling sublitho-
spheric mantle. In this experiment, the paired subsidence and uplift that develop in response to deep litho-
spheric delamination are similar to the reference experiment but subsidence and shortening/thickening in
the delaminating margin (~40km) is amplified since the stronger slab pulls the crust down more vigorously.

Figure 7b shows that by t= 8.9Myr, the delaminating mantle lithosphere and lower crust dip ~90° into the
mantle as an intact plate/slab. This strong hanging slab is attached to the crust and produces negative surface

Figure 6. (a) Geodynamic evolution of the experiment (EXP-2) where mantle lithosphere with plastic rheology
(σy = 30MPa) and lower crust delaminates. In all other aspects the model parameters are kept same with the reference
experiment (EXP-1). Each frame showsmaterial colors (see Figure 4) and deformed Lagrangian mesh. The latter is plotted at
one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation of upper-middle
crustal thickness at 5.1 Myr, 8.9 Myr, and 10.1 Myr.
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deflection to nearly �4 km as well as crustal thickening up to 45 km. The surface topography at the delami-
nation front has increased to more than 2 km because the mantle uprising increases elevation in conjunction
with the crustal thickening induced by the slab pull.

At t= 10.1Myr, delaminated lithosphere from the overlying crust has retreated ~250 km compared to
t=5.1Myr and it has not detached from the surface lithosphere. A very broad region of positive surface topo-
graphy develops above the zone of delaminated lithosphere (x= 750–1150 km), although the crust has been
thinned inmost places (e.g., x= 600–1000 km). On the other hand, the crust has been anomalously thickened-
shortened (to nearly 65 km) above the hinge zone as the strong (undetached) mantle lithosphere also causes
substantial subsidence to 5 km. These model results show topographic anomalies that migrate (similar to the
referencemodel) but are accompanied bymore crustal thickening and subsidence. We interpret these results
to indicate that surface uplift is not persistent during underlying slab migration because extension is more
distributed due to the collapse of a previously thickened and thermally weakened crust heated by the mantle
upwelling (Figure 7b).

3.4. EXP-4 (Impose Convergence Velocity of Vp=2 cm/yr)

In previous experiments, we did not consider the effects of a plate convergence velocity imposed on the
lithospheric domain since the horizontal forcing in the southeastern Carpathians significantly slowed after
the plate collision occurred about 10Ma [Matenco et al., 2007]. For experiment EXP-4 we applied a conver-
gence velocity Vp=2 cm/yr along the right side of the lithospheric plate boundary, to investigate the role
of orogenesis (horizontal tectonics) in the course of the delamination (vertical tectonics) process. In this
configuration, the left margin of the lithosphere is held fixed, and a small outward flux, vx, is distributed
evenly along the sides of the sublithospheric mantle to balance the mass of injected lithosphere. In all other
aspects the model parameters are kept same with the reference experiment (EXP-1). Figure 8a shows the
geodynamic evolution of the experiment after t=5.1, 8.9, and 10.1Myr. The early stages of the experiment
develop similar to the reference experiment: the delaminating mantle lithosphere slab and the lower crust

Figure 7. (a) Geodynamic evolution of the experiment (EXP-3) where mantle lithosphere with plastic rheology
(σy = 150MPa) and lower crust delaminates. In all other aspects the model parameters are kept same with the reference
experiment (EXP-1). Each frame showsmaterial colors (see Figure 4) and deformed Lagrangian mesh. The latter is plotted at
one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation upper-middle
crustal thickness at 5.1 Myr, 8.9 Myr, and 10.1 Myr.
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sink to the less dense sublithospheric mantle while peeling off from the upper-middle crust. The applied
horizontal plate convergence provides additional forcing to the edge of the sinking (delaminating)
lithosphere; therefore, the hanging slab steepens more rapidly compared to the reference experiment.

By t=8.9Myr, (after nearly 82 km of delaminating hinge migration) the hanging slab detaches at a relatively
shallow lithospheric depth of<200 km. Because the lithosphere shortens and thickens due to the applied con-
vergence, positive surface topography>500m dominates the model domain. The maximum elevation reaches
more than 3.5 km, induced by mantle upwelling contemporaneous with plate shortening (Figure 8b). At
x=1100 km a surface subsidence down to�1 km develops as a response to the slab pull. The magnitude of this
subsidence is less compared to the reference experiment at a similar stage of evolution, owing to the plate
shortening. Crustal thickness varies from 29 km at the left edge of the model to 60 km where the slab is being
pulled downward.

By t= 10.1Myr, the hanging lithosphere completely detaches from the rest of the lithospheric slab and the
detached portion reaches to the bottom of the solution box. At this time only a small amount of lithosphere
delaminates with respect to the previous time (t= 8.9Myr) and the migration of the delaminating hinge (the
locus of decoupling between the upper-middle crust and the mantle lithosphere) is 125 km less compared to

Figure 8. (a) Geodynamic evolution of the experiment (EXP-4) where convergence velocity (Vp = 2 cm/yr) along the right
side of the lithospheric plate boundary is imposed. In all other aspects the model parameters are kept same with the
reference experiment (EXP-1). Each frame showsmaterial colors (see Figure 4) and deformed Lagrangian mesh. The latter is
plotted at one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation
upper-middle crustal thickness at 5.1 Myr, 8.9 Myr, and 10.1 Myr.
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the reference experiment. Models show that the imposed plate convergence yields an earlier development of
slab break-off than the reference experiment, and the same effect also hinders the occurrence of broader
areas of lithosphere delamination where plateaus may form. These predictions are consistent with
laboratory-based experiments that considered the geodynamic evolution of orogens from subduction to
continental delamination [Göğüş et al., 2011]. Namely, analogue models with higher rates of imposed conver-
gence show less propensity for delamination and favor crustal accretion to the overriding plate. At the last
stages of this experiment, there is not much change in terms of surface topography and crustal thickening
compared to t= 8.9Myr except that the crust rebounds to +1 km surface elevation and the crustal thickness
reaches 50 km due to the gradual cessation of downwelling forces created by the deeper sinking lithosphere.

3.5. EXP-5 (Decrease Initial Lower Crustal Density to ρ0 = 2800 kg/m3)

To consider the influence of the lower crustal density in the lithosphere delamination/break-off system, we
conduct model with decreased initial density of the lower crust ρ0 = 2800 kg/m3 for EXP-5 (otherwise all other
parameters are kept same with the reference experiment EXP-1). By making the lower crust more buoyant,
we tested howmuch surface elevation varies, though it is pulled down by the gravitationally unstable mantle
lithosphere. Figure 9a shows that at t= 5.1Myr there is less sinking/delaminating slab into the sublithospheric
mantle compared the EXP-1. The surface response to the decreased lithospheric forces is a more subdued
surface subsidence and crustal thickening, but the amount of surface uplift (~2 km) due to the mantle upwel-
ling (isostatic + dynamic compensation) is very close with the reference model (Figure 9b). Overall, a
decreased lower crustal density suppresses the delamination process and by t= 8.9Myr there has been only
~40 km delaminating hinge migration while the negative surface topography develops only above the
sinking slab. Figure 9a shows that by t= 10.1Myr, compared to the reference experiment (EXP-1) the hinge
migration is 160 km less (i.e., less delamination occurs with reduced crustal density). This also reflects the
development of narrow region of positive surface elevation where sublithospheric mantle rises (between
x=730–960 km), and adjacent to this the surface subsides down to�1 km. In this experiment, because there
is a smaller slab attached to the crust, the crust does not thicken as much as the reference experiment since
the shortening in these experiments without plate convergence is largely controlled by the downward slab
pull impact on the crust.

Figure 9. (a) Geodynamic evolution of the experiment (EXP-5) where initial lower crustal density is decreased to ρ0 = 2800 kg/m3. In all other aspects themodel parameters
are kept same with the reference experiment (EXP-1). Each frame shows material colors (see Figure 4) and deformed Lagrangian mesh. The latter is plotted at one-half
actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation upper-middle crustal thickness at 5.1Myr, 8.9Myr, and 10.1Myr.
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3.6. EXP-6 (Decrease Initial Mantle Lithosphere Density to ρ0 = 3280 kg/m3)

The buoyancy difference between the lithosphere and the underlying sublithospheric mantle can have a
significant impact on the evolution of lithosphere delamination process. In this experiment (EXP-6), we used
the same modeling parameters with the reference experiment (EXP-1) but set the initial density of the mantle
lithosphere to ρ0 = 3280kg/m

3 (20 kg/m3 less dense than EXP-1); therefore, we test how much delamination
(removal) occurs with less density difference. EXP-6 shows that such a decrease in mantle lithosphere density
(and hence density contrast between lithosphere and sublithospheric mantle) reduces the pace of the evolution
of the lithospheric delamination/break-off system. The effects are minor during the early stages of the experi-
ment, but by t=8.9Myr, there is at least 80 km less delaminating hinge migration compared with the reference
experiment (Figure 10a). Throughout the experiment, the lithospheric removal process and the resultingmantle
upwelling-replacement occurs in a more limited zone (between x=700 and ~1000 km), in which positive sur-
face topography develops (Figure 10b). The lithosphere delamination does not progress much by
t=10.1Myr. A piece of hanging lithosphere is attached to the overlying crust, and the surface basin driven
by the slab pulling is only couple of hundred meters deep at x=1000km. Clearly, the slab pull forcing induced
by the more buoyant hanging slab in EXP-6 is reduced compared to the reference model.

3.7. EXP-7 (Suppress Strain Softening for Plastic Deformation of the Crust)

In experiment EXP-7, we turned off the weakening of the upper-middle crust (wet quartz) by setting ϕ1= 15°
and ϕ2= 15° to investigate the response of a relatively stronger crust to lithosphere delamination without
enhanced crustal weakening (i.e., by the pore fluid pressure and significant shear zone development)
(Figure 11). The development of delamination and the corresponding crustal thickness and topography in
every stage of the experiment are almost same with the reference experiment. However, by t= 10.1Myr,
the surface subsidence and crustal thinning did not occur at x=900m as in the reference experiment. This
is because the stronger crust resisted crustal weakening and a local surface depression did not develop as
a response to heating through mantle upwelling and weakening of the crust. As such in considering the evo-
lution of the orogen in the Southeast Carpathians—from the Apuseni Mountains to the Focsani foreland

Figure 10. (a) Geodynamic evolution of the experiment (EXP-6) where initial mantle lithosphere density is decreased to ρ0 = 3280 kg/m3. In all other aspects the
model parameters are kept same with the reference experiment (EXP-1). Each frame shows material colors (see Figure 4) and deformed Lagrangian mesh. The
latter is plotted at one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation upper-middle crustal thickness at 5.1 Myr,
8.9 Myr, and 10.1 Myr.
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basin—the results of the reference experiment (with crustal weakening imposed) may be more consistent
with the opening of the Brasov extensional basin in the Carpathians hinterland.

4. Comparison of Model Results Against Observations

Our model results show that vertical displacements (with paired surface uplift and subsidence) develop in
response to the delamination and subsequent detachment of lithosphere and that the presence or absence
of slab detachment can alter this surface response. Model predictions also show that the localized crustal
deformations (extension/basin formations) are also dependent on the strength of the crust. The spatially
varying topographic anomalies and crustal deformation are consistent with many of the observations of
the surface tectonics and crust-mantle structure observed in the Southeast Carpathians.

Figure 12a shows the reference delamination experiment (EXP-1) results for upper-middle crustal thickness
variation at t= 10.1Myr (i.e., in this comparison this stage is considered “present day”). The model results
are compared against the observed crustal thickness (with and without lower crust) data derived by seismo-
logical studies [e.g., Hauser et al., 2007] (Vrancea 2001 Vp model). According to Hauser et al. [2007], the
observed thickness of the upper-middle crust varies from 26 to 30 km from the Apuseni to Carpathian
Mountains (plate hinterland) and this is in good agreement with the model result in which the thickness of
the upper-middle crust is between 24 to 30 km in the same area where lower crust and mantle lithosphere
have probably delaminated. These seismological studies show that there is 30 km thick upper-middle crust
under the Focsani basin where topography is at least 1.5 km lower than the high elevation in the
Carpathians. The modeled thickness of the upper-middle crust increases (to as thick as 40 km) in the same
location, and it becomes thinner toward the eastern end of this basin. A similar pattern of crustal thinning
under the hinterland and thickening in the foreland (to 45 km) is proposed for the Moho topography esti-
mates by Hauser et al. [2007] and also Fillerup et al. [2010]. The approximations made for the upper-middle
crustal thickness match well with the estimates (especially under the hinterland domain) because the models
presumed lower crustal removal in the same region due to a delamination process. Reconciling the model

Figure 11. (a) Geodynamic evolution of the experiment (EXP-7) where plastic strain softening of the crust is supressed φ1 = 15° and φ2 = 15°. In all other aspects the
model parameters are kept samewith the reference experiment (EXP-1). Each frame showsmaterial colors (see Figure 4) and deformed Lagrangianmesh. The latter is
plotted at one-half actual resolution; mesh is initially even rectangular. (b) Plots of surface topography and variation upper-middle crustal thickness at 5.1 Myr,
8.9 Myr, and 10.1 Myr.
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results with observations suggests that the higher elevation of the Carpathian Mountains (>1.5 km) and the
uplift of Transylvania may not fully be compensated by thicker crust but also by replacement of the hot man-
tle after lithosphere delamination in which slow seismic velocity anomalies are also observed (Figure 12c)
[Russo et al., 2005; Martin et al., 2005; Ren et al., 2012]. Also, the subsidence at the Focsani foredeep basin
—with up to 10 km of sediment deposition and underlain by thickened crust—may be due to dynamic sub-
sidence driven by the descent of the existing slab [Fuchs et al., 1979; Oncescu et al., 1984;Wortel and Spakman,
2000; Ismail-Zadeh et al., 2000; Sperner et al., 2001; Ren et al., 2012; Bokelmann and Rodler, 2014]. We also inter-
pret that the modeled crustal stretching, caused by the hot mantle upwelling after delamination (i.e., espe-
cially at highest crustal thinning down to ~25 km), may correspond to the opening of the Pliocene age
Brasov extensional basin [Girbacea and Frisch, 1998]. This would also be correlated with the asthenospheric
mantle-derived outpouring of Persani and south Harghita volcanics (since 3Ma) in the Carpathians loop
[Downes et al., 1995; Rosenbaum et al., 1997; Seghedi et al., 2005, 2011].

In Figure 12b, we show the model predictions of surface elevation change from the reference experiment at
t=5.1Myr and t=10.1Myr, (given in Figure 12b as 5Ma for the former and present day for the latter) from the
Apuseni Mountains to the Focsani basin. In the same plot, we also show the postcollisional evolution of exhu-
mation tectonics in the same region derived by thermochronological data fromMerten et al. [2010]. According
to their work, the magnitude of the crustal exhumation and shortening along the thrust nappes increases
toward the Focsani foreland basin. Namely, up to 1 km of exhumation occurred following the collision at
the Transylvania region at about 9Ma. Subsequently, at 5Ma the recorded maximum exhumation has
migrated toward the foreland and nearly 3 km of exhumation occurred at the Carpathian nappes as a
response to the crustal shortening. At the very last stage of the exhumation process, since the Pliocene, up
to 4 km of crustal exhumation has been suggested at the present-day position of the Carpathian

Figure 12. (a) Modeled crustal thickness for the reference experiment at t = 0 and t = 10.1 Myr (present day) and the
observed upper-middle crustal thickness. Moho topography estimates by Hauser et al. [2007]. (b) Modeled surface
elevation at present day and 5Ma. Observed crustal exhumation byMerten et al. [2010] is shown in the same plot for 9Ma,
5Ma, and 2Ma. (c) Upper mantle-scale NW-SE cross section (down to 300 km depth) inferred from P wave tomography
model by Ren et al. [2012]. The marked fast and slow velocities correspond to ± 2%. Moho topography estimates by Hauser
et al. [2007] and Fillerup et al. [2010]. Please see Figure 2 for the orientation of the profile (present-day surface elevation is
shown including main geological features from the Apuseni Mountains to Focsani basin).
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Mountains. Coeval with this migrating exhumation, the Focsani basin depocenter has moved to the south
with increasing sediment deposition [Leever et al., 2006]. The surface topography evolution of the reference
experiment (EXP-1) shows that there is a migration of the paired uplift and subsidence as a response to
the lithosphere delamination and break-off (Figure 5b) and the magnitude of vertical displacements is
comparable to the amount of crustal exhumation estimated by Merten et al. [2010]. We suggest that
EXP-1’s results are consistent with the surface response to a lithosphere delamination that begins under
the Carpathians hinterland (Figure 12c). Here the maximum elevation increases over time owing to the loss
of the underlying slab, the thermal and dynamic effects of mantle replacement under the crust, and accom-
panying isostatic thickening. For instance, in Figure 12b, at 5Ma (t=5.1Myr) the 2 km of model surface uplift
may correspond to the documented 3 km of crustal exhumation that occurred in the Carpathians corner
about 5Myr ago. While thermochronological data indicate that crustal burial (nearly 2 km) occurred in the
Carpathians at that time (5Ma), 3Myr later 4 km of crustal exhumation has been inferred [Merten et al.,
2010]. Such exhumation is comparable with the 3 km uplift of the surface topography from �3 km elevation
in the model.

5. Conclusions

We conducted numerical experiments to investigate the time-dependent surface and crustal response to
delamination-type lithospheric removal (lower crust and mantle lithosphere) processes and slab break-off
in a postcollisional tectonic environment. The results show progressive upwelling of the asthenospheric man-
tle accompanied by thinning of the overriding crust and increasing surface elevations. At the same time,
downwelling forces related to the sinking and delaminating mantle produce localized crustal thickening
and subsidence above the delaminating hinge (e.g., ~�2 km). These effects migrate through time as litho-
spheric delamination progresses. The results demonstrate that mantle dynamics can play a major role in
the evolution of surface tectonics and topography in response to delamination.

We have shown that the rheological characteristics of the mantle lithosphere control the dynamics of litho-
sphere delamination as well as the surface impact of slab break-off. For example, lithospheric delamination
experiments with a weaker mantle lithosphere yield a complete slab detachment after the delamination.
As a result the downwelling force is reduced and this causes a decrease in the magnitude of crustal thicken-
ing and subsidence under the delaminating margin. Stronger mantle lithosphere delamination induces more
localized crustal thickening above the delamination hinge and a broader zone of extension and uplift that
occurs over the region of mantle upwelling. When a lithospheric convergence velocity is imposed, the slab
break-off occurs earlier and the surface experiences higher uplift of a broad plateau-type region. A decrease
of the density of the lower crust and mantle lithosphere both suppress the mantle lithosphere delamination
process as well as the associated surface response. With a stronger crust (viz., without the ability to strain
soften), delamination of the mantle lithosphere continues, but there is a reduced propensity for the crust
to extend and subside above the removed lithosphere.

Our numerical results help interpret observations of topography, crustal thickness, crustal exhumation, and
mantle structure of the Southeast Carpathians: (1) the geodynamic evolution of the lithosphere delamination
is consistent with the proposed seismic tomography interpretations beneath the region; (2) positive (+) and
negative (+) surface topography that migrates with the delaminating lithosphere is consistent with the
observed migration and increasing amount of crustal exhumation byMerten et al. [2010] and basin depocen-
ter by Leever et al. [2006] from Transylvania to the Focsani foreland basin; (3) predicted thinner crust at the
Carpathians hinterland (higher elevation) and thicker crust at the Focsani depression (lower elevation) are
in good agreement with the seismologically observed crustal thickness from Hauser et al. [2007]; and (4)
extension/thinning in the models is in agreement with the opening of young extensional basin in the
Carpathian corner (e.g., Brasov basin) and the volcanism in the last 3Myr (i.e., Persani and south Harghita
volcanics) derived from asthenospheric mantle origins. Although the model results suggest a reasonable
approximation for the geodynamics of the Southeast Carpathians, our motivation was not to simulate the
entire complex evolution of the region. Rather, the works provide a reference frame for understanding
how a delamination removal process can account for the results; future refinement to the models and obser-
vations would help improve these comparisons and interpretations. Finally, we suggest that while this
research focuses on the late Cenozoic geodynamic evolution of Southeast Carpathians, the outcome of this
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work may have general implications for the evolution of other Mediterranean-type orogenic regions (e.g.,
Apennines, Betics, and the Anatolian Plateau) where compelling documentation on lithospheric delamina-
tion—following retreating subduction—has been interpreted through a range of geophysical, geological,
and petrological observations.
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