
Received: 18 November 2016 Revised: 1 June 2017 Accepted: 20 July 2017
RE S EARCH ART I C L E

DOI: 10.1002/stc.2084
Adaptive constrained unscented Kalman filtering for
real‐time nonlinear structural system identification
Andrea Calabrese1 | Salvatore Strano2 | Mario Terzo2
1Civil Engineering and Construction
Engineering Management (CECEM),
California State University, Long Beach,
CA, USA
2Department of Industrial Engineering,
University of Naples Federico II, Naples
80125, Italy

Correspondence
Salvatore Strano, Department of Industrial
Engineering, University of Naples
Federico II, Naples 80125, Italy.
Email: salvatore.strano@unina.it
Struct Control Health Monit. 2017;e2084.
https://doi.org/10.1002/stc.2084
Summary

The unscented Kalman filter (UKF) is often used for nonlinear system identifi-

cation in civil engineering; nevertheless, the application of the UKF to highly

nonlinear structures could not provide accurate results. In this paper, an

improvement of the UKF algorithm has been adopted. This methodology can

consider state constraints, and it can estimate the measurement noise covari-

ance matrix. The results obtained adopting a modified UKF have been com-

pared to the ones obtained using the UKF for parameter estimation of a

single degree of freedom nonlinear hysteretic system. The second part of this

work shows results of an experimental activity on a base‐isolated prototype

structure. Both numerical and experimental results underline that the adopted

algorithm produces better state estimation and parameter identification than

the UKF, being capable of taking into account parameter boundaries. The

adopted algorithm is more robust than the standard UKF in the case of measur-

ing noise variation.
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1 | INTRODUCTION

The identification of nonlinear structural systems is a common task in civil engineering. For example, several methods
for damage detection and monitoring of civil engineering structures are based on parametric identification algorithms
suitable for nonlinear structural elements.[1–3] Various techniques have been developed for nonlinear structural system
identification, including least squares estimation, Monte Carlo filter, extended Kalman filter (EKF), unscented Kalman
filter (UKF), and others.[4–11] The time‐domain methods, such as the least squares estimation, perform an optimization
for parameters such as stiffness and damping through a minimization of the errors between the measured and the sim-
ulated responses,[12] but the procedure is time consuming and it is generally considered not suitable for real‐time appli-
cations of structural health monitoring and damage detection. Monte Carlo filter often requires a very large number of
sample points, being high computationally demanding. Among the different methods, the UKF is the most adopted tech-
nique for structural dynamics identification with many successful applications.[13–18]

Despite the fact that the UKF outperforms the other methods, especially in presence of very noisy measurements,
some deficiencies still remain. One of the most important deficiencies of UKF is the impossibility of taking into account
bounds and other constraints on state variables. The constraints can be useful as a remediation for inaccurate system
modeling, which often happens in real‐world applications. As a consequence, many approaches have been developed
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for UKF with constrained problems or called constrained UKF (CUKF).[19–25] In many applications, process and mea-
surement noise covariance matrices are considered known and constant for UKF or CUKF. A wrong selection of these
matrices may cause a large estimation error. In some cases, the procedure might not converge.[26] Generally, the task of
finding suitable process and measurement noise covariance matrices when using the classical method is time consum-
ing. In addition, measurement noise covariance can vary in actual applications due to electromagnetic interference
between sensors and other electrical instruments. To address this problem, an adaptive approach for the CUKF
(ACUKF) with an adaptive identification of the measurement noise covariance matrix has been adopted in the present
research activity. The major function of adaptive algorithm is to get the measurement noise covariance matrix based on
the filter learning history.[26]

In this paper, the ACUKF and the UKF have been applied to a highly nonlinear hysteresis system based on the nor-
malized Bouc‐Wen model (NBWM) for the numerical evaluation of both methods.

Nonlinearity of the Bouc‐Wenmodel introduces a complexity for parameter identification. Several methods, based on
different approaches, have been proposed.[27,28] In previous studies,[29,30] an identification method for the NBWM has
been developed starting from the analytical description of the hysteresis loop developed in Ikhouane and Rodellar.[31]

An attractive way to identify the Bouc‐Wen model parameters, taking into account measurement noise and model uncer-
tainties, is based on nonlinear filtering, using for example the EKF or the UKF. Yang and Ma[32] proposed an EKF with a
global weighted iteration strategy, which was effective in estimating all the parameters of the Bouc‐Wen model of hys-
teresis. Zhang et al.[33] also applied the EKF for the identification of hysteretic systems that exhibit degradation and
pinching.

In literature,[34–38] the UKF has been used for the identification of nondegrading and degrading hysteretic systems.
The ACUKF and the UKF have been applied to an actual base‐isolated structure prototype. The experimental results

have been adopted for a further comparison between the estimation methods.
The paper is organized as follows: A description of the UKF and the ACUKF is given in Section 2. Simulation results

are presented in Section 3. The experimental testing of both methods on the prototype structure is detailed in Section 4.
2 | THE ALGORITHMS OF UKF AND ACUKF

2.1 | UKF

The UKF has been first proposed by Julier and Uhlman[39] and further improved.[40] Because UKF does not
require valuating Jacobian and Hessian matrices and has superior accuracy compared to EKF in terms of approx-
imating the statistics of highly nonlinear systems, it is suitable for estimating fairly complex dynamical systems. In
the unscented transformation, the statistical properties of a random variable are approximated by a deterministi-
cally chosen sample of points known as sigma points. The nonlinear transformation is applied to each of the
sigma points, and the statistical properties of the transformed random variable are calculated from the transformed
sample set.

The UKF algorithm is briefly recalled in the following because it has been adopted for a comparative analysis.
Consider the following continuous nonlinear state space description with discrete measurements sampled at regular
intervals with sampling period Δt

xkþ1 ¼ xk þ ∫ kþ1ð ÞΔt
kΔt f x τð Þ;u τð Þ½ �dτ þwk xk ≡ x kΔtð Þ

ykþ1 ¼ h xkþ1;ukþ1ð Þ þ vkþ1

(1)

where x∈Rn is the n‐dimensional vector of system state, f and h are nonlinear functions, u is the input vector, w is the
process noise with covariance Q, y∈Rm is the m‐dimensional vector of measurement, v is the Gaussian white measure-
ment noise with covariance R, and k is the kth time step. The main task is to estimate the system state, that is, calculate
the mean as well as the covariance of system state at the (k + 1)th step, based on the state estimation at the kth step and
the measurements at the current (k + 1)th step.

Given the filtered state estimates bxk ∣ k, which have been obtained using all the measurements made up to time tk,
and the input uk, the predicted state estimates bxkþ1 ∣ k can be obtained as
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bxkþ1 ∣ k ¼ bxk ∣ k þ ∫ kþ1ð ÞΔt
kΔt f x τð Þ;uk½ �dτ; bxk ∣ k ≡ bx kΔtð Þ: (2)

A set of 2n+1 sigma points Χk ∣ k , i with associated weights Wi are chosen symmetrically about bxk ∣ k as follows:

Χk ∣ k;0 ¼ bxk ∣ k; W0 ¼ κ
nþ κ

;

Χk ∣ k;i ¼ bxk ∣ k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ κð ÞPk ∣ k

p� �
i; Wi ¼ 1

2 nþ κð Þ;
and

Χk ∣ k;iþn ¼ bxk ∣ k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ κð ÞPk ∣ k

p� �
i; Wiþn ¼ 1

2 nþ κð Þ;

(3)

where
ffiffiffiffiffiffiffiffiffiffiffi
Pk ∣ k

p� �
i
is the ith column of the matrix square root of the error covariance matrix Pk ∣ k and Wi is the

weights associated with the corresponding point. The parameter κ is a tuning parameter and it has been
recommended that its value be chosen such κ + n = 3. However, if the dimension of the system is greater than three,
κ can take a negative value and, in such a case, the covariance matrices may become indefinite. In all our simulations,
it has been chosen κ = 1.

Because the weights Wi sum to 1 and due to the symmetric placement of the sigma points, the weighted mean of the
set Χ is the same as bxk ∣ k. This choice also ensures that the weighted covariance matrix of the sample Χ is equal to Pk ∣ k,
that is,

Pk∣ k ¼ ∑
2n

i¼0
Wk;i Χk∣ k;i − bxk∣ k� �

Χk∣ k;i − bxk∣ k� �T
; (4)

In the prediction step, the sigma points are propagated through the nonlinear state space equation to obtain the pre-
dicted set of sigma points as

Χkþ1 ∣ k;i ¼ bxk ∣ k;i þ ∫ kþ1ð ÞΔt
kΔt f Χi τð Þ;uk½ �dτ; Χk ∣ k;i ≡Χi kΔtð Þ : (5)

The predicted state estimate and its error covariance matrix are obtained from the predicted sigma points as

bxkþ1 ∣ k ¼ ∑
2n

i¼0
Wk;iΧkþ1 ∣ k;i

Pkþ1 ∣ k ¼ ∑
2n

i¼0
Wk;i Χkþ1 ∣ k;i − bxkþ1 ∣ k

� �
Χkþ1 ∣ k;i − bxkþ1 ∣ k
� �T þ Qk:

(6)

For obtaining the updated state estimate, the sigma points are propagated through the nonlinear measurement equa-
tion to obtain the predicted measurements as

Υkþ1 ∣ k;i ¼ h Χkþ1 ∣ k;i;ukþ1
� �

; i ¼ 0; 1;…; 2n: (7)

Using this set of predicted measurements, the covariance matrix of innovations (difference between measurement
and predicted measurement) and the cross‐covariance matrix between predicted state estimate errors and innovations
are computed as

Pyy;kþ1 ∣ k ¼ ∑
2n

i¼0
Wk;i Υkþ1 ∣ k;i−bykþ1 ∣ k

� �
Υkþ1 ∣ k;i−bykþ1 ∣ k
� �T þ Rkþ1

Pxy;kþ1 ∣ k ¼ ∑
2n

i¼0
Wk;i Χkþ1 ∣ k;i−bxkþ1 ∣ k

� �
Υkþ1 ∣ k;i−bykþ1 ∣ k
� �T

;

(8)
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where

bykþ1 ∣ k ¼ ∑
2n

i¼0
Wk;iΥkþ1 ∣ k;i: (9)

The preceding two covariance matrices are used to compute the Kalman gain matrix

Kkþ1 ¼ Pxy;kþ1 ∣ k Pyy;kþ1 ∣ k
� �−1

; (10)

and finally, the updated state estimates are obtained using the linear update equation as in the Kalman filter

bxkþ1 ∣ kþ1 ¼ bxkþ1 ∣ k þKkþ1 ykþ1−bykþ1 ∣ k
� �

: (11)

The covariance matrix of error in the updated state estimates is computed using

Pkþ1 ∣ kþ1 ¼ Pkþ1 ∣ k−Kkþ1 Pyy;kþ1 ∣ kKT
kþ1 : (12)

2.2 | ACUKF

An improved version of the UKF is the CUKF, introduced in Section 1, which can take into account constraints of the
state variables.

The CUKF approach considered in this paper consists of two main aspects[25]: (a) In prediction step, sigma points
that violate bound constraints are moved onto the bounds, and the relevant sigma points within the boundary are moved
correspondingly in order to obtain the symmetry of the new set of sigma points; (b) in correction step, the state updating
equation is used to generate transformed sigma points, and those transformed sigma points that violate bound con-
straints are projected to constraints boundary only when the updated state estimate exceeds the boundary.[25] The details
of above proposals are described as follows.

Consider the nonlinear dynamic system given by (1). In addition, bound constraints are imposed to the states as

xL ≤ x ≤ xU ; (13)

where xU and xL are the upper and lower bound of constrained vectors, respectively.
Indicating withbxk ∣ k the filtered state estimates at time instant “k” and Pk ∣ k the corresponding estimate error covari-

ance matrix and denoting with

si;k ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pk ∣ k

p� �
i

snþ1;k ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
Pk ∣ k

p� �
i
;

(14)

as the directions along which the sigma points are selected, according to the standard UKF, the step sizes for all sigma
points, for the simple case when only bound constraints are considered, can be performed as follows[24]:

θk;i ¼ θk;nþi ¼ min θCk;i; θ
C
k;nþi

� �
; i ¼ 1;…;n

θCk;i ¼ min
ffiffiffiffiffiffiffiffiffiffiffi
nþ κ

p
; θUk;i; θ

L
k;i

� �
; i ¼ 1;…; 2n

θUk;i ¼ min ∞;
xUð Þj− bxk ∣ k

� �
j

sk;i
� �

j

 !
; if sk;i

� �
j>0; i ¼ 1;…; 2n

θLk;i ¼ min ∞;
xLð Þj− bxk ∣ k

� �
j

sk;i
� �

j

 !
; if sk;i

� �
j<0; i ¼ 1;…; 2n;

(15)

where the subscript j represents the jth element of the vector x.
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If the current estimate is sufficiently far from the bounds, or in the absence of bounds, the above choice of sigma
points is identical to those used in UKF. If the current estimate is close to the bounds, then the above choice ensures that
none of the sigma points violate the bounds on state variables.

The weights of all of sigma points are adjusted by using a linear weighting method proposed in Vachhani et al[21]:

Wk;0 ¼ b; i ¼ 0

Wk;i ¼ aθk;i þ b; i ¼ 1;…; 2n;
(16)

where

a ¼ 2κ‐1
2 nþ κð Þ sk− 2nþ 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi

nþ κ
p� �

b ¼ 1
2 nþ κð Þ−

2κ‐1
2
ffiffiffiffiffiffiffiffiffiffiffi
nþ κ

p
sk− 2nþ 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi

nþ κ
p� �:

sk ¼ ∑
2n

i¼1
θk;i

(17)

The replacement of sigma points results in a first‐order accuracy for the unscented transformation of mean value if
κ=0.5, that is, the value adopted in this paper.

Each sigma point Χk ∣ k , i is transformed through the state‐space equation in order to obtain sigma point of state
prediction Χk+ 1 ∣ k , i, the mean of the predicted state estimate bxkþ1 ∣ k, and its error covariance matrix Pk+ 1 ∣ k, as well
as the calculation of the predicted measurement sigma points Υk+ 1 ∣ k , i, the mean bykþ1 ∣ k, and covariance matrix

Pyy , k+ 1 ∣ k of predicted measurement and the cross‐covariance matrix Pxy , k+ 1 ∣ k, according to the standard UKF
method.

For unconstrained system states, the UKF method adopts state correction equation of the standard Kalman filter to
calculate the mean and covariance of the corrected state. For the constrained state estimate, the transformed sigma
points can be calculated with Kalman updating equation as

Χkþ1 ∣ kþ1;i ¼ Χkþ1 ∣ k;i þKkþ1 ykþ1−Υkþ1 ∣ k;i
� �

; i ¼ 0; 1;…; 2n; (18)

in accordance with the method proposed in Kolas et al.[23]

With Χk+ 1 ∣ k+ 1 , i calculated by (18), the state update bxkþ1 ∣ kþ1 and its covariance Pk+ 1 ∣ k+ 1 can be calculated using
the following equations:

bxkþ1 ∣ kþ1 ¼ ∑
2n

i¼0
Wk;iΧkþ1 ∣ kþ1;i

Pkþ1 ∣ kþ1 ¼ ∑
2n

i¼0
Wk;i Χkþ1 ∣ kþ1;i−bxkþ1 ∣ kþ1

� �
Χkþ1 ∣ kþ1;i−bxkþ1 ∣ kþ1
� �T þ Qk þKkþ1 Rkþ1 KT

kþ1:

(19)

It can be proven that the above equations give the same results of the standard UKF in terms of updated mean and
covariance.[23,25]
2.2.1 | Adaptation algorithm of measurement noise covariance matrix

In this section, details of the ACUKF, briefly provided in the introduction, are presented. The ACUKF algorithm
concerning the matrix R is described as follows[26]:



6 of 17 CALABRESE ET AL.
dkþ1 ¼ 1−bð Þ= 1−bkþ1� �
;

Rkþ1 ¼ Rk þ dkþ1 εkþ1εTkþ1−Pyy;kþ1 ∣ k
� �

;

εkþ1 ¼ ykþ1−h bxkþ1 ∣ kþ1;ukþ1
� � (20)

where dk is a scaling parameter, b denotes a forgetting factor, usually between 0.95 and 0.995, and εk refers to the error
between the actual measurement and the filter estimation in the kth step. The positive definiteness of the matrix R in
(20) is guaranteed in the adaptation algorithm.

Through the adaptive algorithm, the measurement noise covariance matrix can be computed step by step online.[26]

Thus, the system estimation cannot be restricted by the initial noise covariance and can adapt the variable system well.
3 | NUMERICAL EXAMPLE—SDOF NONLINEAR HYSTERETIC SYSTEM

Without loss of generality, consider a single degree of freedom (SDOF) nonlinear hysteretic system subject to an earth-
quake acceleration, where the hysteresis force is mathematically described by the NBWM[31]

m€x tð Þ þ c _x tð Þ þ F tð Þ ¼ −m€xg tð Þ (21)

where m is the mass, x(t) is the displacement, c is the linear viscous coefficient, F(t) is hysteretic component, and €xg tð Þ is
the excitation acceleration; the overdot indicates derivative with respect to time. The restoring force F(t), based on the
NBWM, is

F tð Þ ¼ kf x tð Þ þ kww tð Þ
_w tð Þ ¼ ρ _u tð Þ 1þ w tð Þj jnσ 1− sgn _u tð Þw tð Þð Þ−1

σ

	 
� �
;

(22)

where the parameters of the normalized form of the Bouc‐Wen model are ρ, σ, n, kf, and kw with the following con-
straints:

ρ> 0; σ ≥
1
2
; n≥ 1; kf > 0; kw > 0: (23)

Moreover, in Ikhouane and Rodellar,[31] it is demonstrated that w(t) is bounded in the range [−1, 1].
An augmented state vector x is defined as

x ¼

x1

x2

x3

x4

x5
x6

x7

x8

x9

26666666666666666664

37777777777777777775

¼

_x

x

w

c

kf
kw

ρ

σ

n

26666666666666666664

37777777777777777775

: (24)
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Then the state space equation is formulated based on Equations 21 and 22 as fallows

_x ¼ f x tð Þ;u tð Þð Þ ¼

_x1
_x2
_x3
_x4
_x5
_x6

_x7

_x8

_x9

26666666666666666664

37777777777777777775

¼

€x

_x

_w

c
_kf
_kw
_ρ

_σ

_n

266666666666666666664

377777777777777777775

¼

− €xg−
x2x5 þ x1x4 þ x3x6

m
x1

x7x1 1þ x3j jx9x8 1− sgn x1x3ð Þ− 1
x8

	 
� �
0

0

0

0

0

0

266666666666666666664

377777777777777777775

: (25)

where u is the base excitation.
The derivatives of the NBWM parameters are all zero because they are assumed to be constant. A discrete time form

of (25) is given by

xkþ1 ¼

x1;k þ Δt −€xg−
x2;kx5;k þ x1;kx4;k þ x3;kx6;k

m

� �
x2;k þ Δtx1;k

x3;k þ x7;kx1;kΔt 1þ x3;k


 

x9;k x8;k 1− sgn x1;kx3;k

� �
−

1
x8;k

	 
� �
x4;k

x5;k

x6;k

x7;k

x8;k

x9;k

266666666666666666664

377777777777777777775

þwk; (26)

where a process noise w has been added.
If the acceleration response and excitation are measured, the observation equation can be expressed as

y ¼ €x þ €xg þ v; (27)

where €x is the acceleration of the suspended mass and v represents the measurement noise.
The function h, see (1) for reference, can be written as follows

ykþ1 ¼ h xkþ1;ukþ1ð Þ þ vkþ1 ¼ x2;kþ1x5;kþ1 þ x1;kþ1x4;kþ1 þ x3;kþ1x6;kþ1

m
þ vkþ1: (28)

In accordance with (23), the bound constraints of the ACUKF are

−1≤ x3 ≤ 1; x4 > 0; x5 > 0; x6 > 0; x7 > 0; x8 ≥
1
2
; x9 ≥ 1; (29)

and w(t) is bounded in the range [−1, 1] as demonstrated in Ikhouane and Rodellar.[31] Consequently, the application of
the ACUKF to the NBWM is particular suitable to constrain both the parameter values and the state variable w, improv-
ing accuracy and robustness of the hysteresis estimation.
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Without loss of generality, simulations have been performed by assigning to the model previously described the
Chi‐Chi earthquake acceleration. In particular, the acceleration time history has a duration of 20 s with its maximum
scaled value equal to 3 m/s2. A measurement noise has been added to the mass acceleration, used as measurement for
the parameter estimation. In addition, the measurement noise has been modified at t = 10 s (0.0001 and 0.0025 m2/s2

before and after t = 10 s) in order to analyze the behavior of the ACUKF and the UKF with respect to a sudden variation
of the measurement noise.

Figures 1–6 show the estimated parameters compared with the exact ones that are
c=100 ; kf=100000 ; kw=5000 ; ρ=100 ; σ=0.8 ; n=2. The initial parameter values for the estimation are

c=50 ; kf=140000 ; kw=8000 ; ρ=70 ; σ=5 ; n=5.
FIGURE 1 Numerical results—

Estimation of parameter c

FIGURE 2 Numerical results—

Estimation of parameter kf

FIGURE 3 Numerical results—

Estimation of parameter kw



FIGURE 4 Numerical results—

Estimation of parameter n

FIGURE 5 Numerical results—

Estimation of parameter ρ

FIGURE 6 Numerical results—

Estimation of parameter σ
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The results clearly show that the estimator ACUKF demonstrates a better robustness with respect to measurement
noise level. Indeed, after a variation of R, the parameters estimated with the ACUKF method are very close to exact ones.
In contrast, the estimated parameters with the UKF degrades with the variation of R as it is possible to note in the figures
above. In the first part the noise level is constant, and the value is equal to the one adopted in the UKF; therefore, it is
possible to assume that the comparison is between the CUKF (without adaptation) and the UKF. In the second part of
the numerical example, the noise level changes and the performance of the adaptation algorithm is verified. Thus, the
numerical results show the improvement for parameter estimation of both the state boundaries and the adaptive algo-
rithm. Table 1 shows the root mean square error evaluated in the last 5 s of the simulation and related to the estimated
parameters for the UKF and the ACUKF.



TABLE 1 RMSE of the estimated parameters

RMSE/parameters UKF ACUKF

c 824.1 2.1

kf 47722.9 896.9

kw 376.2 148.3

ρ 5.3 3.1

σ 0.4 0.2

n 0.8 0.1

Note. ACUKF = adaptive constrained unscented Kalman filter; RMSE = root mean square error;

UKF = unscented Kalman filter.
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For all the parameters, the calculated root mean square errors for the ACUKF are less than those ones relative to the
UKF.

Figure 7 presents the estimation of the measurement noise my means of the ACUKF.
The results of Figure 7 show a good matching between the estimated R and the exact values before and after the

sudden variation of the measurement noise level.
A further comparison between the two methods has been performed considering the displacement estimation of the

suspended mass. Figure 8 shows the estimated displacements and the time‐history obtained by numerical integration.
Also in this case, the ACUKF performs better than the UKF: The ACUKF provides a displacement estimation that

practically matches the exact one.
Simulation results show that the method ACUKF takes into account state constraints and it is robust to variations of

R due to its adaptive property.
FIGURE 7 Numerical results—

Measurement covariance estimation with

the ACUKF

FIGURE 8 Numerical results—

Suspended mass displacement estimation
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In the next section, some experimental results, concerning the application of the ACUKF and the UKF methods to an
actual structure, are presented.
4 | EXPERIMENTAL STUDY

Experimental results, illustrated in this section, have been obtained by imposing to a prototype base‐isolated building a
seismic event. The tested building is a one‐third scale steel frame (Figure 9), base isolated by means of four fiber rein-
forced bearings.[41–44] It has a total height of 2,900 mm and 2650 × 2150 mm plan dimensions.

The columns of the test building are welded square hollow sections (150 × 150 × 15 mm), whereas the beams are hot
formed—square hollow sections (120 × 120 × 12.5 mm). Pin connections are used at the roof level of the building, and a
FIGURE 9 Tested isolated building

FIGURE 10 Scheme of the prototype

building and the instrumentation setup
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rigid node is built at the base level of the structure. Each floor has additional concrete blocks to provide a total mass of 7.7
tons. The base level has a mass of 3.6 tons, and the top floor has a mass of 4.1 tons.

Figure 10 shows a projection of the prototype isolated structure and the measuring instruments.
To measure the structural response, nine laser displacement sensors with a resolution of 50 μm have been adopted.

Two transducers have been used to measure the absolute displacements of the masses in the direction of the applied
motion. The absolute accelerations of the floor masses have been measured by six triaxial accelerometers. The sampling
frequency of the measured quantities has been set at 500 Hz, and the signals have been filtered at 50 Hz with a low‐pass
filter.

The shaking table has been controlled giving as target the acceleration along the direction of motion (Figure 10).
Figure 11 shows the seismic event (Campano Lucano, scaled factor SF = 2.06, PGA = 2.55 m/s2).

The structure dynamics represented by a two degrees of freedom lumped‐mass model is given by the following sys-
tem of ordinary differential equations:

M€X þ C _X þKX ¼ −M 1f g€xg−LFh

X ¼
vb

vt

" #

M ¼
mb 0

0 mt

" #
; C ¼

cs −cs

−cs cs

" #

K ¼
ks −ks

−ks ks

" #
; L ¼

ni

0

" #
;

(30)
FIGURE 11 Input acceleration to the shaking table

FIGURE 12 Experimental results—

Base displacement estimation
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where M, K, and C represent the structural mass, stiffness, and damping matrices, respectively; {1} is the unit vector, €xg
indicates the ground excitation, vb is the relative displacement of the base to the ground, vt is the relative displacement of
the top to the ground,mb,mt, ks, and cs are the mass of the base, the mass of the top, the structure linear stiffness, and the

structure linear damping, respectively. X, _X , and €X represent the structure response in terms of displacement, velocity,
and acceleration, respectively. On the right‐hand side of Equation 30, Fh is the reaction force (modeled with Equation 22)
of each isolator at the base of the structure, ni is the number of isolators (equal to four), andM 1f g€xg is the effective seis-
mic force. Shaking table tests on the reference structure in its fixed base configuration provided the following values
adopted in the estimation algorithms[41]: mb = 3,571 kg, mt = 4,155 kg, ks = 1,845·106 N/m, and cs = 1,751 Ns/m. The
mathematical descriptions of the UKF and the ACUKF have been derived from the differential Equations 30.
FIGURE 13 Experimental results—top

displacement estimation

FIGURE 14 Experimental results—

Estimation error for the base displacement

FIGURE 15 Experimental results—

Estimation error for the top displacement
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The performances of the two estimation algorithms have been evaluated considering as input three measured accel-
erations: ground, base, and top; base and top displacement estimations have been compared with the measured ones
obtained by the laser displacement sensors.

Figure 12 shows the comparison between the measured base displacement and the estimated ones.
Figure 13 shows the comparison between the measured top displacement and the estimated ones.
Both the algorithms are able to estimate with a good approximation the actual displacement of the base and the top of

the structure. More in detail, the experimental results highlight that the ACUKF outperform the UKF. This result is
clearly shown in Figures 14 and 15 where the time histories of the estimation errors for both the procedures are pre-
sented, for the base and the top of the structure, respectively.

Note that the estimation error for the ACUKF is greater at the beginning of the seismic event. This result is strictly
related to the choice of initial parameters and the adaptation time of ACUKF as demonstrated by the trend of the esti-
mation error that decreases progressively, demonstrating the convergence of the algorithm.

Figures 16–21 show the estimated parameters.
FIGURE 16 Experimental results—Estimation of parameter c

FIGURE 17 Experimental results—Estimation of parameter kf

FIGURE 18 Experimental results—Estimation of parameter kw



FIGURE 19 Experimental results—Estimation of parameter n

FIGURE 20 Experimental results—Estimation of parameter ρ

FIGURE 21 Experimental results—Estimation of parameter σ
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As observed from Figures 16–21, all the parameters identified with the ACUKF converge to a constant value. More-
over, the estimated NBWM parameters with the UKF and the ACUKF are in accordance with their physical meaning.
5 | CONCLUSIONS

The application of an adaptive constrained unscented Kalman filter (ACUKF) to structural system identification
problems is presented in this paper. The performance of the ACUKF is compared with that one of the unscented Kalman
filter (UKF).
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Numerical results are discussed considering as case study the state estimation and the parameter identification of a
nonlinear hysteretic system where the nonlinear behavior follows the NBWM. The ACUKF yields more accurate
estimation results than the UKF. The method allows an online determination of the measurement noise covariance
matrix, and it takes into account state and parameter boundaries. Numerical results show the ability of the ACUKF to
identify a sudden variation of noise level, demonstrating its robustness.

A further comparison between the ACUKF and the UKF is presented based on an experimental activity concerning
the displacement estimation of a base‐isolated structure starting from acceleration measurements. Experimental results
show the convergence of both methods and underline that the ACUKF outperforms the UKF in terms of estimation
accuracy and robustness. The ACUKF is computationally efficient, permitting its applicability in adaptive control meth-
odologies where real‐time parameter estimation is required.
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