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Summary

The dynamic performance of base‐isolated buildings can be improved by intro-

ducing a tuned mass damper (TMD) at basement, below the isolation floor

where most of the earthquake‐induced displacement demand is concentrated.

In order to enhance the effectiveness of the TMD without simultaneously

amplifying the relevant mass ratio, the use of supplemental inertial mass

dampers has been envisaged by the authors and other authors in earlier stud-

ies. These schemes exploit the mass‐amplification effect of the inerter, a two‐

terminal device whose generated force is ideally proportional to the relative

acceleration between its terminals. In this paper, we present a review along

with a systematic comparative study of six different strategies proposed in the

literature, each one featuring a specific combination of mass‐spring‐dashpot

elements arranged in series or in parallel with an inerter for the displacement

mitigation of base‐isolated structures. Frequency‐response functions of each

model are derived in closed form. Optimal design is based on a common strat-

egy, considering a white‐noise random process as seismic input, by minimiza-

tion of the displacement variance but with an eye also for the superstructure

acceleration (associated with forces arising in the superstructure) and for the

TMD stroke. Then, the seismic performance of the six systems is assessed con-

sidering an ensemble of 52 natural earthquake ground motions, by comparing

several response indicators including TMD stroke, deformation of the base‐

isolation floor, superstructure acceleration, interstory drifts, base shear, and

reactions associated with spring, oil damper, and inertial damper supporting

the TMD, which are significant for outlining preliminary economic assessments.

KEYWORDS

base isolation, earthquake protection, hybrid structural control, inerter, optimal design, tuned mass

damper
1 | INTRODUCTION

Seismic base isolation has proven to be an effective earthquake protection strategy for building structures.1,2 However,
there has been a growing interest towards so‐called hybrid control strategies combining the conventional base‐isolation
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http://orcid.org/0000-0003-1279-9529
mailto:dario.dedomenico@unime.it
https://doi.org/10.1002/stc.2234
https://doi.org/10.1002/stc.2234
http://wileyonlinelibrary.com/journal/stc
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstc.2234&domain=pdf&date_stamp=2018-07-13


2 of 24 DE DOMENICO AND RICCIARDI
system (BIS) with other active or passive control systems. Indeed, a few shortcomings may be encountered by the BIS
alone, mainly the large displacements concentrated at the isolation floor (which may induce risk of pounding3) and the
vulnerability to long‐period ground motions.4-6

To overcome these drawbacks, some hybrid control strategies have been proposed in the literature. One of the most
popular solutions combines the BIS with a tuned mass damper (TMD) that is attached immediately above or below the
isolation floor.7-10 Based on a similar concept, the effect of a tuned liquid column damper installed at the base of a base‐
isolated structures was also studied recently.11,12 It is well known that the effectiveness of TMD‐like systems is related to
the mass employed: For instance, in Casciati and Giuliano,13 a poor seismic performance of multiple TMDs with small
mass ratios was reported with regard to seismic excitation. Although this strategy is effective for wind engineering, see,
for example, Casciati and Giuliano13 and Bortoluzzi et al,14 the convenience of the TMD in seismic engineering is still
controversial.15

In order to improve the performance of the TMD, which is related to the TMD mass employed, more recently, the
TMD has been studied in conjunction with the inerter,16 also termed inertial mass damper,17 gyro‐mass damper,18 or sim-
ply mass damper19 in the literature. The inerter resisting force is ideally proportional to the relative acceleration of its two
terminals: It acts as an additional, apparent mass for the system it is connected to. By exploiting the concept of rotational
inertia20-22 and the resulting mass‐amplification effect of the inerter, lower mass and more effective alternatives to the tra-
ditional TMD arise, that is, the tuned mass damper inerter (TMDI)23-25 and the tuned inerter damper (TID)26-29: In the
former, the device inertance substitutes the mass of the TMD partly; in the latter, it plays the role of the TMD mass
entirely. The TMDI is a more robust and effective system than the TMD, as the mass amplification effect of the inerter
reduces the performance sensitivity to the tuning frequency and to the earthquake frequency content.24 This attractive
feature mitigates some of the well‐known shortcomings of the TMD for earthquake engineering applications.

The aim of this paper is to present a review and to make a comparison of different hybrid control strategies in this
field. Considering the previous remarks and the advantageous properties of the inerter in TMD systems, it seems inter-
esting to overview the hybrid control strategies proposed in the literature so far, in order to assess, within a unified com-
parative study, the different seismic performance and behavior of alternative dynamic layouts. Indeed, different
arrangements of TMD and inerter in conjunction with the BIS give rise to a totally different dynamic behavior. For
example, if the inerter is placed in between the TMD and the BIS, it mainly reduces the TMD stroke, whereas if it is
connected in between the TMD mass and the ground, it controls the excessive displacement demand of the isolators.
Therefore, in order to complete some previous research work,30,31 we here expand the investigation of TMD‐like systems
with and without inerter in conjunction with BISs by comprising six alternative structural control layouts having differ-
ent characteristics.32-34 As a first novel contribution of this paper, closed‐form expressions for the frequency‐response
functions of each model are derived. Some of the analyzed models were proposed in the literature, but no indications
on the optimal tuning were given. As a second novel contribution of this paper, we provide guidelines and design graphs
for the selection of the optimal design parameters of each model based on a common, unified strategy. More specifically,
the tuning procedure is carried out for all the six models considering a stationary white‐noise random process as seismic
input, by minimization of the displacement variance but with an eye also for the acceleration variance (associated with
forces arising in the superstructure) and for the TMD stroke variance, in order to achieve an overall and effective struc-
tural control. The validity of the proposed optimal design strategy is then assessed in the time domain, by considering a
wide variety of characteristics of the seismic signal (frequency content, duration, nonstationary nature, etc.), in line with
the indications in Giuliano.15 To this aim, response‐history analyses of a base‐isolated multistory building are performed
under 52 real accelerograms with different spectral characteristics. The performance of the six models is analyzed in
terms of a broad group of response indicators, including TMD stroke, deformation of the base‐isolation floor, super-
structure acceleration, interstory drifts, base shear, and reactions associated with the spring, oil damper, and inertial
damper supporting the TMD, which are significant for drawing preliminary assessments in terms of costs and effective-
ness of each structural control strategy in a comparative manner.
2 | BASE ISOLATION WITH TMD AND INERTER

Reference is made to the simple sketch shown in Figure 1. The combined system is subject to the horizontal ground
acceleration €ug tð Þ. A single‐degree‐of‐freedom (SDOF) system is considered for the superstructure (mass ms, damping
cs, stiffness ks, and displacement, relative to the ground, us)—this SDOF may be representative of the fundamental mode
of vibration of a multi–degree‐of‐freedom (MDOF) structural system, which is usually referred to for a preliminary



FIGURE 1 Base‐isolated single‐degree‐of‐freedom (SDOF) system with attached tuned mass damper (TMD) and inertial damper:

Conventions for displacements and schematic models for isolators and inerter. BIS: base‐isolation system
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design of the TMD parameters in MDOF systems. The BIS is idealized as another SDOF (displacement ub relative to the
ground) interconnected to the structural SDOF and featured by parameters mb, cb, kb.

35 The third DOF, identified by a
displacement ut relative to the ground, pertains to the TMD that is represented by a secondary mass mt located at base-
ment and attached to the isolation floor via spring kt and damper ct. According to the notation adopted in De Domenico
and Ricciardi,30 the spring and damper properties kt, ct associated with the TMD can bemeant as the effective stiffness and
equivalent viscous damping of an auxiliary set of isolators in addition to the conventional isolators (featured by kb, cb) as
sketched in Figure 1. Finally, the inertial damper is represented by a hatched box, whose resisting force is proportional to
the relative acceleration between its two terminals

F inerter ¼ bt €u1−€u2Þ;ð (1)

where the constant bt, having dimension of a mass, is called inertance. This device idealization can be practically realized
in several ways, for instance, via a combined arrangement of rack, pinions, gears, and flywheel as shown in Figure 1. In
this case, the inertance of the system is expressed as

bt ¼ mf
r2f
r2pf

∏
n

i¼1

r2i
r2pi

 !
; (2)

where n is the number of gears,mf is the flywheel mass, and ri, rpi, rf, and rpf denote the radius of gears, pinions, flywheel,
and flywheel pinion, respectively. Linear movement of the rack generates rotational movement in gears and flywheel, and
the rotational inertia can be amplified by adjusting the gearing ratios in Eq. (2), or simply introducing additional gears to
attain very high values of the inertance bt. Such mass amplification effect is the key feature of this system and makes it
appealing for vibration control purposes.
3 | REVIEW OF BASE ‐ISOLATED STRUCTURAL CONTROL SYSTEMS WITH
TMD AND INERTER

In Figure 2, six different models of base‐isolated SDOFs with different arrangements of TMD and inertial dampers are
depicted. In an attempt to describe these models in a unified manner for the present comparative study, the equations of
motion are all expressed as

M €u tð Þ þ C _u tð Þ þKu tð Þ ¼ −τ €ug tð Þ; (3)

with M, C, K being the mass, damping, and stiffness matrix, respectively; u(t)T = [usr,ub,ut] the vector collecting the
three DOFs of the systems; and τT = [ms, ms + mb, mt] the influence vector. Expressing the equations of motion in
terms of the relative displacement of the ms mass with respect to the BIS usr = us − ub, rather than to the displacement



FIGURE 2 Six different structural control strategies for base‐isolated structures combining tuned mass damper (TMD) and inertial

dampers. BIS: base‐isolation system
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us relative to the ground, facilitates the extension to MDOF systems, as described in De Domenico and Ricciardi.30

Although the same matrix–vector equation (3) is used for the six models, different definitions of the mass, damping,
and stiffness matrices for each model are specified below.

The M, C, K matrices for the BIS + TMDI by De Domenico and Ricciardi30 read

M ¼
ms ms 0

ms ms þmb 0

0 0 met

2
64

3
75; C ¼

cs 0 0

0 cb þ ct −ct

0 −ct ct

2
64

3
75; K ¼

ks 0 0

0 kb þ kt −kt

0 −kt kt

2
64

3
75; (4)

where met = mt + bt is the effective mass of the TMDI that incorporates both the physical mass mt (of the TMD) and the
apparent mass bt (induced by the rotational inertia of the inerter). This model consists of a BIS with a TMDI attached at
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the basement. The inertance bt multiplies the relative acceleration between the TMD and the ground, that is, €ut. The
case of BIS + TMD (without inerter) at the basement is retrieved from the previous matrices (4) for a zero value of
bt. The TMDI performance can therefore be improved by either increasing the TMD mass mt or adjusting the gearing
ratios of the inerter to attain higher inertance values bt. However, the role of mt and bt is slightly different, as already
noted in De Domenico and Ricciardi.30

A similar model was presented by Hashimoto et al34 and named “Proposed‐2 model” by the authors. This model is
here labelled as model 2.H (H standing for the first author of the quoted paper), compare Figure 2. Unlike the previous
system, in this model the inertial damper is not placed in between the TMD and the ground but is detached from the
ground so as to reduce the corresponding reaction. The inerter was instead located in between the TMD and the isola-
tion floor in order to reduce the TMD stroke. The relevant M, C, K matrices read

M ¼
ms ms 0

ms ms þmb þ bt −bt

0 −bt met

2
64

3
75; C ¼

cs 0 0

0 cb þ ct −ct

0 −ct ct

2
64

3
75; K ¼

ks 0 0

0 kb þ kt −kt

0 −kt kt

2
64

3
75 (5)

and differ from the ones in (4) only for the mass matrix, due to a different location of the inerter device that controls
the relative displacements between TMD and BIS. The “Proposed‐1 model” by Hashimoto et al34 (here labelled
model 1.H) is nothing but the above BIS with TMD at the basement and can be retrieved by Equation (5) for a zero
value of bt.

Xiang and Nishitani10 studied a more effective TMD system for application to base‐isolated structures. In an attempt
to reduce the large TMD stroke, the dashpot associated with the TMD is not placed in parallel with the spring but is
directly connected to the ground to mitigate the resonant behavior of the BIS. The resulting system was called “nontra-
ditional TMD.” The M, C, K matrices of the BIS + nontraditional TMD system are expressed as

M ¼
ms ms 0

ms ms þmb 0

0 0 mt

2
64

3
75; C ¼

cs 0 0

0 cb 0

0 0 ct

2
64

3
75; K ¼

ks 0 0

0 kb þ kt −kt

0 −kt kt

2
64

3
75; (6)

wherein the damping matrix is diagonal due to the particular location of the dashpot ct.
Finally, for the displacement mitigation of base‐isolated structures, Saitoh33 elaborated various combined spring‐

damper‐inerter configurations. In particular, the most complete and effective model was there called “model II,” and
here labelled model II. S, S standing for the initial of the author. It is formed by two units arranged in series: One unit
is made of an inerter bt and a dashpot cp in parallel, which are directly connected to the BIS, whereas the other unit
consists of a spring kt and a damper ct in parallel, which are here represented by an auxiliary set of isolators in line with
the remainder of the paper, compare Figure 2. The mass mt was not considered in the original model by Saitoh.33

However, for consistency with all the other models, we here insert a TMD mass at the basement mt similarly to all
the other analyzed configurations. The M, C, K matrices for model II.S are

M ¼
ms ms 0

ms ms þmb þ bt −bt

0 −bt met

2
64

3
75; C ¼

cs 0 0

0 cb þ cp −cp

0 −cp cp þ ct

2
64

3
75; K ¼

ks 0 0

0 kb 0

0 0 kt

2
64

3
75: (7)

It was found that the presence of the damper cp in parallel with the inerter is effective to reduce the displacements
induced by earthquake ground motions containing long‐period components.33 A simpler model, called model I.S, was
also proposed without such damper cp, compare Figure 2, and is basically retrieved from the former model II.S by set-
ting cp = 0 in (7).

Frequency, damping, and mass ratios of all the models presented above are expressed by exploiting the following
positions:
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ωs ¼
ffiffiffiffiffiffi
ks
ms

s
; ωb ¼

ffiffiffiffiffiffi
kb
mb

s
; ωt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt

mt þ bt

s
; ζ s ¼

cs
2
ffiffiffiffiffiffiffiffiffiffi
msks

p ; ζ b ¼
cb

2
ffiffiffiffiffiffiffiffiffiffiffi
mbkb

p ; ζ t ¼
ct

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mt þ btð Þkt

p ;

ζ p ¼
cp

2
ffiffiffiffiffiffiffiffiffiffiffi
mbkb

p ; μb ¼
mb

ms
; μt ¼

mt

ms
; βt ¼

bt
ms

; μet ¼
mt þ bt
ms

¼ met

ms
:

(8)

The behavior of the six different models presented above is analyzed by examination of the frequency response func-
tions (FRFs). From the above mass, damping, and stiffness matrices, and by assuming the ground acceleration as har-

monic excitation €ug tð Þ ¼ eiωt, the response amplitude expressions for each structural control system are derived in
closed form.

For the BIS + TMDI system by De Domenico and Ricciardi,30 the FRFs are

UDR
usr ωð Þ ¼ a1 þ ω4μetμt þ a2μet a3 þ ω2 1þ μb þ μtð Þð Þ

a4 a1 þ μeta2 −ω4 þ a4a3ð Þ ;

UDR
ub ωð Þ ¼ μeta2 a4 1þ μbð Þ þ ω2ð Þ−μetμta4 a2 þ ω2ð Þ

a4 a1 þ μeta2 −ω4 þ a4a3ð Þ ;

UDR
ut ωð Þ ¼ μet a2 þ ω2ð Þ a4 1þ μbð Þ−ω2ð Þ þ μt a4a3−ω

4ð Þ
a4 a1 þ μeta2 −ω4 þ a4a3ð Þ :

(9)

For model II.H by Hashimoto et al,34 the FRFs are

UH
usr ωð Þ ¼ −a25 þ ω4μ2t þ a2μet a3 þ ω2 1þ μb þ μt−βtð Þð Þ

−a4 a25 þ μeta2 −ω4 þ a4 a3−ω2βtð Þð Þ ;

UH
ub ωð Þ ¼ μeta2 a4 1þ μbð Þ þ ω2ð Þ þ μta4a5

−a4 a25 þ μeta2 −ω4 þ a4 a3−ω2βtð Þð Þ;

UH
ut ωð Þ ¼ a5 a4 1þ μbð Þ þ ω2ð Þ−μt ω4 þ a4ω2βt−a3a4ð Þ

−a4 a25 þ μeta2 −ω4 þ a4 a3−ω2βtð Þð Þ :

(10)

For the BIS + nontraditional TMD system by Xiang and Nishitani,10 the FRFs are

UXN
usr ωð Þ ¼ −μetω

4
t þ μtω

2ω2
t þ a2 a3 þ ω2 1þ μbð Þ−2iωζ tωtμetð Þ

−μetω4
t a4 þ a2 −ω4 þ a4 a3−2iωζtωtμetð Þð Þ ;

UXN
ub ωð Þ ¼ a2 a4 1þ μbð Þ þ ω2ð Þ þ μta4ω

2
t

−μetω4
t a4 þ a2 −ω4 þ a4 a3−2iωζtωtμetð Þð Þ;

UXN
ut ωð Þ ¼ a3a4−ω4−2iωζ tωtμeta4 þ a4 1þ μbð Þ þ ω2ð Þω2

t

−μetω4
t a4 þ a2 −ω4 þ a4 a3−2iωζtωtμetð Þð Þ :

(11)

Finally, for model II.S by Saitoh,33 the FRFs are

US
usr ωð Þ ¼

a6a7 þ ω2 a7 1þ μbð Þ− ωβt−2iζ pωbμb
� �

μetω−2iζ pωbμb
� �� �

−ω2 ωβt−2iζpωbμb
� �2

a4 þ −ω4 þ a6a4ð Þa7
;

US
ub ωð Þ ¼

a7ω2 þ a4ða7 1þ μbð Þ−ωμt ωβt−2iζ pωbμb
� �

−ω2 ωβt−2iζpωbμb
� �2

a4 þ −ω4 þ a6a4ð Þa7
;

US
ut ωð Þ ¼

−ω4μet þ 2iω3ζ pωbμb þ a4 a6μt−ω 1þ μbð Þ ωβt−2iζ pωbμb
� �� �

−ω2 ωβt−2iζ pωbμb
� �2

a4 þ −ω4 þ a6a4ð Þa7
:

(12)
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In Equations (9)–(12), the following positions have been made to compact the notation:

a1 ¼ 2ζ tωtμetω−iμetω
2
t

� �2
; a2 ¼ −ω2 þ 2iωζ tωt þ ω2

t ;

a3 ¼ −ω2 1þ μbð Þ þ μbω
2
b þ μetω

2
t þ 2iω ζ bωbμb þ ζ tωtμetð Þ;

a4 ¼ −ω2 þ 2iωζ sωs þ ω2
s ; a5 ¼ −ω2βt þ 2iωζ tωtμet þ μetω

2
t

� �
;

a6 ¼ −ω2 1þ μb þ βtð Þ þ μbω
2
b þ 2iω ζ b þ ζ p

� �
ωbμb;

a7 ¼ μet ω2
t−ω

2
� �þ 2iω ζpωbμb þ ζ tωtμet

� �
:

(13)

Finally, the FRFs for the 2DOF uncontrolled BIS system (conventional BIS without any additional TMD or inertial
damper) are

UU
usr ωð Þ ¼ μbωb 2iωζ b þ ωbð Þ

−ω4 þ −ω2 1þ μbð Þ þ 2iωζ bωbμb þ μbω2
b

� �
−ω2 þ 2iωζ sωs þ ω2

s

� �;
UU

ub ωð Þ ¼ −ω2μb þ 2iωζ sωs þ ω2
s

� �
1þ μbð Þ

−ω4 þ −ω2 1þ μbð Þ þ 2iωζ bωbμb þ μbω2
b

� �
−ω2 þ 2iωζ sωs þ ω2

s

� �; (14)

the superscript U denoting the “uncontrolled” case. Note that the transfer functions of model I.H and of model I.S are
special cases of those of models II.H and II.S, respectively, and can be retrieved from Equations (10) and (12) by setting
βt = 0 and ζp = 0, respectively. Moreover, in the Xiang and Nishitani model described by Equation (11) (BIS + nontradi-
tional TMD), μet ≡ μt because no inerter is actually present.

In Figures 3 and 4, we have reported the amplitudes of the FRFs computed through Equations (9)–(14) for the six
models and for the uncontrolled BIS. The following (arbitrary) parameters have been selected for the plots: ζs = 0.02,
Ts = 0.5 s, μb = 0.2, ζb = 0.1, Tb, eff = 2 s, ζt = 0.2, Tt = 3 s (i.e., the auxiliary isolators are assumed to be slightly more
FIGURE 3 Amplitude of frequency

response functions of displacements usr
(top) and ub (bottom) for Tt = 3 s,

μt = 0.05, and βt = 0.2. BIS: base‐isolation

system



FIGURE 4 Amplitude of frequency

response function of displacement ut for

Tt = 3 s, μt = 0.05, and βt = 0.2
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flexible than the conventional isolators), μt = 0.05, βt = 0.2, and ζp = 0.2, where Ts = 2π/ωs, Tb;eff ¼ Tb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ−1b

p
with

Tb = 2π/ωb and Tt = 2π/ωt (note that the frequency ratio ωt/ωb ≈ 0.27 for the selected parameters). For the selected
parameters, the BIS + TMDI model by De Domenico and Ricciardi is the most effective structural control system for
reducing both the displacement response amplitudes Uusr ωð Þj j and Uub ωð Þj j in comparison with the uncontrolled BIS.
The two models by Saitoh reduce the displacement response amplitude Uub ωð Þj j quite well and are also effective with
regard to the TMD displacement, namely, the amplitude Uut ωð Þj j, compare Figure 4. The poor performance of the model
by Xiang and Nishitani is strictly related to the chosen value of Tt and μt as will be clarified below. Finally, the two
models by Hashimoto et al are not correctly tuned for reducing the displacement response amplitudes for this specific
set of parameters. Note that model 2.H leads to a lower response amplitude Uut ωð Þj j than model 1.H due to the presence
of the inerter βt placed in between the TMD and the BIS. The effect of βt can also be examined by comparing the
BIS + TMDI model with model 1.H, which is basically the same model without inerter between the TMD and the
ground, compare the sketches in Figure 2.

The discussed behaviors are highly dependent on the chosen dynamic parameters. The comparison between the six
models should be made with reference to optimal TMD parameters that may be different from the ones adopted in the
previous graphs. As an example, in Figure 5, we report the amplitudes of the FRFs of usr and ub in the case of Tt = 2 s
(auxiliary isolators as flexible as the conventional isolators), μt = 0.1, and βt = 0.05, whereas the other parameters are
kept the same as above. In this case, the frequency ratio ωt/ωb ≈ 0.40. It is seen that the variation of the mass and
inertance ratios yields a different behavior of the systems: The BIS + TMDI still remains the most effective system
for reducing the amplitude Uusr ωð Þj j (although models II.S and 1.H attain a comparable performance). However, as com-
pared to the previous set of parameters, there is a considerable improvement of the two models by Hashimoto et al and
of the model by Xiang and Nishitani with regard to the ub reduction. This means that the optimal frequency ratio for
these models is closer to ωt/ωb ≈ 0.40 than to ωt/ωb ≈ 0.27. The different combination of μt and βt also results in a dif-
ferent behavior in terms of Uut ωð Þj j amplitude. From Figure 6, it seems that the two models by Saitoh perform consid-
erably better the other ones; it will be demonstrated below via time‐history analyses that model II.S is the best one with
regard to TMD‐related response. Moreover, both models by Hashimoto et al and the model by De Domenico and
Ricciardi amplify the Uut ωð Þj j amplitude as compared to the previous case. Indeed, these models need higher inertance
ratios βt than 0.05 to reduce the displacement ut and the resulting TMDI stroke, as will be clarified in the optimal design
graphs presented in the next section.

A preliminary tuning procedure for selecting the most appropriate frequency ratio ωt can be obtained by examining
the natural frequencies of the undamped system (without damping). The first two natural frequencies ω1, ω2 are related
to the dynamic properties of the BIS and the TMD, whereas ω3 is related to the superstructure (because ωs ≫ ωb). In
Figure 7, such first two frequencies, normalized by ωbu (i.e., the natural frequency related to the BIS in the uncontrolled
system), are plotted against the frequency ratio νt = ωt/ωb for the two sets of mass and inertance ratios chosen above.
There exists a particular value of the frequency ratio νt (near 0.4) for which the first two undamped frequencies ω1

and ω2 are close to each other. If the TMD is selected according to this νt ratio, the BIS and the TMD are tuned opti-
mally. As we will see below, this particular frequency ratio is close to the optimal tuning of the TMD to reduce the dis-
placement response of the base‐isolated structure.



FIGURE 6 Amplitude of frequency

response function of displacement ut for

Tt = 2 s, μt = 0.1, and βt = 0.05

FIGURE 5 Amplitude of frequency

response functions of displacement usr
(top) and ub (bottom) for Tt = 2 s, μt = 0.1,

and βt = 0.05. BIS: base‐isolation system
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4 | OPTIMAL DESIGN AND TUNING PROCEDURE

From the previous comparison of the FRFs, it has been highlighted that the six models lead to completely different
dynamic performances for the same set of input parameters. Indeed, although the mass, damping, and frequency ratios
are the same, the different arrangement of mass‐spring‐dashpot‐inerter elements leads to a dynamic behavior that varies
from model to model. Therefore, a consistent comparison of the six models should be made provided the optimal
parameters of each model are preliminarily identified. These optimal parameters are expected to be different from



FIGURE 7 First two undamped natural frequencies of the assembled systems for ωb/ωs = 0.2 and μb = 0.2: (a) μt = 0.05 and βt = 0.2; (b)

μt = 0.1 and βt = 0.05. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter
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model to model and depends on the placement of the aforementioned elements within the structure. This section aims
to provide guidelines on the selection of the optimal design parameters of each model based on a common, unified strat-
egy. In line with other studies in the literature, some parameters are the free design variables sought in the optimization
problem, while other parameters are supposed known. We assume that the base‐isolated structure is characterized by
the following (benchmark) parameters: ζs = 0.02, Ts = 0.5 s, μb = 0.2, ζb = 0.1, and Tb,eff = 2 s. The choice of a low
damping ratio for the BIS, implying the use of elastomeric isolators, is motivated by earlier studies regarding the perfor-
mance of the BIS + TMDI system.30 The TMD/TMDI subsystem is characterized by five parameters in the most general
case, collected in the vector xparam = {ωt, ζt,μt, βt, ζp}. Among these five parameters, the design process aims to find the
optimal set of design parameters xd (e.g., the optimal couple xd = {νt, ζt}, with νt = ωt/ωb), associated with a chosen set of
free parameters (e.g., xfree = {μt,βt, ζp}). The goal is to find the best set of xd that minimizes a performance index, that is,
a representative measure of the system response. In mathematical terms, a nonlinear constrained single‐objective mul-
tivariable optimization problem is addressed in the form

min
xd

f xdð Þ such that xd;lb≤xd≤xd;ub; (15)

where f (xd) is the chosen objective function (OF) to minimize and xd,lb and xd,ub are the lower bound and upper bound
vectors of the design variables, respectively.

Owing to the stochastic nature of earthquake ground motion,36 the base acceleration €ug tð Þ is assumed as a Gaussian
zero‐mean white‐noise stationary random process for a simplified optimization procedure.30 Transient nonstationary
phenomena, which may cause degradation of performance of the inerter,37 are neglected here. Typical input–output
relationships in the frequency domain are employed to determine the covariance matrix of the system response
Σuu = E[uuT], with E[⋅] denoting the expectation operator, that is,

Σuu ¼
σ2usr σusrub σusrut
σusrub σ2ub σubut
σusrut σubut σ2ut

2
64

3
75 (16)

that contains the variances of the three displacements along the main diagonal, and the cross‐covariances of the dis-
placement response in the off‐diagonal terms.

The optimization problem (15) is handled via a numerical search algorithm, through the built‐in MATLAB fmincon
function, as described in De Domenico and Ricciardi.30 The optimum design variables xd are found by minimization of
the variance of the displacement us = usr + ub, that is, the OF is

OF ¼ σ2us ¼ E u2s
� � ¼ σ2usr þ σ2ub þ 2σusrub : (17)

In addition to the variance of the displacement us, in the sequel also the variance of the total acceleration
€us;tot ¼ €usr þ €ub þ €ug is computed. It is worth noting that the latter response indicator is related to the forces arising
in the superstructure.30 Therefore, minimizing the total acceleration is also related to minimizing the interstory dis-
placement relative to the BIS, which is associated with the stress in the superstructure and is a relevant quantity of inter-
est to assess the performance of a structural control system. Additionally, also the variance of the TMD stroke
utb = ut − ub is computed in order to assess the effectiveness with regard to the structural system as a whole. Indeed,
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large values of σ2utb mean that a large space in the building should be devoted to the secondary mass to accommodate the
TMD displacements. This response indicator is often the governing quantity for the applicability of the TMD strategy, as
confirmed by previous studies in the field of TMD tuning.38

A wide family of design graphs are presented in this section for the optimal design of the six structural control sys-
tems. The following normalized response indicators are introduced:

f 1 ¼
σ2us
σ2us0

normalized displacement variance

f 2 ¼
σ2€us;tot

σ2€us0;tot

normalized total acceleration variance

f 3 ¼
σ2utb
σ2ub0

normalized TMDI stroke variance;

(18)

wherein the adjective “normalized” means that the quantities are divided by the same measure calculated in the uncon-
trolled BIS (without any additional TMD‐based system). An effective structural control strategy should lead to response
ratios f 1, f 2, f 3 lower than the unity.

In Figure 8, the design graphs that are relevant to the BIS + TMDI are illustrated. Different curves are shown, each
one related to a fixed effective mass ratio μet as a combination of μt and βt, where βt is reported in the horizontal axis,
whereas six values of the μt ratio are investigated, corresponding to six different curves. The case μt = 0 is representative
of the TID, while the traditional TMD (without inerter) is retrieved at the intersection with the vertical axis, that is, for
βt = 0. It is seen that the performance is improved by increasing either βt or, similarly, μt. Displacement and acceleration
reductions corresponding to f 1 ≈ 0.4 and f 2 ≈ 0.4 (associated with reductions of the order of 60%) can be attained by the
TID (μt = 0) with an inertance ratio βt ≈ 0.1. Nevertheless, in order to reduce the TMDI stroke as compared to the
uncontrolled BIS, higher values than βt = 0.2 are necessary, as shown in Figure 8c)—a thicker solid horizontal line
has been drawn to distinguish between amplification and reduction. Lower inertance values results in a considerable
amplification of the TMDI stroke. For the limit case of the TMD (βt = 0), mass ratios that are higher than μt = 0.5 would
be necessary to prevent stroke amplification. This confirms the more beneficial effect induced by the inertance over the
mass, especially in terms of control of the TMD displacement, which is in line with Pietrosanti et al.24 The optimal TMD
frequency parameter νt monotonically decreases by increasing μt and βt, whereas an opposite trend is observed for the
damping parameter ζt that increases with increasing μt and βt.

In Figure 9, the design graphs for models 2.H and 1.H (the latter retrieved for the limit case βt = 0) are presented. It
is verified that model 1.H coincides with the above BIS + TMDI model with a value βt = 0; indeed, the two models
FIGURE 8 Optimal design and performance evaluation of base‐isolation system + tuned mass damper inerter system



FIGURE 9 Optimal design and performance evaluation of models 1.H and 2.H
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provides the same optimal parameters at the intersection with the vertical axis. Increasing the TMD mass μt monoton-
ically reduces both the displacement and acceleration response ratios f 1, f 2. Instead, the role of the inertance βt is dif-
ferent from that of the BIS + TMDI system discussed above: increasing βt leads to higher values of f 1, f 2. On the other
hand, increasing βt yields a reduction of the normalized TMDI stroke variance, compare Figure 9c). Without inerter
(βt = 0), even for extremely large mass ratios μt = 0.5, the TMDI stroke amplification cannot be prevented. This is con-
sistent with the dynamic layout of model 2.H, in which the inerter is not directly attached to the ground (like in the
BIS + TMDI model) but is placed in between the TMD and the BIS, thus controlling the TMDI stroke utb = ut − ub.
A reasonable, though expensive, choice could be the couple (μt, βt) = (0.4, 0.4) that guarantees f 1, f 2, f 3 ratios lower
than the unity. Moreover, the optimal TMD parameters νt, ζt follow a similar trend to that of the BIS + TMDI model
with regard to the mass ratio μt, but an opposite trend with regard to the inertance ratio βt, due to the different place-
ment of the inerter.

In the BIS + nontraditional TMD, whose relevant design graphs are depicted in Figure 10, the optimal frequency
ratio νt for fixed damping and mass ratios ζt, μt, respectively, is identified. Six different ζt ratios are explored and a family
FIGURE 10 Optimal design and performance evaluation of base‐isolation system + nontraditional tuned mass damper system
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of mass ratios ranging from 0 to 0.6. The performance in terms of f 1, f 2 is improved with increasing mass ratios μt only
for damping ratios ζt > ζb, whereas the f 1, f 2 curves for ζt < ζb exhibit a concave profile with an optimum mass ratio
near μt = 0.05 for the selected parameters. Effective reduction of the normalized TMDI stroke can be accomplished only
for ζt > ζb, in a range of mass ratios that increases with increasing ζt. The optimal TMD frequency parameter νt moder-
ately decreases with increasing μt and increases with increasing ζt.

Finally, the design graphs for models I.S and II.S are plotted in Figures 11 and 12, respectively. In particular, for
model I.S, the optimal inertance ratio βt is identified for a given TMD frequency ratio νt = 0.4, for six different damping
ratios ζt and for a family of mass ratios μt ranging from 0 to 0.6. Saitoh33 did not consider the TMD mass (μt = 0) in his
original model, and this configuration can be retrieved at the intersection with the vertical axis. High optimal inertance
ratios are found, of the order βt = 0.5 − 1.0 (Saitoh33 considered a value βt = 1.0). Although reductions of displacements
and accelerations are guaranteed throughout the range of investigated parameters ( f 1, f 2 ratios <1), normalized TMDI
stroke reductions can be obtained either with ζt > 1.5ζb or with a combination of ζt < 1.5ζb with large mass ratios μt. For
model II.S, the optimal damping parameter ζp is identified for a given TMD frequency ratio νt = 0.5 and damping ratio
ζt = ζb, see Figure 12. In this case, effective reductions of all the three response indicators can be achieved with βt > 0.1.
The optimal ζp increases with increasing βt and also with increasing μt.

All the above graphs are developed for SDOF primary structures. Strictly speaking, accurate tuning procedures of TMD
for MDOF systems should include the effects of more than only one mode of vibration, see for example, Krenk and
Høgsberg.39 An effective tuning procedure of TMD accounting for different modes was also proposed in Bortoluzzi
et al14 and Casciati et al40 to mitigate wind‐induced local, rather than global, vibrations in bridges. In the latter cases,
appropriate reduced‐order models are preliminarily necessary41,42 so as to reduce the computational effort before the
tuning procedure. Although all these more accurate procedures are preferable, most of the literature studies dealing with
the TMD tuning address only a single mode of vibration in a simplified way, especially in the context of framed buildings
and earthquake excitations like the ones considered in this paper, see, for example, previous studies.23,26,43-47 A simplified
way to extend the optimal design of the TMD to MDOF systems, which neglects the higher order modes of the superstruc-
ture, has been described in De Domenico et al31 and is adopted here.
5 | TIME ‐HISTORY ANALYSIS AND COMPARISONS

In this section, the dynamic performance of the aforementioned six structural control strategies is scrutinized in the
time domain. In particular, the same five‐story planar frame building previously analyzed in De Domenico and
Ricciardi30 (refer to fig. 13 in De Domenico and Ricciardi30) is here considered. Mechanical and geometric parame-
ters are fully described in De Domenico and Ricciardi.30 In this regard, it is worth making some remarks about this
FIGURE 11 Optimal design and performance evaluation of model I.S with ωt = 0.5ωb



FIGURE 12 Optimal design and performance evaluation of model II.S with ωt = 0.5ωb and ζt = ζb
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simplified planar model: (a) In most base‐isolation projects of new construction, the stiffness characteristics of the
isolators are selected so as to lead to minimal eccentricity between the centers of mass and stiffness of the structure,
thereby minimizing torsional effects; (b) even in existing buildings that are asymmetrical, the isolators may be
designed and tailored so as to accomplish the above mentioned effect. Although it is well known from experimental
findings that seismic isolators are very sensitive to the bidirectional nature of the ground motion,48 the focus of this
paper is to compare different structural control layouts involving TMD and inerter devices. It is restricted to this
main scope that the adopted simplified two‐dimensional schematization of the structure should be meant. It is
believed that planar structural models can offer significant computational efficiency while not majorly prejudicing
the generality of the following discussions and comparisons in place of alternative more accurate but cumbersome
3D analyses.

This considered building is meant as an ordinary reinforced concrete49,50 base‐isolated structure, with an additional
structural control strategy implemented underneath the base‐isolation floor. The choice of this building, which has been
investigated in earlier research work by the authors30 with regard to the BIS + TMDI, is motivated by the possibility of
comparing results already published in the literature with alternative control techniques. The frame building has a first
natural period T1 ≅ 0.50 s; the damping coefficients of the superstructure are assumed to be stiffness‐proportional (“clas-
sically damped system”) with ζs = 0.02 for all the vibration modes. The base‐isolation floor is assumed to have mass
mb = 47500 kg. The first effective modal mass51 for the building is m*

1 ¼ 2:3714×105 kg, representing the 81.7% of the
total mass of the building. This results in a mass ratio μb ¼ mb=m*

1≅0:20. The BIS is assumed to have ζb = 0.1 and effec-
tive natural period Tb,eff = 2 s. Note that all the above numerical data are purposely chosen to be perfectly consistent
with the parameters adopted in Section 4 for drawing the design graphs. Therefore, such design graphs can be referred
to for the selection of the optimal TMD parameters.

The design process is articulated in the following steps: (a) choose some reasonable values of xfree parameters so that
there exists a possible combination of the remaining xd design TMD parameters such that all the three response indi-
cators f 1, f 2, f 3 are lower than the unity; (b) evaluate the best combination of xd design parameters that minimizes
the chosen OF via the developed design graphs. Considering the design graphs of Section 4, in all the models, μt and
βt are free parameters (obviously in model 1.H and in the BIS + nontraditional TMD the ratio βt = 0). As an exception,
βt is a design parameter in model I.S. Furthermore, ζt is a free parameter in the BIS + nontraditional TMD. In models I.S
and II.S, both ωt and ζt are free parameters, because the TMD is grounded in this case.

In an attempt to make a consistent comparison among the six models, the TMD design parameters have been selected
based on values of the response ratios f 1, f 2, f 3 ranging from 0.25 to 0.8, which serves as a criterion for selecting consistent
parameters. The detected optimal parameters are reported in Table 1. The uncontrolled BIS, that is, the conventional BIS
without any additional structural control strategy, is also considered as reference solution. It is quite difficult to obtain
identical f 1, f 2, f 3 ratios for all the models. Moreover, the little differences should be interpreted considering the



TABLE 1 Selection of the TMD parameters for the six structural control strategies of this study

Structural control strategy μt βt νt ζt ζp f 1 f 2 f 3

Conventional BIS ‐ ‐ ‐ ‐ ‐ 1.00 1.00 1.00

BIS + TMDI 0.01a 0.3a 0.339b 0.228b ‐ 0.25 0.26 0.64

Model 2.H 0.4a 0.4a 0.306b 0.175b ‐ 0.47 0.32 0.72

Model 1.H 0.4a ‐ 0.265b 0.256b ‐ 0.33 0.26 1.60

BIS + nontraditional TMD 0.2a ‐ 0.447b 0.25a ‐ 0.32 0.31 0.52

Model I.S 0a 0.86b 0.5a 0.25a ‐ 0.40 0.22 0.82

Model II.S 0a 0.2a 0.5a 0.1a 0.261b 0.26 0.30 0.39

Note. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter
aFree parameter (assumed based on the design graphs developed in Section 4).
bDesign parameter (calculated by minimization of the displacement variance).
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assumption of ground motion modelled as a stationary white‐noise random process. Because earthquake ground motions
are neither stationary nor have a uniform spectral content as represented by the white‐noise model, these differences are
only qualitative. It is of interest to assess the performance of the six models via time‐domain analyses with real
accelerograms. These more realistic analyses serve to assess the validity of the simplified optimal design procedure
described in Section 4 considering real accelerograms that are neither Gaussian nor stationary.

As a first step, the same set of eight natural earthquake ground motions considered in De Domenico and Ricciardi30

are used for the response‐history analysis (see table 1 and fig. 8 of the quoted paper30 for more specifications on these
earthquakes). In line with the indications outlined in Giuliano,15 this group of accelerograms comprise both near‐fault
ground motions, with long‐period fling pulse, and far‐field ground motions, which tend to have a fairly smooth transi-
tion of temporal and spectral contents.8,10 Besides this first group of eight accelerograms, a larger number of samples,
belonging to the FEMA P695 far‐field record set,52 is subsequently analyzed to draw more general conclusions over a
wider set of seismic inputs. In order to separate the intensity factor and to focus on the record‐to‐record variability
ascribed to the different frequency content and impulsive character of the considered accelerograms, the recorded
ground motions have been scaled by a common scale factor, assumed as the displacement of the BIS (ub = 20 cm),
see, for example, Castaldo and Ripani.53 This does not affect the results significantly but is helpful to reduce the vari-
ability of the response caused by the different intensity levels, which is a secondary aspect for this study as all the con-
sidered systems are linearized.

Time‐history response of the base‐isolated building is calculated by direct integration of the equations of motion. As
an example, the time‐history response in terms of base shear Vb, last‐floor displacement relative to the ground
us5 = usr5 + ub, and the TMD stroke utb = ut − ub are reported in Figure 13 for two accelerograms, namely, L'Aquila
and Loma Prieta. It is clear that these two ground motions have quite different characteristics. In particular, the former
has a high impulsive content in the first instants of motion; therefore, there is no time for the transfer of energy from the
base‐isolated structure to the TMD. Indeed, the first peak, which is the most important one for this specific ground
motion, is not damped by any structural control strategy. On the contrary, the time‐history response under the Loma
Prieta earthquake shows a gradual transfer of energy from the seismic input and the TMD, so that the TMD‐related con-
trol strategy is much more effective in this case. However, it is expected that in both cases, the root‐mean‐square (rms)
values of the response (over the entire time‐history duration) is considerably reduced as compared to the conventional
BIS case. To quantify this reduction, in Table 2, the rms values of a few superstructure response indicators, averaged on
the eight accelerograms, are listed. The quantities called kinetic energy and elastic strain energy of the superstructure

are calculated as Ts ¼ 1
2
_uT
s Ms _us and Es ¼ 1

2
uT
srKsusr, respectively, see Salvi and Rizzi,43 and are representative scalar

measures of the overall stress and strain occurring in the superstructure. In Table 2, the percentages of reductions of
each quantities as compared to the conventional BIS are reported in brackets. Note that the deterministic rms values
are related to the variances in the probabilistic framework. These reductions are rather comparable in the six models,
thus confirming that the TMD parameters reported in Table 1 are reasonably chosen for a consistent comparison. As
an example, the rms base shear is halved in almost all the models. The best performance in terms of reductions of
rms superstructure‐related response indicators is attained by the BIS + TMDI model, except for the reductions of the
total accelerations for which models 2.H and 1.H and the BIS + nontraditional TMD are slightly better. On the contrary,



TABLE 2 List of superstructure‐related results considering rms values of response indicators (average on eight natural earthquakes)

Last‐floor disp.
First interstory
drift

Last‐floor
total acc.

Base
shear

Kinetic
energy

Strain
energy BIS disp.

Structural control strategy us5[m] ⋅ 10−2 Δus2[m] ⋅ 10−4 €us5 tot m=s2
� �

Vb [kN] Ts [kNm] Es[kNm] ub[m] ⋅ 10−2

Conventional BIS (reference solution) 5.91 11.93 0.59 158.30 21.26 0.96 5.46

BIS + TMDI
De Domenico and Ricciardi30

2.79 6.11 0.35 79.97 8.92 0.35 2.56
−52.8% −48.8% −40.9% −49.5% −58.1% −63.7% −53.2%

Model 2.H
Hashimoto et al34

3.27 6.14 0.34 80.43 9.42 0.31 3.04
−44.6% −48.6% −41.9% −49.2% −55.7% −67.1% −44.3%

Model 1.H
Hashimoto et al34

2.94 5.92 0.32 77.96 9.03 0.30 2.71
−50.3% −50.4% −45.1% −50.7% −57.6% −68.3% −50.4%

BIS + nontraditional TMD
Xiang and Nishitani10

2.93 6.24 0.34 82.14 9.68 0.36 2.69
−50.4% −47.7% −42.1% −48.1% −54.5% −62.8% −50.6%

Model I.S
Saitoh33

5.06 7.83 0.42 102.12 12.68 0.58 4.76
−14.5% −34.4% −28.4% −35.5% −40.4% −39.4% −12.9%

Model II.S
Saitoh33

3.52 7.65 0.40 100.80 11.89 0.52 3.22
−40.5% −35.9% −31.4% −36.3% −44.1% −45.4% −40.9%

Note. BIS: base‐isolation system; TMD: tuned mass damper; rms: root mean square.

FIGURE 13 Time‐history response of the base‐isolated building subject to natural earthquake ground motions of L'Aquila and Loma

Prieta: (a–b) base shear; (c–d) last‐floor displacement; (e– f) TMD stroke. BIS: base‐isolation system; TMD: tuned mass damper; TMDI:

tuned mass damper inerter
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model II.S is the best with regard to the TMD‐related response indicators that are listed in Table 3. In addition to the
TMD displacement and stroke, in order to qualitatively estimate the production implications and related costs of the
different structural control systems, we also listed the reactions of the spring, oil damper, and inertial damper



TABLE 3 List of TMD‐related results considering rms values of response indicators (average on eight natural earthquakes)

Structural control
strategy

TMD disp. TMD stroke
TMD spring
reaction

TMD oil damper
reaction

TMD inertial
damper reaction

ut[m] ⋅ 10−2 utb[m] ⋅ 10−2 Rk [kN] Rc [kN] Rb [kN]

BIS + TMDI 4.47 4.52 22.56 13.06 25.32

Model 2.H 4.84 4.60 48.21 18.40 31.33

Model 1.H 5.43 5.21 20.54 13.24 ‐

BIS + nontraditional TMD 5.39 4.49 23.59 13.13 ‐

Model I.S 2.44 6.60 73.75 38.00 70.37

Model II.S 3.07 3.87 21.50 4.75 17.51

Note. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter; rms: root mean square.
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supporting the TMD, termed Rk, Rc, and Rb, respectively. These reactions are computed with different formulae based on
the specific arrangement of the TMD in each model. The very high reactions associated with model I.S are ascribed to
the large value of inertance ratio βt = 0.86 that is found from the optimization procedure. Also, Saitoh in the original
paper33 considered a βt = 1.0 ratio, which is consistent with the aforementioned value. Besides the rms values, we
have also computed the max values over the entire time‐history duration that, as seen above, are strongly affected
by the impulsive character of the accelorograms. Relevant histograms of the last‐floor displacement and of the base
shear are reported in Figures 14 and 15, respectively. These histograms are organized in a convenient normalized for-
mat, by reporting the percentages of reduction as compared to the conventional BIS in the vertical‐axis scale. Values
lying below the 100% threshold indicate a vibration reduction, whereas the tick marks above each bar specify the
actual value for that specific accelerogram. As expected, the max values reductions (of the order of 10–30%) are lower
than the rms values reductions due to the time‐delay implied in the effective activation of the TMD. The worst reduc-
tion performance in terms of last‐floor displacement and base shear is achieved for all the six models under the
L'Aquila ground motion, due to the high impulsive nature of this accelerogram. In the bar plots of Figure 16, a family
of superstructure‐related response ratio indicators are reported through average values on the eight considered
accelerograms. Superimposed error bars indicate the variability among the eight accelerograms. This variability is
reduced due to the adopted scaling of the accelerograms, especially with regard to displacement‐related response
quantities. Similarly, in Figure 17, a set of TMD‐related response quantities are reported (in a nonnormalized format,
unlike the previous bar plots).

As stated above, to draw more general conclusions, a larger number of samples is considered. Reference is made to
the FEMA P695 far‐field record set comprising 44 historically recorded seismic inputs. This set of ground motions has
been used to study the seismic behavior of TMD‐like systems, see, for example, other studies.12,46,54 Both the individual
response spectra and the median response spectrum (for a 0.05 damping ratio) of this ensemble of inputs are reported in
FIGURE 14 Histograms for reduction ratios (compared to conventional BIS) of max last‐floor displacement for the six analyzed structural

control strategies and for the eight considered accelerograms. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass

damper inerter



FIGURE 15 Histograms for reduction ratios (compared to conventional BIS) of max base shear for the six analyzed structural control

strategies and for the eight considered accelerograms. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper

inerter

FIGURE 16 Histograms for superstructure‐related ratios (compared to conventional BIS) of average max quantities on the eight natural

earthquakes. BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter
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Figure 18. A variety of response indicators have been computed for each ground motion input. Average (over the 44
earthquake ground motions) rms and max values of a few response indicators (relevant to the superstructure, to the
BIS, and to the TMD subsystems) are reported in the histograms of Figures 19–21.



FIGURE 17 Histograms for TMD‐related average max response quantities on the eight natural earthquakes. BIS: base‐isolation system;

TMD: tuned mass damper; TMDI: tuned mass damper inerter

FIGURE 18 Pseudo‐acceleration

response spectra for the 44 historically

recorded ground motions of the FEMA

P695 far‐field record set52
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By inspection of the histograms reported in this paper summarizing the results for 52 different seismic inputs, the
following general conclusions can be drawn:

• The BIS + TMDI is effective for reducing most of the superstructure‐related response indicators and leads to mod-
erate reactions of TMD‐related spring, oil damper, and inertial damper.

• Models 2.H and 1.H are the best ones for reductions of superstructure‐related indicators (all but last‐floor displace-
ment, for which the BIS + TMDI prevails); however, model 2.H yields slightly higher values of reactions in compar-
ison with the BIS + TMDI model, which requires higher costs in terms of TMD‐related auxiliary isolators.

• The BIS + nontraditional TMD leads to superstructure‐ and TMD‐related reductions that are in line with those of
the BIS + TMDI model. The main difference between these two models is that the involved mass is μt = 0.2
instead of μt = 0.01, which requires a larger space in the building in order to insert such TMD mass. On the con-
trary, high inertance ratios can be achieved by simply increasing the gearing ratios of the inerter, which is a key
feature that makes the TMDI a lower mass and more effective alternative to the TMD. However, the BIS + nontra-
ditional TMD yields quite similar performance to the BIS + TMD (model 1.H), but with a mass ratio that is halved
(μt = 0.2 vs. μt = 0.4). This is due to the nontraditional (more effective) TMD strategy in comparison with the con-
ventional TMD.10



FIGURE 19 Histograms for average rms and max response indicators under the FEMA P695 far‐field record set (average values on 44

samples). BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter

FIGURE 20 Histograms for average rms and max response indicators under the FEMA P695 far‐field record set (average values on 44

samples). BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter
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• Although model I.S is worse than the other models, exhibiting the highest values of reactions, the introduction of the
damper in parallel with the inerter in model II.S leads to an improved performance of the system with a significantly
lower value of inertance ratio βt, which is reflected in the significantly lower values of reactions as compared to
model I.S. Model II.S is the best one in terms of TMD stroke. Finally, the introduction of the supplemental damper
in parallel with the inerter leads to forces that are lower than the oil damper forces reported in the histograms of
Figure 17 and Figure 21, which are already the lowest ones among the six models.

On the basis of the results found in this comparative study, the BIS + TMDI and model II.S are the most effective
ones in terms of superstructure‐ and TMD‐related response indicators, respectively.



FIGURE 21 Histograms for average rms and max response indicators under the FEMA P695 far‐field record set (average values on 44

samples). BIS: base‐isolation system; TMD: tuned mass damper; TMDI: tuned mass damper inerter
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6 | CONCLUDING REMARKS

A range of structural control strategies that can be implemented to improve the dynamic performance of base‐isolated
structures have been analyzed and compared. All these strategies imply the presence of a TMD located at basement,
below the isolation floor. In addition to the TMD (comprising a spring and a damper element), the presence of inertial
dampers has also been investigated in a few schemes to enhance the TMD performance via rotational inertia. Six dif-
ferent models proposed in the literature have been analyzed within a unified framework. Different arrangements of
TMD and inerter implemented in base‐isolated buildings lead to a totally different dynamic behavior of the structure
as a whole.

The FRFs of each model have been derived in closed‐form. Guidelines have been provided to select the optimal
tuning parameters, by modelling the base acceleration as a stationary Gaussian white‐noise random process. The
TMD‐related optimal parameters for each model have been identified by minimization of the displacement variance
but with an eye also for the acceleration variance and for the TMD stroke variance, which is an important response
quantity for design purposes and for practical applicability of the damping devices.

Then, the six models have been implemented in a base‐isolated multistory building for comparative purposes. The
response is computed in the time domain, by direct integration of the equations of motions under a set of 52 historically
recorded earthquake ground motions having different spectral characteristics. The seismic performance of the six
models has been assessed in terms of a variety of response indicators that are useful and of practical importance for
design engineers, including displacements, interstory drifts, floor accelerations, base shear, kinetic, and elastic strain
energy, and TMD stroke. In a design process, it is important to foresee the reaction forces associated with the spring,
oil damper, and inertial dampers of the TMD. These forces give a preliminary estimate of the costs of each model
because higher forces imply larger isolators and/or stiffer elements of connection.

It has been proved that the use of the inerter in conjunction with the TMD according to the TMDI dynamic config-
uration is a very effective structural control strategy involving a relatively small mass (unlike the classical TMD).
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Another effective configuration, especially with regard to the limitation of TMD stroke and TMD‐related reactions, is
model 2.S in which the auxiliary TMD‐related isolators are directly attached to the ground and not placed in between
the TMD mass and the BIS, where instead an inerter is placed in parallel to a damper. The nontraditional TMD config-
uration allows a significant reduction of the TMD mass (in comparison with the traditional TMD—model 1.H) to
achieve a target dynamic performance. Finally, model 2.H proves to be the best in terms of reductions of max super-
structure‐related response indicators, especially total acceleration reductions, despite implying higher values of reac-
tions in comparison with the TMDI model, which in principle requires slightly higher costs in terms of TMD‐related
auxiliary isolators or devices.
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