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SUMMARY

Partial-strength composite steel–concrete moment-resisting frame structures can be designed to develop a
ductile response in components of beam-to-column joints and column bases, including flexural yielding of beam
end plates, shear yielding of column web panel zones and yielding of anchors. To evaluate the performance of a
statically indeterminate structure under different earthquake intensities, a series of pseudo-dynamic, quasi-static
cyclic and vibration tests were carried out at the European Laboratory for Structural Assessment of the Joint
Research Centre at Ispra, Italy. The identified modal parameters from forced vibration tests at three different
damage levels were used in order to quantify local and global damage indices by updating a 3D FE model of
the structure with the non-linear Powell’s Dog-Leg optimization method. Then, the Latin Hypercube Sampling
technique, a variant of the Monte Carlo method, was employed to study the sensitivity of the updated
parameters of the 3D model to modal inputs, caused by measurement noise. Rotations of beam-to-column
joints and column bases, storey displacements and forces were employed during the final cyclic test in order to
update a 2D FE model of the test structure. To avoid numerical instabilities during the detection of the non-
linear behaviour of the structure, a novel technique based on the transformation of the origin coordinates in
each half cycle was implemented. The identified joint behaviours allowed low-cycle fatigue energy-based
damage indices to be applied. Copyright r 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A seismic design option in modern steel and steel–concrete composite structures is represented
by semi-rigid beam-to-column joints that are able to accommodate inelastic rotations through
ductile inelastic component responses [1,2]. Thus, global beam hinging mechanisms for
earthquake resistance can be achieved at a reduced cost as the force demand in joints and
columns is governed by the expected capacity of the ductile connection components rather than
by the beam flexural capacity. In this respect, detection and evaluation of the actual damage
due to earthquakes in these structures becomes different to that in structures with rigid joints.
The work described in this paper has been performed as part of two European projects [3,4]
where a series of vibration experiments followed the application of pseudo-dynamic (PsD) and
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quasi-static cyclic loadings on a semi-continuous moment resisting (MR) structure. The specimen
was constructed and tested at the European Laboratory for Structural Assessment (ELSA) of the
Joint Research Centre (JRC) in Ispra, and consisted of a full-scale two-storey two-bay frame with
concrete slab dimensions in plan of 12.8� 7.4m2, and 7.0m in height. The testing programme
included a sequence of PsD tests, simulating earthquakes with peak ground acceleration (pga)
scaled up to the collapse onset limit state (COLS), followed by a final cyclic test. The MR
structure behaved well under seismic loading and details of the seismic design and performance
can be found in [5,6].

Recently, the evaluation of damage owing to seismic loading was performed by means of damage
detection techniques that rely on FE structural models and on the observation that structural
frequencies decrease with damage while damping ratios increase. The initial FE model of a structure
is often a poor representation of its characteristics because of unavoidable simplifying assumptions;
for instance, modelling the actual behaviour of semi-rigid joints in a semi-continuous structure can
be a challenging task. It is evident that experimental data provide valuable information of how the
structure behaves with regard to the initial FE model. As a result, the FE model can be corrected in
an updating procedure that belongs to the class of inverse problems in classical mechanics [7].

Model updating methods can be classified as sensitivity or direct methods [7]. Sensitivity-type
methods rely on a parametric FE model of the structure and the minimization of some penalty
functions based on the error between measured and predicted data. Direct updating methods are
based on changes to complete mass and/or stiffness matrices and generally the updated models
obtained are difficult to interpret. Model updating of structures can rely on different data types: (i)
data from dynamic tests and (ii) data retrieved from static or quasi-static tests. Dynamic-based
identification techniques are more mature and therefore the corresponding literature is quite extensive.

Doebling et al. [8] provided an overview of methods able to detect, locate and characterize
damage in structural systems using the measured vibration response. Teughels et al. [9,10] used
modal models as well as damage functions controlled by a limited number of parameters in
order to estimate the bending stiffness distribution along beam-type structures. Bakir et al. [11]
introduced an improved FE model updating scheme and a novel global optimization that was
applied to a residential building subjected to the 1999 Kocaeli and Duzce earthquakes. Rahai
et al. [12] presented an approach for damage detection by considering structures with simple or
rigid joints utilizing incomplete measured mode shapes and natural frequencies. The effect of
data polluted by noise was considered by means of Monte Carlo simulations. Amani et al. [13]
identified damping and stiffness matrices both of a tested reinforced concrete beam and of a
reduced scale six-storey aluminium plane frame structure subjected to ambient loading.

Applications of static-based identification techniques are rather limited, mainly because
global quantities are not involved. Some attempts have also been made to identify structures
under static loads. Sanayei and Saletnik [14,15] suggested a method for structural identification
by using a subset of applied static forces and a subset of noisy measured strains. Liu and Chian
[16] identified the element properties of a truss by the strains of truss elements measured during
static tests. A damage identification algorithm using static test data and changes in natural
frequencies was presented by Wang et al. [17]. In order to locate damage in the structure, the
damage signature matching technique was improved through a proper definition of measured
damage signatures and predicted damage signatures.

With regard to the damage evaluation of beam-to-column joints, Wong et al. [18], Koh et al.
[19] and Wu and Li [20], among others, identified damage in joints of steel framed structures.
These studies were successful in joint identification, although only simple beam-to-column joint
models in the elastic range were considered. Moreover, they highlighted that the damage
detection of semi-rigid joints experiencing severe inelastic damage, and more generally of
composite structures characterized by low masses, low damping and complex geometry, remains
largely unexplored. This paper investigates the subject in more depth.

Three separate vibration test series were performed on the MR steel–concrete composite test
structure: first, on the intact, undamaged structure; second, after attaining the life safe limit state; and
finally, after the structure had suffered severe cyclic loadings [4,21]. The structure was subjected
to both sinusoidal and impulsive excitation and its response was recorded via three different
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configurations of accelerometers: one arrangement for the overall or global structural response and
two sets for the analysis of interior and exterior joints, respectively. Since the structure was in a
laboratory, the damage imposed was known and the bare structure could always be inspected.

The main characteristics of the prototype test structure, test programme, instrumentation
and main results of the modal extraction are summarized in Section 2. The non-linear Powell’s
Dog-Leg (DL) technique employed in the model updating is discussed in Section 3. The 3D FE
model, of both the structure and the joints, are briefly described in Section 4, together with the
modal updating technique based on the DL method and the corresponding results. Both local
and global damage indices of the MR structure are computed in this section, based on measured
and updated FE quantities [22]. The Latin Hypercube Sampling (LHS) technique [23], which is a
variant of the Monte Carlo method, is described and used to analyse the sensitivity of the
updated parameters to measurement errors. In Section 5, a 2D FE model of the structure is
introduced and model updating under cyclic loads is proposed, with the identification of the
hysteretic behaviour of damaged joints. Damage indices of the structural joints are also
computed using low-cycle fatigue energy-based damage models [24]. Conclusions and
perspectives are summarized in Section 6.

2. DESCRIPTION OF THE STRUCTURE AND TEST PROGRAMME

2.1. The test structure

The prototype two-storey structure shown in Figure 1(a) was selected to have representative
dimensions, member sizes and connection details in order to study the seismic behaviour of
steel–concrete composite structural systems. The structure includes five identical two-bay
moment-resisting frames with unequal spans. The test structure was a two-storey, two-bay
building specimen 7m high with plan dimensions from centre to centre of two exterior columns
equal to 6.0� 12.0m2; dimensions of the composite slabs were slightly greater. The model was
constructed with three MR frames shown in Figure 1(b), with unequal spans of 5.0 and 7.0m,
respectively. Steel–concrete composite beams were formed by IPE300 steel profiles connected
by full shear connection studs to a 15-cm-thick concrete slab, cast on profiled sheeting. HEB260
and HEB280 partially encased steel–concrete composite columns were used and high-ductile
partial-strength composite beam-to-column joints were designed to provide plastic joint rotations
of 35mrad associated with a residual strength of at least 80% of their maximum value [2] under
earthquake loading. In the transverse direction, secondary beams were pinned and connected to
column webs; and as illustrated in Figure 1(c), two concentrically braced frames were designed to
prevent any lateral instability. Each concrete slab was extended along the longitudinal and
transverse directions of the exterior beam-to-column joints in order to provide additional
resistance to hogging bending moments and to achieve the effective width of longitudinal
composite beams. Figure 1(d) shows the general view of the test structure. Braconi et al. [5,6]
provided more detailed information about the design and performance of the test structure.

2.2. Test programme

The performance of the benchmark structure was investigated at four different pga levels during
the PsD tests. The test levels were as follows: 0.1 g in order to characterize the pseudo-elastic
state; 0.25 g for the Serviceability Limit State (SLS); 1.4 g for the Life Safe Limit State (LSLS);
and 1.8 g for the COLS. A final cyclic test beyond the COLS was also performed. Table I
summarizes the test programme, with relevant objectives.

Three vibration tests were carried out at different damage phases to perform damage
detection and quantification: Phase I for the identification of the intact structure; Phase II for
the identification at the LSLS; Phase III for the identification beyond the COLS. Both in PsD
and cyclic tests, four actuators were connected at one end of the structure.

In order to improve design methods and to enhance knowledge of the joint behaviour,
preliminary monotonic and cyclic tests on beam-to-column and base joints were carried out at
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the Universities of Pisa and Trento, Italy, respectively [25]. Test results were also exploited to
estimate initial stiffness values for the modal updating procedure described in Section 4.3.

2.3. Dynamic tests, instrumentation and modal extraction

Forced vibration tests were carried out in the three Phases reported in Table I. These consisted
of Stepped Sinusoidal Tests and Shock Hammer Tests, performed by means of an electro-
dynamic shaker ELECTRO-SEIS 400 with 33.79 kg of total mobile mass and an instrumented
sledge-hammer PCB 086D50 with a total mass of 10.77 kg, respectively. Figure 2 shows the
locations of the excitation forces. Three different accelerometer configurations were employed in
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Figure 1. The test MR structure: (a) designed and tested structure; (b) side view; (c) end view; and
(d) general view.

Table I. Summary of the test programme and performance objectives.

Test Vibration test PsD test-pga (g) Performance objective

I Phase I Identification at the Undamaged State
1 0.10 Pseudo-elastic State
2 0.25 Serviceability Limit State
3 1.40 Life Safe Limit State (LSLS)
II Phase II Identification at the LSLS
4 1.80 Collapse Onset Limit State (COLS)
5 Cyclic Maximum top displacement equal to 300mm
III Phase III Identification beyond the COLS
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each test [21]. To acquire accelerations corresponding to the six global degrees of freedom of the
structure, i.e. four translational and two torsional modes, a total of six accelerometers were
mounted on the structure as illustrated in Figure 2. In addition, local configurations, labelled B
and C in Figures 3(a, c), were used to characterize the local dynamic behaviour of interior and
exterior beam-to-column joints, respectively. This was achieved by accelerometers mounted
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Figure 2. Location of the excitation devices and global configuration A of the accelerometers: (a) location
of sensors in the top storey and (b) location of sensors in the bottom storey.
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Figure 3. Local configurations of accelerometers: (a) interior members; (b) interior beam-to-column joints;
(c) exterior members; and (d) exterior beam-to-column joints.
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horizontally on the column flanges to acquire the web panel angular accelerations, shown in
Figures 3(b, d), respectively. Translational and rotational accelerations were acquired on
instrumented sections of both beams and columns, by arranging pairs of accelerometers above
and below member axes. To improve the rotation measurements, accelerometers were well
separated. With the same set-up, few kinematic components of some base joint rotations were
also monitored, as shown in Figures 3(a, c).

The six lowest natural frequencies of the structure, corresponding to translational and
torsional modes, were evaluated by the dynamic tests. Being well separated, eigenvalues,
eigenvectors and viscous damping coefficients were extracted by the circle-fit modal analysis
technique [26]. The resulting modal data are presented in Table II and the progressive reduction
of the natural frequencies with damage, with an associated increase in the damping coefficients,
is evident. Because of the fact that low energy dynamic tests were performed by means of the
aforementioned exciters, the level of noise from the accelerometers may have introduced
uncertainties in the damping ratios associated with higher modes. This trend can be noted in the
torsional first mode, i.e. Mode 3 in Table II, and with the flexural and torsional second modes,
i.e. Modes 4–6. The results are also in line with values identified by more complex identification
techniques [27].

2.4. Cyclic test protocol and instrumentation

The sinusoidal displacement protocol shown in Figure 4, characterized by stepwise increasing
amplitudes, was applied at the top storey through two actuators, whilst the actuators at the
bottom storey were controlled to keep the bottom/top storey reaction force ratio equal to 0.97 for
the whole test. That ratio was determined from examining the first mode shape of the structure
after the COLS. The corresponding bottom storey displacement is illustrated in Figure 4 and is

Table II. Experimental natural frequencies and damping coefficients extracted from both SST and SHT tests.

Phase I Phase II Phase III

Mode Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 3.36 0.57 2.38 1.27 1.95 1.44
2 5.09 0.66 4.44 0.83 4.15 0.96
3 6.92 0.70 6.24 0.67 5.70 0.68
4 10.94 0.69 8.95 0.61 8.18 0.90
5 16.48 0.49 13.95 0.30 13.72 0.59
6 22.52 0.76 19.97 0.54 19.05 0.44
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Figure 4. Displacement protocols relevant to bottom and top storeys utilized during the cyclic testing.
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also characterized by a displacement increment of 50mm between cycles of increasing amplitude,
with two equal cycles, up to a maximum of 300mm at the top storey [4]. Two frames of the
structure, shown in Figure 5(a), are referred to as the exterior (A) and interior (B) frames,
and were instrumented by means of Strain Gauges (SG), Inclinometers (Inc) and Transducers
(Tr). Typical sensor lay-outs of an interior joint as well as column base joints are illustrated
in Figures 5(b, c), respectively. All measurements obtained from inclinometers and storey
displacements and forces were used for cyclic model updating, described in Section 5.2.

3. POWELL’S DOG-LEG OPTIMIZATION TECHNIQUE

FE-based model updating procedures can be regarded as minimization processes in which the
discrepancies between numerical and experimental data are minimized by adjusting unknown
model parameters. The objective function, F ðpÞ, is the L2-norm of the errors between the vectors of
analytical and experimental data, and is minimized by seeking optimal parameter values through
an inverse modelling process. A local minimizer, p�, is searched in the least squares problem,

F ðpÞ ¼ 1
2
DðpÞTDðpÞ ð1Þ

where DðpÞ is the given residual vector function.
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Figure 5. Test structure employed during cyclic testing: (a) instrumented frames; (b) interior joints (2-B) at
the bottom storey; and (c) base joint (2-B).
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Optimization algorithms are iterative in nature [28]. The process starts with an initial guess of
the optimal values of the variables and proceeds by generating a sequence of improved estimates
until a solution is reached. The strategy used to move from one iteration to the next
distinguishes one algorithm from another. Two well-known methods are the Steepest Descent
(SD) and the Trust Region (TR) methods. The SD method is a line search method in the
opposite direction to the gradient of F ðpÞ, i.e. hSD ¼ �HFtðpÞ, at the t-th iteration, and where the
step length is chosen in various ways. TR methods generate steps by utilizing a quadratic model
of F ðpÞ. They define a region around the current iterate within which they trust the model to be
an adequate representation of F ðpÞ. The step is then chosen to minimize this approximate model
in the trust region, and the direction and length of the step are determined simultaneously. If a
step is not acceptable, the size of the region is reduced and a new minimizer is found. In general,
the step direction changes whenever the size of the trust region is altered.

Powell’s Dog Leg (DL) method [28] belongs to the category of TR methods, but is a hybrid
technique based on a combination of the Gauss–Newton (GN) and SD methods. A major
problem with the DL method is the mechanism used to switch between the two methods when it
is appropriate. Depending on the solution at the previous step, the DL method builds a trust
region where the radius changes automatically depending on whether the step is far or close to a
minimum. Let pt and ht be the current estimate of the parameter vector and the parameter
increment at the t-th iteration, respectively. Then there are two candidates for the step to be
taken from the current position pt, given by steepest descent, ahSD (where a is determined by a
line search), and GN, hGN. The strategy to choose the DL step size ensures that k hDLkpR,
where R is the radius of the TR. This radius is adjusted at each iteration depending on the
quality of the second order Taylor series approximating the penalty function. Madsen et al. [28]
gives further details.

There are two main stopping criteria for the algorithm:

(a) the gradient HF ðpÞ approaches zero, or

kHF ðpÞk1pe1 ð2Þ

where kHF ðpÞk1 is the infinite norm of HF ðpÞ and e1 is a very small positive number,
(b) the change in the parameters is small, or

kptþ1 � ptkpe2ðe2 þ kptkÞ ð3Þ

where e2 is also a very small positive number. This stopping criterion modulates the
relative step size from e2 when kptk is large to e22 when kptk is close to zero.

4. IDENTIFICATION AND DAMAGE EVALUATION UNDER DYNAMIC LOADING

4.1. The 3D FE model of the structure under dynamic load

Model updating was performed using a 3D FE model of the benchmark structure with 429
degrees of freedom, shown in Figure 6(a), which was assembled and implemented in
Mathematica [29]. The model had three identical frames (see Figure 6(b)) that were connected
through master–slave numerical constraints at each storey level. The constraints were the
horizontal displacements within each storey and the rotations about the vertical axis. Beam-to-
column elements were used to simulate the behaviour of members, while braces were modelled
by means of truss elements. Shear panels were modelled by means of four pinned rigid bars that
were stabilized by a rotational spring. The behaviour of the beam-to-column connections
were simulated by rotational springs jointing the beams to the shear panels. Details of the
structural joints are summarized in Figure 6(c). The simplified joint model of Figure 6(d)
was conceived and implemented to limit the number of degrees of freedom. A lumped
mass model was used, where the mass distribution was assumed to be known. The bottom storey
had a mass of 43 171 kg and the top storey a mass of 39 332 kg. The masses and moments of
inertia of the storeys were applied directly to the master degrees of freedom. A linear
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elastic behaviour for all structural elements was assumed owing to the updating strategy
presented here.

4.2. The sensitivity approach for model updating

A sensitivity-based approach was chosen for model updating [7]. The approach minimizes F ðpÞ
based on the difference between the measured and predicted modal quantities. The variations
between the r-th eigenvalues and eigenvectors, Dlr and Djr, are obtained from the experimental
results, ½lXr;jT

Xr�
T, and the computed results at parameter vector p, ½lAr;jT

Ar�
T. The eigenvalue

residuals are weighed [30] so that

DtðpÞ ¼

Dl1
lA1

Dj1

..

.

Dlm

lAm

Djm

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð4Þ

The residuals are then written as a Taylor series expansion,

Dt ¼ �Jtht where ht ¼

ht1

..

.

htNp

0
BBB@

1
CCCA; ð5Þ

htj is the j-th element of the parameter perturbation vector ht at the t-th iteration and Np is the
number of parameters. The matrix Jt in Equation (5) contains the eigenvalue and eigenvector
derivatives with respect to the parameters. These derivatives are called sensitivities and are
calculated using the methods suggested in [31,32]. Usually eigenvalue sensitivities are one order
of magnitude greater than the mass-normalized eigenvector sensitivities [30].

The standard Newton–Raphson method was not able to minimize F ðpÞ satisfactorily, because
Jt was rectangular, affected by noise and hence ill-conditioned. Thus, Powell’s Dog-Leg
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Figure 6. FE model of the benchmark structure: (a) 3D model; (b) 2D model of the interior frame; (c)
beam-to-column joint model; (d) simplified beam-to-column joint model.
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method, described in Section 3, was used. For this particular case, the initial radius for TR
method was R0 ¼ 1, while e1 ¼ e2 ¼ 10�4 in Equations (2) and (3).

The lack of correlation between the experimental and predicted quantities may result from
modelling simplifications that generate many spurious numerical modes, and modal shifts may
be experienced during iterations. The Modal Assurance Criterion (MAC) [26] was used
systematically as a measure of the modal correlation, and this produces a matrix of inner
products between the mode shape vectors. Only the first five experimental modes listed in
Table II correlated well with the model and were therefore retained for model updating.
Furthermore, only a few modal rotational components of the beams were used, since the lower
modes involve only limited joint rotation and accuracy of measurements was therefore reduced.

4.3. Updating parameters and damage indices

Because of the ill-conditioned nature of Jt in Equation (5), the number of parameters (Np) for
complex members and joints must be limited. Thus, the major issue is how to parameterize the
unknown quantities in a convenient way, taking into account the limited experimental
information and the limited influence of some parameters on the five experimental modes
considered. A preliminary analysis of the FE model shown in Figure 6(a) highlighted that the
model was:

(i) not sensitive to the bending and torsional stiffness of beams and the rotational stiffness
of shear panels;

(ii) sensitive to bending stiffnesses of columns in the longitudinal direction;
(iii) sensitive to the axial stiffness of braces in the transverse direction;
(iv) sensitive to the rotational stiffness of beam-to-column connections and the rotational

stiffness of base joints in the longitudinal direction.

This information was supplemented by analysing the rank or non-zero singular values of the
sensitivity matrix Jt; the number of updating parameters, pt, cannot exceed the rank of Jt.
Primarily, the FE model was updated by using only seven parameters related to the stiffness of
the structural elements given above. Calculating the singular values of the sensitivity matrix in
this case shows that only three singular values are significant. As a result, only the following
three parameters were retained and estimated. Thus, in a general form,

K ¼ pjK0 for j ¼ 1; 2; 3 ð6Þ

where K0 defines the baseline stiffness corresponding to each parameter. The three parameters
correspond to the element groups (ii), (iii) and (iv) listed above. The initial values for each
parameter in Equation (6) for Phase I were available from preliminary beam-to-column and
column base joint cyclic tests [25]. Cyclic test data were also used as initial values for the
identification process in Phase III. Initial values for each parameter group and Phase are listed
in Table III. Updated stiffness values show a general reduction of stiffness from Phase I to
Phase III. As expected, stiffness reductions are more evident for beam-to-column and column
base joints, where energy dissipation was sought by proper seismic design [5,6].

The paired natural frequencies obtained by model updating and the relative errors
with respect to the experimental frequencies are reported in Table IV. Larger errors are
associated with frequencies of Phase II, which did not benefit from additional experimental
information as for the other phases. Relatively large errors in the higher modes were expected,
as these modes are more sensitive to modelling errors. Diagonal MAC indices are also reported
in Table IV and a favourable correlation between updated and experimental mode shapes
is evident.

Local damage indices that define a degradation measure at the structural level were computed
for each phase. The local damage indices are defined as DL ¼ 1� kUpdated=kUndamaged , where
kUndamaged and kUpdated indicate stiffnesses of virgin and damaged states, respectively [33].
Damage values indicating stiffness variations from Phase I to Phase II, i.e. DL;I�II and from
Phase I to Phase III, i.e. DL;I�III, are listed in Table V. DL;I�II values indicate that there is
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practically no damage for columns, minor damage for braces and severe damage for beam-to-
column connections and column base joints. After the PsD test at 1.4 pga (Table I), visual
inspection showed that the braces lost stiffness due to light cracking of concrete at their ends.
Concrete crushing happened in the composite slab close to the beam-to-column joints.
Localized spalling of the grouting mortar from the bottom flange of base joints occurred
because the anchoring rebars yielded [4]. After the final cyclic test (Table I), the structure was
subjected to inter-storey drift ratios of about 4.6% at the second storey. This implied that the

Table III. Initial and updated element stiffnesses in the three test Phases.

Phase I Phase II Phase III

Parameter Element Initial Updated Initial Updated Initial Updated

p1 EILong:; HEB260 (Nm2) 3.81E7 3.80E7 3.81E7 3.76E7 3.81E7 3.68E7
EITrans:; HEB260 (Nm2) 2.11E7 2.10E7 2.11E7 2.04E7 2.11E7 1.92E7
GJt;HEB260 (Nm2) 1.47E7 1.45E7 1.47E7 1.43E7 1.47E7 1.37E7
EILong:; HEB280 (Nm2) 4.99E7 4.98E7 4.99E7 4.93E7 4.99E7 4.81E7
EITrans; HEB280 (Nm2) 2.7E7 2.77E7 2.7E7 2.69E7 2.7E7 2.53E7
GJt;HEB280 (Nm2) 1.97E7 1.95E7 1.97E7 1.91E7 1.97E7 1.84E7

p2 EAbraces (N) 5.24E8 2.78E8 5.24E8 2.48E8 5.24E8 1.93E8

p3 Kf;int:con: (Nm/mrad) 1.0308 1.02E8 4.23E7 4.17E7 1.61E7 3.19E7
Kf;ext:con: (Nm/mrad) 1.08E8 9.71E7 3.83E7 3.30E7 6.24E6 1.24E7
Kf;Long:;b:j: (Nm/mrad) 2.20E8 2.07E8 2.12E7 1.89E7 6.86E6 1.36E7
Kf;Trans:;b:j (Nm/mrad) 1.47E8 1.39E8 1.42E7 1.27E7 4.60E6 9.12E6

EILong is the flexural stiffness in the longitudinal direction; EITrans is the flexural stiffness in the transversal direction; GJt
is the torsional stiffness; EA is the axial stiffness; Kf;int:con: and Kf;ext:con: . are the rotational stiffnesses of beam-to-column
connections of interior and exterior joints, respectively; Kf;Long:b:j: and Kf;Trans:b:j are the rotational stiffnesses of base
joints in the longitudinal and transversal directions, respectively.

Table IV. Identified natural frequencies, percentage errors with respect to the experimental values of
Table II, and the diagonal MAC indices between identified and experimental mode shapes.

Phase I Phase II Phase III

Mode
Frequency

(Hz)
Error
(%) MAC

Frequency
(Hz)

Error
(%) MAC

Frequency
(Hz)

Error
(%) MAC

1 3.36 0.1 1.00 2.33 2.2 0.99 1.96 �0.4 0.95
2 5.04 1.0 1.00 4.63 �4.2 1.00 4.20 �1.1 1.00
3 7.02 �1.5 0.78 6.44 �3.2 0.84 5.80 �1.7 0.81
4 11.51 �5.9 0.96 9.69 �8.2 0.98 8.45 �3.4 0.83
5 15.45 6.3 0.82 12.85 7.9 0.87 11.91 16.0 0.79

Table V. Local damage indices DL of structural members and joints.

Element D;L;I�II D;L;I�III

EILong:; HEB260 (Nm2) 0.011 0.032
EITrans:; HEB260 (Nm2) 0.029 0.086
GJt; HEB260 (Nm2) 0.014 0.055
EILong:; HEB280 (Nm2) 0.010 0.034
EITrans; HEB280 (Nm2) 0.029 0.087
GJt; HEB280 (Nm2) 0.021 0.056
EAbraces (N) 0.110 0.310
Kf;int: con: (Nm/mrad) 0.590 0.690
Kf;ext: con: (Nm/mrad) 0.660 0.870
Kf;Long:; b:j: (Nm/mrad) 0.910 0.930
Kf;Trans:; b:j: (Nm/mrad) 0.910 0.930

FINITE ELEMENT MODEL 159

Copyright r 2009 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2011; 18:149–168

DOI: 10.1002/stc



beam-to-column joints at the bottom storey, see Figures 3(a, c), were also severely damaged
with cracks in the end plates and column flanges. Again, damage values given in Table V
qualitatively mirror these phenomena.

The global damage measure DG of the structure in the phases considered above was
estimated by a method based on the maximum eigenvalue of the flexibility matrix,G, recovered
from the structural eigenfrequencies and mode shapes obtained in Section 2. This method
assures that the degradation process of the structure proceeds until the stiffness matrix becomes
singular at failure, when the lowest eigenvalue of the tangent stiffness matrix approaches zero
while the largest eigenvalue of the flexibility matrix tends to infinity [22]; moreover, it can avoid
the costly procedure of model updating. The flexibility matrix, G, can be computed more
reliably than its inverse, G�1. This is because the lowest frequencies and corresponding mode
shapes, measured from vibration tests, provide the largest contribution to G. Conversely, the
stiffness matrix G�1 is dominated by the highest modes that are rarely available from tests.
Thus, the flexibility matrix is given by

G ¼ jK�1jT ð7Þ

where K is the matrix of experimental eigenvalues and j the matrix of experimental
eigenvectors. The largest eigenvalue of G, c�1max, can be computed by solving the
corresponding eigenvalue problem. Then DG can be defined as:

DG ¼ 1�
c�1max;Undamaged

c�1max;Updated

ð8Þ

The values of DG obtained from G using the first three modes, and also by using six modes in
Table II, are reported in Table VI. The values are almost identical, and hence show the limited
effect of the modal truncation. Since DGX0.4 [33], this implies the structure was severely
damaged after Phase II and III as validated by visual inspection [4]. The updated FE model can
provide a more realistic flexibility matrix than those assembled using experimental data. The
corresponding indices DG are reported in Table VI and reflect a higher level of damage.
Additional details can be found in [34].

4.4. Sensitivity analysis

In this subsection the updating procedure is tested in the presence of noise and a sensitivity
analysis was performed to assess how robust the results are to measurements contaminated
with noise. Standard Monte Carlo simulations were employed to investigate the properties
of the estimation procedure. In order to reduce the number of simulations, the LHS technique
(a stratified sampling technique that can be applied to multiple variable problems [23,35])
was used to generate more uniform samples with equal probability. In order to perform
Monte Carlo-based simulations, random data between 0 and 1 have to be generated.
The desired input variable can then be obtained with an appropriate inverse transformation
of data.

Suppose we wish to select n different values from each of the m variables X1, X2,y,Xm by
means of the LHS technique. The range of each variable is divided into n non-overlapping,
equal probability intervals and one value from each interval is randomly sampled. The n values
thus obtained for X1 are paired in a random manner with the n values of X2 and so on, until an
n�m table is formed. This n�m table is the same as the n�m dimensional input vectors.
However, this kind of ordering variables creates an inevitable correlation between the generated

Table VI. Global damage indices DG of the structure.

Method DG; I�II DG; I�III

Based on three experimental Modes 0.4652 0.6274
Based on six experimental Modes 0.4650 0.6274
Based on the updated flexibility matrix 0.5212 0.6669
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data. In order to impose the desired correlation matrix between m sets of generated variable
data, the restricted pairing algorithm of Iman and Conover [36] was implemented. Thus, a
synthetic data set able to reproduce a given correlation structure of actual data and to preserve
the relevant marginal distribution was generated.

For the sake of simplicity, both the system and measurement noise of the test structure were
directly simulated through variation in modal quantities. The Normal probability distribution
was simulated, with mean values corresponding to experimental measurements and standard
deviations s as follows:

(a) eigenvalues:

sl ¼ 0:0004l ð9Þ

(b) displacement components of eigenvectors:

sfd ;i
¼ 0:04� jjd;maxj þ 0:04� jjd; ij ð10Þ

(c) rotational components of eigenvectors:

sfr;i
¼ 0:075� jjr;maxj þ 0:075� jjr; ij ð11Þ

where l, jd; i, jr; i, jd;max and jr;max are eigenvalues, modal displacements and rotations
and relevant maximum values, respectively.

Because of the unknown correlation of the actual measurements, the analysis was repeated
for two limiting cases by using both perfectly uncorrelated reference data and fully correlated
reference data, respectively; the actual data being within these limits. The correlation matrix for
the generated eigenvalue data in Phase I for fully correlated data is

0:999 0:997 0:998 0:998 0:998

0:997 0:999 0:997 0:997 0:998

0:998 0:997 0:999 0:999 0:998

0:998 0:997 0:999 1:000 0:998

0:998 0:998 0:998 0:998 0:999

2
666666664

3
777777775
; ð12Þ

and for the fully uncorrelated data is

0:999 �0:021 �0:071 0:066 �0:019

�0:021 1:000 0:065 0:069 0:000

�0:071 0:065 1:000 0:030 0:084

0:066 0:069 0:030 0:999 �0:001

�0:019 0:000 0:084 �0:001 0:999

2
666666664

3
777777775
; ð13Þ

thus showing the quality of the generated data. More details can be found in [37]. Table VII shows
the coefficient of variation Cv of each updated parameter pi. The kernel density f̂ ðpÞ plot of the
updated parameters provided by the S-Plus software [38] relevant to braces and connection springs
for each Phase are shown in Figures 7(a, c) for the uncorrelated input case, and in Figures 7(b, d)
for the fully correlated input case, respectively. Results clearly show that the updated brace stiffness
has the smallest variation, compared to stiffnesses of the columns and joints in all damage phases.
This implies that the braces were modelled well, that the MR structure was very sensitive to the
brace stiffness in the transverse direction and, hence, the braces were relatively insensitive to errors.

The behaviour of the structure in the longitudinal direction was mainly controlled by the
column flexural stiffness and by beam-to-column and base joint rotational stiffnesses. The
corresponding parameters appear to be more sensitive to noise and more difficult to identify
with the sensor location highlighted in Figure 3 and the FE model shown in Figure 6, because
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only two modes were significant in this direction. Furthermore, the sensitivity analysis shows
that Phase I was the most sensitive Phase to noise, mainly because the structure was elastic and
undamaged. Conversely, the parameter variations in Phases II and III became smaller for
columns, connections and base joint stiffnesses, for two reasons: the exploitation of reliable
initial stiffnesses that were obtained from model updating for the cyclic loading and the greater
flexibility of the structure owing to the damage caused by severe cyclic loading.

5. IDENTIFICATION AND DAMAGE EVALUATION UNDER CYCLIC LOADING

5.1. 2D FE model of the structure

A 2D FE model of the interior frame with 168 degrees of freedom was employed to update the
structure under cyclic loading. This model was considered appropriate because: (i) the three
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Figure 7. Kernel density f̂ ðpÞ plot [38] for the updated parameters of: (a) braces with uncorrelated input
data: (b) braces with correlated input data; (c) connections and column base joints with uncorrelated input

data; and (d) connections and base joints with correlated input data.

Table VII. Coefficient of variation Cv of updated members and joints.

Cv

Phase Data Columns Braces Connections and base joints

I Uncorrelated 0.386 0.054 0.309
Correlated 0.216 0.018 0.246

II Uncorrelated 0.169 0.022 0.181
Correlated 0.186 0.025 0.191

III Uncorrelated 0.125 0.039 0.057
Correlated 0.184 0.039 0.046
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main MR frames were the same (see Subsection 2.1); (ii) cyclic tests were performed only in one
direction; (iii) the level of the static excitation was very severe; (iv) several sensors were
employed (see Subsection 2.4). Therefore, beams and columns were modelled by means of the
beam element formulation provided by the IDARC 2D software [39]. Figure 6(c) shows how the
beam-to-column joints were modelled and the column base joints were modelled with springs
and rigid links. The model was implemented in Mathematica [29] and the 2D FE model of the
frame with joint numberings is shown in Figure 8.

5.2. Model updating methodology under cyclic loading

Thirty-two measurements were acquired from the instrumentation during the cyclic test in the
form of time series, including rotations of joint components, external forces and storey
displacements. The model updating of the structure under cyclic loading was based on the
minimization of F ðpÞ defined in Equation (1), where DðpÞ contains the residuals of the
experimental and analytical aforementioned quantities. Twenty-five parameters were used to
define the mechanical properties of different elements of the FE model in Equation (6). These
parameters were: (i) three parameters for the rotational stiffness of each base joints; (ii) six
parameters for the rotational stiffness of each shear panel; (iii) eight parameters for the
rotational stiffness of each connection; (iv) four parameters for the flexural rigidity of each
beam, long and short span at the top and bottom storeys; (v) four parameters for the flexural
rigidity of columns, one parameter to the flexural rigidity of both lateral columns and one
parameter to the middle column, at each storey. As a result, DtðpÞ at each iteration t was

DtðpÞ ¼ UXt �UAt ð14Þ

where UXt and UAt are the experimental and analytical vectors, respectively, of rotations and
displacements. The secant stiffness approach was employed to estimate rotations and
displacements. Thus, following [37], Equation (14) can be expressed as

DtðpÞ ¼ UXt � K�1t ðpÞLt ð15Þ

where Kt and Lt are the secant stiffness matrix and the external force vector imposed by the
actuators, respectively. The corresponding Jacobian, Jt, is

JtðpÞ ¼ �
@ðK�1t ðpÞLtÞ

@p
¼ K�1t ðpÞ

@KtðpÞ
@p

K�1t ðpÞLt ð16Þ

Powell’s Dog-Leg optimization method was implemented using an initial radius R0 ¼ 1 and
e1 ¼ e2 ¼ 10�6 in Equations (2) and (3).

In order to bypass numerical instabilities owed to the non-linear behaviour of the structure,
especially when the secant stiffness becomes singular, as shown in Figure 9(a) for a single
parameter, a novel method was conceived. The technique is based on the transformation of
origin coordinates of all time series at each half cycle to their absolute maximum value and
updating the structure half cycle by half cycle, as shown in Figure 9(b) [37]. Thus, after updating
the FE model in the very first half cycle, all of the measured data were transformed to their own
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Figure 8. 2D FE model of the interior frame for model updating under cyclic loading.
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absolute maximum values in all of the other half cycles. Hence, the FE was updated in each
virtual half cycle, and then the identified results were transformed to their original values using
the identified data from the previous half cycle. The implemented technique is fast as there is no
need to implement complex algorithms to detect loading/unloading conditions.

The comparison between identified and experimental force–displacement relationships of the
bottom and top storeys are highlighted in Figures 10(a, b), respectively. A good agreement
between experimental and identified results is evident. As a result, the hysteretic behaviour of
joint components of a statically indeterminate structure can be identified by cyclic model
updating. Some of these relationships are shown in Figure 11, using the numbering of Figure 8.
One can observe that the joint components exhibited a complex seismic performance complying
with the requirements of Eurocode 8 for high ductility class MR frames [2].

5.3. Damage evaluation under cyclic loading

Structural damage of joints can be evaluated by information derived from the updated FE
model. The low-cycle fatigue energy-based model proposed by Chai et al. [24] was employed to
characterize structural damage. This model uses a damage index, Di, based on both
displacement and energy, and given by

Di ¼
Dm

Dum
þ

b�ðEh � EhmÞ
VyDum

ð17Þ

where Dm is the maximum response displacement; Dum is the maximum displacement under a
monotonic loading; Eh is the plastic strain energy dissipated by the components; Ehm is the
plastic strain energy that is dissipated by the components under a monotonic loading. Vy is the
yield strength of the component and b� is a strength deterioration parameter that characterizes
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Figure 9. Model updating procedure under cyclic loading for a single parameter: (a) typical case involving
numerical instabilities and (b) the transformation of origin coordinates in the bypass method.
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the damage contribution owing to cumulative plastic strain energy. Typical damage index values
Di represent:

Dio0:4 : minor damage:

0:4pDio1 : irreparable damage:

DiX1 : component collapse

The parameter b� can be obtained by calibrating the model against experimental data assuming
that Di ¼ 1 corresponds to component collapse. As a result, from Equation (17), one gets:

Eh

VyDum
¼

1

b�
�

1

b�
Dm

Dum
þ

Ehm

VyDum
ð18Þ

This defines a damage limit domain that relates the normalized plastic strain energy capacity
of the component to the maximum [24]. The slope of the line is �1=b�. The plastic strain energy
Eh is estimated using the procedure given by Chai et al. [24]. The lack of sufficient experimental
results on the substructures means that b� cannot be evaluated for each component, and hence

-500

-400

-300

-200

-100

0

100

200

300

400

500

-40

Moment [kNm] Moment [kNm]

Moment [kNm]
Moment [kNm]

Moment [kNm] Moment [kNm]

-300

-200

-100

0

100

200

300

-600

-400

-200

0

200

400

600

-600

-400

-200

0

200

400

600

-600

-400

-200

0

200

400

600

Rotation [mrad] Rotation [mrad]

Rotation [mrad]
Rotation [mrad]

Rotation [mrad] Rotation [mrad]

-600

-400

-200

0

200

400

600

-30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40

-40 -30 -20 -10 0 10 20 30 40-40 -30 -20 -10 0 10 20 30 40

-40 -30 -20 -10 0 10 20 30 40-40 -30 -20 -10 0 10 20 30 40

(a) (b)

(c) (d)

(e) (f)
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monotonic and cyclic simulations of the 2D FE model by means of the IDARC 2D software [39]
were performed. As a result, estimates of Eh=VyDum and Dm=Dum were defined for joint
components with the corresponding best plots for each damage limit domain. The results are
shown in Figure 12, and the highest value of b�is related to the base joints and is b� ¼ 0:21. This
clearly indicates the high capacity of the base joints in absorbing and dissipating cyclic energy
through end plates and anchor yielding. The Di values of joint components whose hysteretic
behaviour is illustrated in Figure 10 are gathered in Table VIII. The values of Di generally
higher than 0.4, mirror both the design objectives and the severity of cyclic loads.
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Figure 12. Damage limit domains and identified b�parameter for joint components: (a) column base joints;
(b) exterior connections; (c) interior connections; (d) exterior panels; and (e) interior panels.

Table VIII. Damage indices Di of joint components using the model after Chai et al. [25].

Spring no. 3 4 6 7 8 15 16 17

Di 0.34 0.90 0.89 0.96 0.78 0.55 0.63 0.48

Component numbers are taken from Figures 8 and 11.
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6. CONCLUSIONS

The results summarized in this paper focused on the identification and damage estimation of a
full-scale three-bay, two-storey steel–concrete composite MR structure with semi-rigid beam-to-
column joints and partially encased composite columns. Forced vibration tests were performed
at three different damage phases to detect the dynamic characteristics of the structure including
stiffness degradation and strength deterioration.

A 3D finite element model of the structure was utilized and updated using the five lowest
natural frequencies and related mode shapes. Beam-to-column joint stiffnesses were identified
by using an innovative beam-to-column joint model able to take into account the deformability
of both beam-to-column connections and web panels. The relevant cost function was minimized
by a robust optimization algorithm, namely the Powell’s Dog-Leg method, in order to update
realistic stiffnesses of braces, columns, beam-to-column and column base joints. Moreover,
experimental eigenvalues and eigenvectors and updated stiffnesses were employed to detect both
the local and global damage of the structure, and these were consistent with the design
objectives and visual inspection of the structure after each damage phase.

In order to assess the robustness of the identified parameters to measurement noise, a sensitivity
analysis was carried out by means of the Latin Hypercube Sampling technique. This analysis
indicated that in all damage phases the smallest coefficient of variation corresponded to the brace
stiffnesses proving that braces were not so sensitive to input errors. Moreover, Phase III represented
the least sensitive phase to measurement errors, because of the reliable initial parameters obtained
from the cyclic model updating, and the flexibility of the structure owing to significant damage.

Only a small number of rotational components were retained during the modal updating
exercise, because joint rotations were small in the lowest modes. This emphasizes the importance
of the proper choice of location for accelerometers on members and joints of semi-rigid structures.
In addition, a more sophisticated 3D FE model able to model floor flexibilities is required.

With regard to the final cyclic test, the acquisition of rotations, displacements and forces was
exploited to update a 2D FEmodel of the structure by means of the Powell’s Dog Leg optimization
technique. A novel method based on the transformation of origin coordinates was implemented, in
order to capture the hysteretic behaviour of joints. As a result, the internal actions of the structure
were identified through updated parameters. Low-cycle fatigue joint damage was evaluated by
means of an energy-based damage index and all estimates indicated irreparable damage. It was
compatible both with the design objectives and with the severity of cyclic loadings.
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