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Abstract

Adaptive algorithms for computing the reduced-order model of time-delay systems are
proposed in this work. The algorithms are based on interpolating the transfer function at
multiple expansion points and greedy iterations for selecting the expansion points. The
L∞-error of the reduced transfer function is used as the criterion for choosing the next new
expansion point. One heuristic greedy algorithm and one algorithm based on the error sys-
tem and adaptive sub-interval selection are developed. Results on four time-delay systems
with tens of delays from electromagnetic applications are presented and show the efficiency
of the proposed algorithms.
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1 Introduction
Time-delay systems (TDSs) frequently arise in circuit simulation especially in high-frequency
applications. In high-speed circuit design, time-delay phenomena appear due to the propagation
delays, for instance, caused by the transmission lines in circuit packaging and printed circuit
board (PCB) design [16]. In many cases of packaging and PCB design/optimization, propaga-
tion delay can dominate circuit performance, while losses can be neglected. In general, dis-
tributed interconnects and packaging problems modeled using differential or integral equation-
based methods result in large dense system matrices, the simulation of which is computationally
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expensive. Therefore, model order reduction (MOR) techniques have been proposed as an effec-
tive tool to reduce the computational complexity of large models, as they provide a mechanism
to generate reduced-order models from detailed descriptions [17]. MOR techniques based on
moment-matching are popular in the area of circuit simulation [1, 2, 18, 19].

MOR based on moment-matching for systems without delay [1, 2] has been extended to
delay systems in [3, 4, 5]. It is known that the transfer function of the delay system is not a
rational function, such that the standard moment-matching method based on implicit moment-
matching cannot be straightforwardly applied. In [3], the exponential factors caused by the
delays are first expanded into Taylor series, and then truncated to a certain order. The truncated
Taylor series then substitutes all the exponential factors as their approximants. The transfer
function can then be approximated by a rational function, so that the moments of the transfer
function can be implicitly computed by the Arnoldi algorithm. To enable applicability of the
Arnoldi algorithm, the approximated system in frequency domain is first augmented to a system
of dimension n × p, where n is the size (order) of the original system, and p is the order of the
truncated Taylor series. The work in [4] extends the idea in [3] to a method which matches the
moments at multiple expansion points. The multiple expansion points are selected adaptively
according to a binary principle (see also [6]). Instead of Taylor series, [5] replaces each expo-
nential factor with an equivalent power series generated by Laguerre polynomials. The power
series is then truncated to an order p in order to be able to compute the projection matrix em-
ployed for MOR. The resulting approximate system in frequency domain has a similar form as
the approximate system obtained by Taylor series expansion [3]. The projection matrix is then
computed using the higher order Krylov subspace method proposed in [7] without augmenting
the system.

All the methods above try to reuse the conventional algorithms of computing moments by
approximating the original non-rational transfer function with a rational function using trun-
cated power series expansion. The resulting moment-matching property is only satisfied for the
approximate transfer function and the reduced transfer function.

An iterative rational Krylov algorithm (IRKA) is proposed in [8] for reducing standard linear
time invariant systems without delay. The method finds interpolation points, computes projec-
tion matrices and constructs the reduced-order model (ROM) iteratively and adaptively, so that
the transfer function of the ROM is a rational interpolation of the original transfer function. For
delay systems, the transfer functions are not rational, and IRKA cannot be directly applied. A
recent work in [10] proposes a modified IRKA algorthim, which can be used for reducing the
delay systems. The idea is applying IRKA to the rational part of the transfer function. The in-
terpolation points and projection matrices are obtained from the rational approximation. Upon
convergence, the projection matrices are applied to the original delay system by Petrov-Galerkin
projection to obtain the ROM with delays.

In this work, the original transfer function is not approximated. The MOR approach sug-
gested here derives a reduced transfer function which interpolates the original transfer function
at properly-chosen interpolation points. MOR for delay systems via interpolating the origi-
nal transfer function previously appeared in [9], where interpolation points are trivially picked.
Here we propose an adaptive procedure, where the interpolation points are selected via a greedy
algorithm. At each iteration of the greedy algorithm, the point causing the L∞ error between the
original transfer function and the reduced transfer function, is selected and is used to compute
new basis vectors which are then combined with the previous basis vectors to compute a new
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ROM.
Computing the L∞-error usually has a computational complexity depending on the order n

of the original system, and therefore is time-consuming. In [11], a fast algorithm for computing
the L∞-norm of a large-scale system is proposed, where the computations are mainly based on
the ROM. Motivated by the method, we apply the algorithm in [11] to computing the L∞-norm
of the error system we need. Besides, we propose a heuristic method for directly computing the
L∞-error from limited frequency samples. To achieve the required accuracy, it is found that not
many samples are needed, so that the computations depending on the original system are not as
costly as one might think. The performances of the proposed algorithms are tested by two delay
systems with many delays from electromaganetics, showing promising efficiency for MOR of
time delay systems. In contrast, only a small system with a single delay is tested in [9].

2 Some preliminaries
We review some theoretical basics on delay systems and interpolation properties of the reduced
transfer function for delay systems, which the proposed algorithms in the next section are based
on. The delay system we consider is defined as below.

Definition 1. A linear time-delay system with constant coefficients is a collection of constant
system matrices and delays

E0, . . . ,Ed,A0, . . . ,Ad ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n,

0 = τ0 < τ1 < . . . < τd
(1)

associated with the time-domain delay-differential equation, also known as differential-difference
equation (DDE). When at least one τj, j ≥ 1, associated with the state derivative ẋ is nonzero,
it is called neutral delay-differential equation (NDDE).

d

∑
j=0

Ejẋ(t − τj) =
d

∑
j=0

Ajx(t − τj) +Bu(t),

y(t) = Cx(t)

∀ t ≥ 0 (2)

with an initial condition

x(t) = Φ(t) ∀ t ∈ [−τd,0], Φ ∶ [−τd,0]→ Cn. (3)

The DDE maps an input or control function u ∶ [0,∞)→ Cm to an output function y ∶ [0,∞)→

Cp using an internal state function x ∶ [−τd,∞) → Cn. Here n is called the order of the delay
system.

The transfer function of the above delay system can be obtained by Laplace transform and
has the following form:

H(s) = C (s∑
d
j=0Eje

−sτj −∑
d
j=0Aje

−sτj)
−1
B. (4)
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MOR of DDEs can be achieved by computing ROM via Petrov-Galerkin projection using two
projection matrices W,V , and has the same delays as the original system, i.e.

d

∑
j=0

Êj ż(t − τj) =
d

∑
j=0

Âjz(t − τj) + B̂u(t),

ŷ(t) = Ĉz(t),

∀ t ≥ 0, (5)

where Êj = W TEjV ∈ Rr×r, Âj = W TAjV ∈ Rr×r, B̂ = W TB ∈ Rr×m, Ĉ = CV ∈ Rp×r, with
r ≪ n being the order of the ROM. The original state vector x(t) in (2) can be recovered by the
approximation: x(t) ≈ V z(t). Likewise, the transfer function of the ROM is

Hr(s) = Ĉ (s∑
d
j=0 Êje

−sτj −∑
d
j=0 Âje

−sτj)
−1
B̂. (6)

Definition 2. Ln2(−∞,+∞) is the linear space containing vector-valued functions f ∶ R ↦ Rn,
endowed with the norm

∥f∥Ln
2
= (∫

∞

−∞
∣∣f(t)∣∣2dt)

1/2
.

Here and below, ∣∣ ⋅ ∣∣ denotes the Euclidean vector norm or spectral matrix norm.

Definition 3. The frequency domain L2(R) space contains the matrix-valued functions F ∶

C↦ Cp×m with finite norm

∣∣F ∣∣L2 = (
1

2π ∫
∞

−∞
∣∣F (ω)∣∣2dω)

1/2
,

where  =
√
−1 is the imaginary unit. Here, ω is the angular frequency, its relation with the

temporal frequency f (unit: Hz) is ω = 2πf . The L∞-norm of an operator M ∶ L2 ↦ L2 is
defined as the L2-induced operator norm as below

Definition 4.
∣∣M ∣∣L∞ ∶= sup

∣∣u∣∣L2
/=0

∣∣Mu∣∣L2

∣∣u∣∣L2

, (7)

where u ∶ C ↦ Cm ∈ L2(R) is a vector valued square-integrable function in the Laplace
domain, and its L2-norm is ∣∣u∣∣L2 = ( 1

2π ∫
∞
−∞ u(ω)

Tu(ω)dω)
1/2

, according to Definition 3.

Definition 4 implies
∣∣Mu∣∣L2 ≤ ∣∣M ∣∣L∞ ∣∣M ∣∣L2 .

Consequently the following error bound for the output of the ROM holds:

Theorem 1.
∣∣y − yr∣∣L2 = ∣∣Hu −Hru∣∣L2 ≤ ∣∣H −Hr∣∣L∞ ∣∣u∣∣L2 .

It can be further proved that

∣∣M ∣∣L∞ = sup
ω∈R

∣∣M(ω)∣∣ = sup
ω∈R

σmax (M(ω)) . (8)

4

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Here and below, σmax(⋅) is the largest singular value of a matrix. Plancherel theorem proves that
the Ln2 -norm in time domain and L2-norm in frequency domain coincide. Therefore, the output
error bound in Theorem 1, holds in time and frequency domain due to the Plancherel theorem,
so that

∣∣y − yr∣∣2 = ∣∣Hu −Hru∣∣2 ≤ ∣∣H −Hr∣∣L∞ ∣∣u∣∣2, (9)

i.e. the ∣∣ ⋅ ∣∣2 in (9) can be the Ln2 -norm in time domain, or the L2-norm in frequency domain.
From Theorem 1 in [9], we can derive the following interpolation theorem for delay systems.

Theorem 2. Let a delay system be given by E0, . . . ,Ed, A0, . . . ,Ad, τ1, . . . , τd, B, C and let
s0 ∈ C be a fixed expansion point. Define the sequence of matrices (Kk)

∞
k=0 ∈ Cn×n by

K0 = s0

d

∑
j=0

e−s0τjEj −
d

∑
j=0

e−s0τjAj,

Kk =
d

∑
j=0

(−τj)k−1

(k − 1)!
e−s0τjEj + s

d

∑
j=0

(−τj)k

k!
e−s0τjEj −

d

∑
j=0

(−τj)k

k!
e−s0τjAj ∀ k ≥ 1,

which satisfies K(δ) = ∑∞
k=0Kkδ

k, with s = s0 + δ. Here K(s) is the matrix associated with the
transfer functionH(s), i.e. K(s) = (s∑

d
j=0Eje

−sτj −∑
d
j=0Aje

−sτj), such that H(s)=CK−1(s)B.
Use these to define two other sequences of matrices (Fk)∞k=0 ⊂ Cn×m and (Gk)

∞
k=0 ⊂ Cn×p recur-

sively by

F0 = K
−1
0 B, Fk = −k!K−1

0 (
k−1

∑
i=0

Kk−iFi) ,

G0 = (K0)
−TCT , Gk = −k!(K0)

−T (
k−1

∑
i=0

KTk−iGi) .

Let V,W ∈ Cn×r be reduction matrices and Hr be the transfer function of the corresponding
ROM. Then the following statements hold for all b ∈ Cm and c ∈ Cp:

• If F0b, . . . , Flb ∈ Range(V ), then

H(i)(s0)b =H
(i)
r (s0)b ∀ i = 0, . . . , l.

• If G0c, . . . ,Gkc ∈ Range(W ), then

cTH(i)(s0) = c
TH

(i)
r (s0) ∀ i = 0, . . . , k.

• If F0b, . . . , Flb ∈ Range(V ) and G0c, . . . ,Gkc ∈ Range(W ), then

cTH(i)(s0)b = c
TH

(i)
r (s0)b ∀ i = 0, . . . , l + k + 1.

Here, (⋅)(i) denotes the i-th derivative of a function.
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Proof. Let Dis0(f) denote the i-th derivative of a (vector valued) function f(s) at s = s0.
Expanding the state vector x(s) in frequency domain into a power series around s0, we get

x(δ) = ∑
∞
i=0

Di
s0

[x(s)]
i! δi. Inserting the power series expansions of both K(s) and x(s) into

K(s)x(s) = B, we get

Di
s0[K

−1(s)B] =Di
s0[x(s)] = Fi, i = 0, . . . ,N.

Similarly,
(Di

s0[CK
−1(s)])T =Di

s0[K
−T (s)CT ] = Gi, i = 0, . . . ,N.

The results of the theorem are then immediate implications of Theorem 1 in [9].

Theorem 2 shows that the reduced transfer function Hr(s) and its i-th (i = 1, . . . ,N ) order
derivatives are tangential interpolations of the original transfer function H(s) and its corre-
sponding derivatives at the interpolation point s0, respectively. The vectors b and c are the
directions of tangential interpolation. From Theorem 2, we get the following moment-matching
properties:

Lemma 1. If F0, . . . Fl ∈ Range(V ), then

H(i) =H
(i)
r , i = 0, . . . , l.

If G0, . . .Gk ∈ Range(W ), then

H(i) =H
(i)
r , i = 0, . . . , k.

If F0, . . . Fl ∈ Range(V ) and G0, . . .Gk ∈ Range(W ), then

H(i) =H
(i)
r , i = 0, . . . , l + k + 1.

Proof. Fi ∈ Range(V ) is equivalent with Fiej ∈ Range(V ), where ej ∈ Rn is the jth unit vector,
j = 1, . . . , p, therefore we have

H(i)ej =H
(i)
r ej, j = 1, . . . , p, i = 0, . . . , l,

which implies
H(i) =H

(i)
r , i = 0, . . . , l.

Similarly, Gi ∈ Range(W ) is equivalent with Giej ∈ Range(W ), j = 1, . . . ,m, therefore we
have

eTj H
(i) = eTj H

(i)
r , j = 1, . . . ,m, i = 0, . . . , l,

which implies
H(i) =H

(i)
r , i = 0, . . . , l.

Likewise, we can easily obtain the third conclusion.

Remark 1. Due to complicated expressions of the higher order derivatives Fi,Gi, i > 1, it
is preferred that only the low order derivatives are included in the subspaces Range(V ) and
Range(W ). However, to keep the ROM as accurate as required, multiple interpolation points
si, i = 0, . . . , q, should be used. For each interpolation point si, we have the corresponding
conclusions in Theorem 2 and Lemma 1. Therefore, we get the following Proposition 1.
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Proposition 1. If F0(si) ∈ Range(V ), i = 1, . . . , l, then

H(si) =Hr(si), i = 1, . . . , l.

If G0(si) ∈ Range(W ), i = 1, . . . , l, then

H(si) =Hr(si), i = 1, . . . , l.

If F0(si) ∈ Range(V ) and G0(si) ∈ Range(W ), i = 1, . . . , l, then

H ′(si) =H
′
r(si), i = 1, . . . , l.

Remark 2. For MIMO systems, when p ≠m, the two matrices V and W defined by

Range(V ) = colspan{F0(s1), . . . , F0(sl)},

and
Range(W ) = colspan{G0(s1), . . . ,G0(sl)},

may have different column dimensions, which would lead to non-square reduced matrices. The
issue can be avoided by, e.g., adding certain random orthonormal vectors to the one which has
less column size (see Algorithm 2), but still guarantees the interpolation properties. For MIMO
systems with numerous inputs and outputs, it is not practical to include the whole input matrixB
and output matrixC into the subspaces, rather, nontrivial vectors b and c are introduced, so that
tangential interpolation in Theorem 2 is satisfied for each expansion point. Properly choosing
tangential vectors b and c has been discussed in [8] for standard linear time invariant systems
with no delay, i.e., for system in (2) with d=0. Then the transfer function is a rational function,
and the interpolation is called rational interpolation. The tangential vectors are chosen using
the left and right eigenvectors (corresponding to simple eigenvalue(s)) of the ROM derived at the
each iteration of Algorithm 2. The final ROM then satisfies H2-optimal necessary conditions.
For time-delay systems, there is not a general rule for choosing the tangential vectors. It is
not discussed in [9] either. We find that choosing b and c as the left and right singular vectors
corresponding to the largest singular value of the reduced transfer function, leads to a time-
delay ROM with good accuracy. However, no H2-optimality can be guaranteed.

In this work, we aim to use a greedy algorithm to iteratively select the interpolation (expan-
sion) points si = ω for the projection matrices V and W in Proposition 1, so that the reduced
transfer function and its first derivative interpolate those of the original transfer function, re-
spectively.

3 Greedy interpolation
This section introduces the proposed methods and presents the greedy algorithms for iteratively
choosing the interpolation points si, i = 1, . . . , l.

The idea is summarized in Algorithm 1. At each step, a point sk = ωk which produces
the L∞-norm of the error (L∞-error) is selected as the new interpolation point. Then the corre-
sponding two matrices Vsk ,Wsk are computed so that

F0(sk) ∈ Range(Vsk),
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Algorithm 1 Schematic process of greedy interpolation for delay systems.
Input: Delay system, frequency interval [ω,ω], maximum number of iterations kmax, deflation

tolerance ε.
Output: Projection matrices V , W such that ∥H(ω) −Hr(ω)∥ < ε for all ω ∈ [ω,ω].

1: Choose initial frequency ω1 ∈ [ω,ω].
2: V ← ∅, W ← ∅.
3: for k = 1, . . . , kmax do
4: Compute Vsk ,Wsk based on Proposition 1 so that H(s) and its first derivative are inter-

polated, respectively, by Hr(s) at sk = ωk.
5: Expand V and W by V = orth{V,Vsk}, V = orth{V,Wsk}, (e.g., using the modified

Gram-Schmidt process with deflation tolerance ε.)
6: Compute new reduced transfer function Hr.
7: Solve the Maximization Problem max

ω∈[ω,ω]
∥H(ω) −Hr(ω)∥ to obtain

ωk+1 ← arg max
ω∈[ω,ω]

∥H(ω) −Hr(ω)∥.

8: if ∥H(ωk+1) −Hr(ωk+1)∥ < ε then
9: return .

10: end if
11: end for

G0(sk) ∈ Range(Wsk).

From (8), when the compact interval [ω,ω] is large enough, max
ω∈[ω,ω]

∥H(iω)−Hr(iω)∥ in Step 7

approximates the L∞-norm of the error, i.e.∥H −Hr∥L∞ . Step 8 indicates the stopping criteria
of the method, i.e., the algorithm stops selecting new interpolation points, once the L∞-norm of
the error is below an error tolerance. This is in agreement with the error bound in Theorem 1.

The remaining issues are the computation of Vsk ,Wsk for each interpolation point in Step
4, and solving the optimization problem in Step 8. If the system matrices of the original delay
system are real matrices, it is desired that the system matrices of the ROM are also real. Note
that according to the definition of the L∞-norm, the interpolation points are selected along the
imaginary axis, so that Vsk ,Wsk are complex matrices. We can instead use

Range(Vsk) ∶= colspan{ReF0(sk), ImF0(sk)},

Range(Wsk) ∶= colspan{ReG0(sk), ImG0(sk)}

to generate real matrices Vsk ,Wsk . This is equivalent to implicitly adding the complex conjugate
of sk as a second interpolation point, due to the equality

Range (ReF0(sk), ImF0(sk)) = Range (F0(sk), F0(sk)) ,

where the identity F0(sk) = F0(sk) is used. The detailed computation of Vsk ,Wsk is described
in Algorithm 2, where a matrix pair Vsk ,Wsk is computed and then orthogonalized against
the columns of the current projection matrices V,W . The orthogonalization process orth{⋅, ⋅}
can be done by, e.g., the modified Gram-Schmidt process with deflation. Finally, Algorithm 2
provides the updated matrix pair V,W . It actually implements Step 4-5 in Algorithm 1.
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Algorithm 2 Update the projection matrices by interpolating at a single point sk.
Input: Current projection matrices V,W , new interpolation point sk.
Output: Updated projection matrices V, W after interpolation at sk.

1: Setup K(sk) = sk∑
d
j=0 e

−skτjEj −∑
d
j=0 e

−skτjAj .
2: F ←K(sk)−1B.
3: G← (K(sk))−TCT .
4: if the system matrices are real then
5: F ← (ReF, ImF ),
6: G← (ReG, ImG).
7: end if
8: V = orth{V,F}.
9: W = orth{W,G}.

10: r1 ← column number of V , r2 ← column number of W .
11: if r1 > r2 then
12: Expand W by r1 − r2 random orthonormal columns.
13: else if r1 < r2 then
14: Expand V by r2 − r1 random orthonormal columns.
15: end if

3.1 Heuristically computing the L∞-norm
The key point of Algorithm 1 is solving the optimization problem in Step 7. A heuristic method
is simply computing ∥H(ω) −Hr(ω)∥ at preassigned samples of ω and selecting one sam-
ple which corresponds to the biggest error. Using this method, Step 7 in Algorithm 1 can be
modified to, ωk+1 ← arg max

ω∈Ξ
∥H(ω) − Hr(ω)∥, where Ξ is a set of samples of ω ∈ R, i.e.

Ξ ⊂ R. Combining Algorithm 2 and the heuristic optimization technique with Algorithm 1
gives the heuristic greedy interpolation Algorithm 3. Note that the original transfer function
H(ω) needs to be computed at all samples in Ξ, but only once. During the iterations, those
values can be repeatedly used. Although it is easy to implement, the method might be unreli-
able, since it is unknown how many samples should be included in Ξ. If too few samples are
included in Ξ, ωk+1 is probably not the global optimal value. As can also be seen from the
simulation results in Section 5, the performance of the method is not stable: it works well for
some examples, while not for others. Often, about 100 samples are sufficient to produce reliable
ROMs, though it is not always the case. This means the original transfer function H(ω) needs
to be evaluated at 100 samples. In the next subsection, we propose a new method for solving the
optimization problem, which is theoretically more robust. We will compare these two methods
in the following sections.

3.2 Computing L∞-norm from the reduced error system
Solving the optimization problem in Step 7 of Algorithm 1 involves computing the original
transfer function at each iteration step, which implies solving a number of linear systems with
the large scale matrix K(s) being the coefficient matrix, i.e.

K(s)xi(s) = bi, i = 1, . . . , p, B ∶= (b1, . . . , bm),
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Algorithm 3 Heuristic greedy interpolation for delay systems
Input: Delay system, a training set Ξ including evenly distributed samples taken from the

frequency interval [ω,ω], maximum number of iterations kmax, tolerance ε.
Output: Projection matrices W , V such that ∥H(ω) −Hr(ω)∥ < ε for all ω ∈ [ω,ω].

1: Pre-compute H(ωi) for all ωi ∈ Ξ.
2: Choose initial frequency ω1 ∈ [ω,ω].
3: V ← ∅, W ← ∅.
4: for k = 1, . . . , kmax do
5: Call Algorithm 2 to expand V and W by interpolating at sk = ωk.
6: Compute new reduced transfer function Hr.
7: Solve the maximization problem max

ω∈Ξ
∥H(ω) −Hr(ω)∥ to obtain

ωk+1 ← arg max
ω∈Ξ

∥H(ω) −Hr(ω)∥.

8: if ∥H(ωk+1) −Hr(ωk+1)∥ < ε then
9: return .

10: end if
11: end for

such that H(s) = CX(s), X(s) ∶= (x1(s), . . . , xm(s)). To avoid computations involving the
original large dimension, an iterative algorithm for computing ∥H∥L∞ is proposed in [11], where
H(s) stands for the transfer function of any large-scale system. Note that He(s) ∶= H(s) −
Hr(s) is actually the transfer function of the following error system

Eej = (
Ej

−Ej,r
) , Aej = (

Aj
−Aj,r

) ,

Be = (
B
Br

) , Ce = (C Cr) , j = 0, . . . , d,

(10)

since

He(s) = Ce (
K(s)

−Kr(s)
)

−1

Be =H(s) −Hr(s). (11)

Therefore the method of computing ∥H∥L∞ in [11] can also be applied to computing ∥He∥L∞ ,
i.e.

∥He∥L∞ = ∥H −Hr∥L∞ ∶= sup
ω∈R

∥H(ω) −Hr(ω)∥. (12)

From (12), we see that the optimization problem in Algorithm 1 is equivalent with computing
∥He∥L∞ . Following the idea in [11], instead of computing ∥He∥L∞ , a local ROM of the error
system, noted as Σ̂e, is first computed, then ∥He∥L∞ is obtained via ∥Ĥe∥L∞ , where Ĥe(s) is
the transfer function of Σ̂e. The ROM Σ̂e is updated iteratively, until the stopping criterion is
satisfied. Since all the matrices involved in computing Ĥe(s) are of reduced sizes, the computa-
tional complexity is expected to be reduced. The ROM of the error system Σ̂e is updated at each
iteration step, such that σmax(Ĥe(s)) satisfies the following Hermite interpolation conditions at
a selected frequency ωk, i.e.

σmax(Ĥe(ωk)) = σmax(He(ωk)), σ′max(Ĥe(ωk)) = σ
′
max(He(ωk)), (13)

10
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where σ′max(⋅) is the first-order derivative of σmax (as a function of ω) at ωk. ωk is the maximizer
of ∥Ĥe(ω)∥L∞ , i.e.

ωk = arg max
ω∈R

∥Ĥe(ω)∥.

It is proved in [11] that when the above Hermite interpolation properties are satisfied, and
when the interpolation points are contained in a bounded interval I ∈ R, the sequences ωk
superlinearly converge to a local maximizer of ∥He(ω)∥2 . Algorithm 4 describes the details
of applying the method from [11] to the computation of ∥He∥L∞ .

Remark 3. In Algorithm 4, the projection matrices W,V are initially computed in Steps 2-7,
and iteratively updated in Steps 13-19. At each iteration, the reduced transfer function Ĥe(s)
computed from W,V is guaranteed to satisfy the Hermitian interpolation property in (13), see
Lemma 3.1 in [11] for the detailed analysis and proof. (⋅)∗ denotes the conjugate transpose of
a matrix. The stopping criterion for Algorithm 4 is

∣ωk − ωk−1∣ < ε or k > kmax.

Algorithm 4 converges locally. In [11], to reduce the possibility of stagnating at a local max-
imizer which is not a global one, r0 initial interpolation points are simultaneously used to
compute V1,W1, instead of only one. The initial interpolation points are chosen in an inter-
val [0, ωmax], where ωmax is problem-dependent. In practical computations, the optimization
is also done in [0, ωmax]. This is because H(s̄) = H(s) for systems with real-valued matrices.
Therefore, the lower bound for ω can be set to zero. The upper bound ωmax also has to be given,
in order to use some optimization solvers, e.g., eigopt suggested in [11] in Step 12. Since
ωmax is usually problem dependent, it is set to a large number if no better choice is available.
Though no global convergence proof is given in [11], the algorithm seems to be fairly robust
and no example for failure is known to the authors.

Combining Algorithm 2 and Algorithm 4 with Algorithm 1, we get the final greedy algo-
rithm for computing the ROM of the delay system (2) which is detailed in Algorithm 5. The only
difference between Algorithm 3 and Algorithm 5 lies in computing ∥He∥L∞ ∶= sup

ω∈R
∥He(ω)∥.

For Algorithm 3, once H(ω) is computed at all samples of ω in Ξ, ∥He(ω)∥ can be eval-
uated quickly within one loop. For Algorithm 5, Algorithm 4 needs to be called to compute
∥He(ω)∥L∞ , where an extra loop of iteration in Step 10-21 must be implemented.

3.3 Implementing the algorithm in subintervals
It is observed that Algorithm 4 may not converge until Ĥe(s) approximates He(s) sufficiently
well, which may result in a ROM Σ̂e of the error system with a large reduced order, especially
when the frequency interval [0, ωmax] is too big. Consequently, the optimization problem asso-
ciated with its transfer function Ĥe(s) in Step 12 of Algorithm 4 may be too costly. To further
improve the efficiency of Algorithm 5, we propose to divide the whole interval into subintervals
and implement Algorithm 4 in subintervals, so that the final interpolation point is selected from
the local optimal frequencies in the subintervals. When each subinterval is small, a ROM Σ̂e

with high accuracy and small reduced order can be built locally, so that the optimization in Step
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Algorithm 4 Computing ∥He∥L∞ using the method in [11]
Input: The error system in (10), transfer function He(s). ω1 ← a random number in R.
Output: ωk = arg max

ω∈R
σ(Ĥe(ω)) ≈ arg max

ω∈R
σ(He(ω))

1: Setup Ke(ωk) = ωk∑
d
j=0 e

−ωkτjEej −∑
d
j=0 e

−ωkτjAej , k = 1, . . ..
2: if m = p then
3: V1 ←Ke(ω1)

−1Be and W1 ← (CeKe(ω1)
−1)∗.

4: else if m < p then
5: V1 ←Ke(ω1)

−1Be and W1 ← (CeKe(ω1)
−1)∗He(ω1).

6: else
7: V1 ←Ke(ω1)

−1BeHe(ω1)
∗ and W1 ← (CeKe(ω1)

−1)∗.
8: end if
9: W =W1, V = V1.

10: for k=2,3,. . . do
11: Form Ĥe = Ĉe (s∑

d
j=0 Êeje

−sτj −∑
d
j=0 Âeje

−sτj)
−1
B̂e, where s = ωk, Êej =

W TEejV, Âej =W
TAejV, B̂e =W TBe, Ĉe = CeV.

12: Set ωk = arg max
ω∈R

σmax(Ĥe(ω)).

13: if m = p then
14: Vk =Ke(ωk)−1Be and Wk = (CeKe(ωk)−1)∗.
15: else if m < p then
16: Vk =Ke(ωk)−1Be and Wk = (CeKe(ωk)−1)∗He(ωk).
17: else
18: Vk =Ke(ωk)−1BeHe(ωk)∗ and Wk = (CeKe(ωk)−1)∗.
19: end if
20: W = orth{W,Wk}, V = orth{V,Vk}.
21: end for

12
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Algorithm 5 Greedy interpolation algorithm by iteratively expanding W,V .
Input: Delay system in (2), frequency interval [ω,ω], maximal number of iterations kmax,

tolerance ε.
Output: Projection matrices W , V such that ∥H(ω) −Hr(ω)∥ < ε for all ω ∈ [ω,ω].

1: Choose initial frequency ω1 ∈ [ω,ω].
2: V ← ∅, W ← ∅.
3: for k = 1, . . . , kmax do
4: Call Algorithm 2 to expand V and W by interpolating at sk = ωk.
5: Compute new reduced transfer function Hr.
6: Call Algorithm 4 to solve the maximization problem max

ω∈R
∥H(ω)−Hr(ω)∥ and obtain

ωk+1 ← arg max
ω∈R

∥He(ω)∥.

7: if ∥H(ωk+1) −Hr(ωk+1)∥2 < ε then
8: return .
9: end if

10: end for

12 of Algorithm 4 can be quickly implemented in each subinterval. As a result, the overall
computational costs are reduced.

Recall that Algorithm 5 iteratively computes interpolation points ωk, k = 1, . . . ,K, so
that the reduced transfer function Hr interpolates H at those points. This means the error
He(ω) = ∥H(ω) −Hr(ω)∥ is zero at these points. This particularly indicates that He(ω) can
never be concave in intervals that contain ωk as an interior point. For this reason, it is natural to
use the interpolation points as the endpoints of the subintervals.

Algorithm 6 modifies the greedy interpolation Algorithm 5 in a way that Algorithm 4 is
only called to solve the maximization problem on subintervals [ωk−1, ωk], k > 1. We thus get
solutions to the maximization problem

e★[ωk−1,ωk] = ∥He(ω
★
[ωk−1,ωk])∥ = max

ω∈[ωk−1,ωk]
∥He(ω)∥ (14)

on each subinterval [ωk−1, ωk]. The solution to the overall maximization problem can then be
found by comparing the maxima e★[ωk−1,ωk]

for the subintervals.
Algorithm 6 brings an additional advantage. In the kth iteration, one new expansion point

ωk (in Step 16) is added, splitting the interval [ωī−1, ωī] into two new subintervals. For all the
other intervals, the local maximizers ω★[ωi−1,ωi] can be further used as the initial guess for the
solution of (14) in the next iteration. When ωk is found, the indices of some ωi need to be
re-ordered, and the index of the endpoint ω needs to be increased by one, to make ωi ≤ ωi+1 for
all i ≤ k + 1, this is done in Step 8 of Algorithm 6.

In fact, not all the maximizers of the subintervals need to be updated at each iteration
step. Through addition of the new interpolation point ωk in the k-th iteration of Algorithm
6, the interval [ωī−1, ωī] containing ωk is divided into two new subintervals. On these new
subintervals, the shape of ∥H(ω) −Hr(ω)∥2 will differ a lot from the previous iteration, as
∥H(ωk) −Hr(ωk)∥2 = 0, while it was a maximum at the previous iteration. Thus, new maxi-
mizers e★[ωī−1,ωk]

, e★[ωk,ωī]
in these new intervals should be computed.

On the other hand, there are also k − 1 old intervals which are not divided, and whose new
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Algorithm 6 Greedy interpolation algorithm using subintervals.
Input: Delay system in (2), frequency interval [ω,ω], maximal number of iterations kmax,

tolerance ε.
Output: Projection matrices W,V ∈ Cn×r such that the reduced transfer function Hr satisfies

∥H(ω) −Hr(ω)∥ < ε,∀ ω ∈ [ω,ω].
1: ω0 ← ω.
2: V ← ∅, W ← ∅.
3: ω1 ← the first (randomly) chosen interpolating point.
4: for k = 1,2, . . . , kmax do
5: Call Algorithm 2 to expand V and W by interpolation at s = ωk.
6: Compute transfer function He(s).
7: ωk+1 = ω.
8: Reorder the indices i of the endpoints ωi to make ω0 ≤ ω1⋯ ≤ ωk+1.
9: for each interval [ωi−1, ωi], 1 ≤ i ≤ k + 1 do

10: call Algorithm 4 to compute the maximizer ω★[ωi−1,ωi] and maximal value e★[ωi−1,ωi]
of ∥He(ω)∥2 inside [ωi−1, ωi], with the initial guess as the previously computed
ω★[ωi−1,ωi], if it exists.

11: end for
12: [ωī−1, ωī]← the interval with maximal value: ī = arg max

1<i≤k+1
e★[ωi−1,ωi].

13: if e★[ωī−1,ωī]
< ε then

14: return .
15: end if
16: ωk+1 ← ω★[ωī−1,ωī]

.
17: Divide the interval [ωī−1, ωī] into two subintervals: [ωī−1, ωk+1], [ωk+1, ωī].
18: end for

maxima e★[ωi−1,ωi] need to be computed too. However, there will be a lot of intervals where
e★[ωi−1,ωi] does not change significantly after an update, especially in the later stages of the algo-
rithm. This observation motivates a lazy approach in order to further reduce the computational
efforts. The idea is that instead of computing new maximizers ω★[ωi−1,ωi] on all old intervals, the
old maximizers are first compared with the maximizers e★[ωī−1,ωk]

, e★[ωk,ωī]
in the newly divided

subintervals. If any of the old maximizers, say ω★[ωi0−1,ωi0
] once again produces the maximal

value e★[ωi0−1,ωi0
] among all of them, the maximization problem in the interval which contains

ω★[ωi0−1,ωi0
] is then solved to obtain an updated new maximizer. The old maximizer on the other

intervals need not be updated. If it happens that the finally chosen maximal value e★[ωī−1,ωī]
is below the error tolerance, then the maximization problems in all the other untouched inter-
vals need to be solved to get their new maximizer in order not to miss the global maximizer.
Algorithm 7 illustrates the details of the approach.

3.4 Methods for the optimization problem in Algorithm 4
All the above three algorithms repeatedly need to call Algorithm 4 to solve the optimization
problem and find arg max

ω∈R
∥He(ω)∥. The question arises what method to use for the maxi-
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Algorithm 7 Greedy interpolation algorithm on selected subintervals.
Input: Delay system in (2), frequency interval [ω,ω], maximal number of iterations kmax,

tolerance ε.
Output: Projection matrices V,W ∈ Cn×r such that ∥H(iω) −Hr(iω)∥2 < ε,∀ ω ∈ [ω,ω].

1: V ← ∅, W ← ∅, r ← 0.
2: ω1 ← the first randomly chosen interpolation point.
3: ω−1 ← ω, ω0 ← ω.
4: I ← {[ω−1, ω0]}. % Set of all subintervals.
5: ī = 0. % ī defines the interval in I containing the next interpolation point.
6: for k = 1,2, . . . do
7: Use Algorithm 2 to expand V and W by interpolating at s = ωk.
8: Divide the interval [ωī−1, ωī] into two intervals [ωī−1, ωk] and [ωk, ωī] and delete

[ωī−1, ωī] from I .
9: Call Algorithm 4 to compute the maximizers ω★[ωī−1,ωk]

and ω★[ωk,ωī]
and maximal values

e★[ωī−1,ωk]
and e★[ωk,ωī]

in the intervals [ωī−1, ωk] and [ωk, ωī], respectively.
10: Compare e★[ωī−1,ωk]

and e★[ωk,ωī]
with other e★[ωi−1,ωi] in the non-divided intervals and

choose a maximum.
11: Define the new interval with the newly chosen maximum: [ωī−1, ωī]← the interval in I

with the maximum.
12: while [ωī−1, ωī] is one of the non-divided intervals and its maximizer is not yet updated

do
13: Use Algorithm 4 to recompute the maximizer ω★[ωī−1,ωī]

in [ωī−1, ωī].
14: Compare all e★[ωi−1,ωi] of all intervals and choose a new maximum.
15: Repeat Step 12.
16: end while
17: if e★[ωī−1,ωī]

< ε then
18: Use Algorithm 4 to update ω★[ωi−1,ωi] and e★[ωi−1,ωi] for all subintervals in I where

these values have not been updated yet.
19: Choose a new maximum: [ωī−1, ωī].
20: if e★[ωī−1,ωī]

< ε then
21: return
22: end if
23: end if
24: ωk+1 ← ω★[ωī−1,ωī]

.
25: end for
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mization problem: Step 12 in Algorithm 4. We propose two possibilities: one is the software
eigopt suggested and used in the original paper [11], the other possibility is a sample ap-
proach analogous to what is used in Algorithm 3.

• Eigopt is a software package based on evaluating the objective function and its deriva-
tive at quite a large number of points, and then using the so-called quadratic support
functions to estimate ∥He(ω)∥2 in a certain frequency range.

The advantages of using Eigopt is the theoretical validation in [11], as well as the
exploitation of the first derivative of the objective function, which we can easily compute
according to Lemma 2 below. Extremely high computational cost is the most obvious
disadvantage. Please refer to the results in Table 2 in Section 5.

• A sample approach. We evaluate the objective function ∥Ĥe(ω)∥2 at N samples in a
sample set Ξ. Then we use arg max

ω∈Ξ
∥Ĥe(ω)∥ to approximate arg max

ω∈R
∥He(ω)∥ . The

only difference of this approach from Step 8 of the heuristic Algorithm 3 is that instead of
computing ∥He(ω)∥2 which involves computing H(ω) at all samples in Ξ, ∥Ĥe(ω)∥2

with reduced dimension is computed. Here, the sample set Ξ might be different from that
used in Algorithm 3, depending on the interval in which the optimization is implemented.
For Algorithm 5, the samples are taken from the whole interval, so Ξ could be the same
as the one for Algorithm 3. For the other algorithms, Ξ only contains samples in a subin-
terval where the optimization is implemented. The number of samples in such a set Ξ can
be much smaller.

Lemma 2. Consider a complex matrix function M ∶ C↦ Cp×m that is analytic in the point iω0,
ω0 ∈ R. Suppose the largest singular value σmax(M(ω0)) is simple, and let u0 and v0 be the
left and right singular vectors for that singular value, with ∥u0∥2 = ∥v0∥2 = 1. Then the singular
value function

ϕ ∶ Ω→ R, ϕ(ω) = ∥M(ω)∥2 = σmax(M(ω)), (15)

defined on a small real neighborhood Ω ⊂ R of ω0, is two times differentiable in ω0 and its
derivatives are given by

dϕ

dω
(ω0) = − Im (u∗0M

′v0) and

d2ϕ

dω2
(ω0) = −Re (u∗0M

′′v0) − (
M ′v0

M ′∗u0
)

∗

(
ϕ(ω0)Ip −M
−M∗ ϕ(ω0)Im

)

+

(
M ′v0

M ′∗u0
)

with the abbreviations M =M(ω0), M ′ = dM
ds (ω0), and M ′′ = d2M

ds2 (ω0). Here, (⋅)+ denotes
the Moore-Penrose pseudo-inverse of a matrix.

Proof. The eigenvalues of the matrix function

Z ∶ Ω→ C(m+p)×(m+p), Z(ω) = (
0 M(ω)

M(ω)∗ 0
)

are equal to the singular values of M(ω) as well as their negative counterparts, so ϕ(ω) is
a simple eigenvalue of Z(ω). The differentiability and derivative formulas are proven by the
results on eigenvalue differentiation in [13, 14].
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4 Comparison of computational costs
In this section, we analyze the computational costs of Algorithm 3 and Algorithm 7 to show
the main difference between the two methods. The computational costs of Algorithm 5 and 6
can also be analogously estimated. For simplicity, we assume the delay system has the same
number of inputs and outputs, i.e. m = p.

• The Heuristic Algorithm 3: Although the original transfer function needs to be com-
puted at each sample in Ξ, this is done only once, and can be repeatedly used in the
for loop in Algorithm 3. This means the full system (original transfer function) needs
to be evaluated at least N times, where N is the cardinality of the set Ξ. Note that at
Step 5 of Algorithm 3, we need to compute Vsk ,Wsk by Algorithm 2, where in Step 2-3,
m+p = 2m linear systems of full dimension need to be solved. The computational costs of
solving the linear systems are almost equal to evaluating the original transfer function at
sk twice. Therefore, the total number of full system evaluations in Algorithm 3 by using
the Heuristic optimization method is 2K+N , whereK is the total number of iterations of
Algorithm 3. In the next section, we find that in most cases N = 100 is sufficient to give a
good ROM with error less than ε = 1×10−4. Note that to solve the maximization problem
in Step 7, the ROM also needs to be evaluated for N times at each iteration. Finally, there
will be KN ROM evaluations.

• Algorithm 7: as discussed in Section 3.3, Algorithm 7 implements the interpolation
method on selected subintervals, and is the most efficient choice compared to Algorithm 5
and 6. We use this algorithm as an example to analyze the computational costs. Algo-
rithm 4 actually contributes to the main computational costs, because computation of the
projection matrices Vi,Wi in Steps 2-8 and Steps 13-19 include the matrix computations
of the FOM. Computational costs for a single pair of Vi,Wi are equivalent to two original
transfer function evaluations. If Algorithm 4 takes l1 (on average) iterations to converge,
then it needs 2l1 evaluations of the full system (transfer function) in each subinterval and
at each iteration of Algorithm 7. Assume that l2 (on average) subintervals have been
updated at each iteration step, and K̃ iterations have been taken by Algorithm 7, then the
total number of full system evaluations should be 2(l1 ∗ l2 + 1)K̃ by considering the full
system evaluation in Step 7 when expanding V,W from Algorithm 2. The optimization
problem (Step 12) in Algorithm 4 only involves ROM evaluations. If Ñ ROM evalua-
tions need to be done in Step 12 of Algorithm 4, then there will be Ñ ∗ l1 ∗ l2 ∗ K̃ ROM
evaluations in total.

In the next section, We compare the proposed Algorithm 3, Algorithms 5-7 by their appli-
cations to four delay systems from electromagnetic (EM)/circuit design.

5 Numerical results
This section demonstrates the simulation results of Algorithm 3 and Algorithms 5-7 for solving
four delay systems, which come from modelling of EM systems through the PEEC method [15]
and have tens to hundred of delays. Algorithms 5- 7 present three different ways of comput-
ing the approximate L∞-norm, respectively, i.e. Algorithm 5 considers the whole frequency
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interval as a single interval; Algorithm 6 divides the frequency interval into subintervals, and
implements optimization (Algorithm 4) in each subinterval; Algorithm 7 divides the frequency
interval into subintervals, but only implements optimization (Algorithm 4) in selected subinter-
vals. For convenience of comparison, we name Algorithm 3 and Algorithms 5-7 as follows,

• H-greedy: Algorithm 3 (Heuristic).

• OI-greedy: Algorithm 5 (One interval).

• ASI-greedy: Algorithm 6 (All subintervals).

• SSI-greedy: Algorithm 7 (Selected subintervals).

The results for Example 1 and the smaller model of Example 2 are obtained on a laptop with
Intel(R) Core (TM) i7-5500U CPU@2.40GHz. Simulations for the larger model of Example 2
and Example 3 are run on a computer server with 4 Intel Xeon E7-8837 CPUs running at 2.67
GHz. 1TB main memory, split into four 256 GB partitions.

Example 1 (Transmitting and receiving dipole antennas). As the first model, a couple of trans-
mitting and receiving dipole antennas is considered, see Figure 1. The length, width and thick-
ness of the dipole conductors are ` = 10 cm, w = 1 mm, and t = 1 mm, respectively; the gap
between the dipole conductors is g = 1 mm and the distance from transmitter to receiver is d =
10 cm. Both the dipoles are terminated on a 73 Ω resistor. The delayed partial element equiv-
alent circuit (PEEC) method [15] has been used to describe the electromagnetic problem in a
circuit form which is described by the DDEs in (2). The number of unknowns for the dipoles
geometry is n = 4016 with 74 different delays besides the delay-less portion of the system. The
model has 2 inputs and 2 outputs.

We first compare Algorithm 3 and Algorithm 5-7 in Table 1. The termination criterion
for all algorithms is chosen as ∥H(ω) − Hr(ω)∥2 < ε for all ω ∈ [0, ωmax], with tolerance
ε = 1 × 10−4. For this model, ωmax = 2 × 1010. Algorithm 4 is commonly used in Algorithm 5-7.
For the optimization problem in Step 12 of Algorithm 4, we use the sample approach described
in Section 3.4. ε = 1×10−4 is also used as the stopping criterion of Algorithm 4 (see Remark 3).
In Table 1, and all the tables below (if applicable),

Table 1: Comparison of the proposed algorithms for the dipole antennas.
Method name Runtime r Validated error FOM eval. ROM eval.
H-greedy, N = 50 1,567s 28 1.3e-3 64 350
H-greedy, N = 100 3,507s 32 2.2e-05 116 800
OI-greedy, N = 50 27,716s 28 5.6e-04 70 1,785
OI-greedy, N = 100 78,174s 32 2.2e-05 92 4,646
ASI-greedy, N = 5 12,797s 28 2.7e-3 250 750
ASI-greedy, N = 10 25,872s 28 3.6e-05 316 1,738
SSI-greedy, N = 5 8,941s 28 3.3e-3 196 546
SSI-greedy, N = 10 20,552s 28 3.6e-05 262 1,364
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• r is the order of the ROM.

• Runtime: the total runtime of each algorithm.

• Validated error: The reduction results are validated on 1000 sample points between 0
and ωmax. The validated error is the maximum value of ∥H(ω) −Hr(ω)∥2 on the 1000
sample points.

• FOM eval.: number of full system evaluations as analyzed in Section 4.

• ROM eval.: number of ROM evaluations as analyzed in Section 4.

• N : number of samples in Ξ taken from a certain frequency interval. For H-greedy or
OI-greedy, the frequency interval is the whole interval [0, ωmax]. For ASI-greedy or SSI-
greedy, the samples are taken from a single subinterval [ωi−1, ωi] ∈ [0, ωmax], therefore N
is much smaller.

• Iter. i: i-th iteration of an algorithm.

• Inter.ω: the interpolation frequency ω; Inter.f : the interpolation frequency f , ω = 2πf .
For each model, ω is the interpolation point selected at each iteration. For ease of nota-
tion, we only list the values of ω or f in the relevant tables below.

• Offline time: the time of constructing the ROM.

We see that for N = 50, validated errors reveal that the ROMs computed by both H-greedy
and OI-greedy have errors larger than the error tolerance. Similar cases happen to the ASI-
greedy and SSI-greedy forN = 5. This means using a heuristic optimization method by deciding
the optimizer from a finite number of candidate samples cannot always give good results. In
order to ensure obtaining valid ROMs, dense enough sample sets need to be used. For all the
algorithms above, N = 100 for the whole interval, or N = 10 for each subinterval are sufficient
to give results with errors below the error tolerance.

Among the algorithms giving accurate results, the H-greedy algorithm with N = 100 needs
much less time than the other algorithms, therefore, is most efficient. This can be seen from the
number of FOM evaluations and ROM evaluations needed by each algorithm shown in Table 1.
In Section 4, we have analyzed the FOM and ROM evaluations involved in H-greedy and SSI-
greedy, respectively. From Table 1, we see SSI-greedy in fact needs more FOM evaluations
than H-greedy. Besides, many ROM evaluations have been done by SSI-greedy. Therefore,
it is not surprising that it takes more time than H-greedy. Comparing OI-greedy with ASI-
greedy and SSI-greedy, we see that OI-greedy has many more ROM evaluations than the other
two algorithms, though it needs less FOM evaluations. Consequently, OI-greedy takes much
longer to converge. ASI-greedy outperforms OI-greedy, which indicates the advantage of doing
optimization in each subinterval over optimization in the whole large interval. SSI-greedy is
more efficient than ASI-greedy, showing the efficiency of implementing optimization only in
the selected subintervals.

Next, we compare the two optimization solvers used in Algorithm 4, the algorithm com-
monly employed by OI-greedy, ASI-greedy and SSI-greedy. We use SSI-greedy (Algorithm 7)
to show the results listed in Table 2. The sample approach leads to much less runtime than eigopt.
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Table 2: Comparison of optimization solver used in Algorithm 4.
Method name Runtime r Validated error FOM eval. ROM eval.
Eigopt 530,180s 32 3.4739e-05 388 18,802
Sample approach, N = 10 20,552s 28 3.6301e-05 262 1,342

It is clear from the number of FOM and ROM evaluations used by each algorithm. eigopt
needs many more ROM evaluations than the sample approach, indicating that ROM evaluations
cannot be neglected when they reach a certain amount. The validated errors show both solvers
give rise to accurate ROMs. Figure 2(a) shows the ∥H(ω)−Hr(ω)∥L∞ error decay computed
by each algorithm.

ASI-greedy and SSI-greedy iterate less than the other two algorithms. This may illustrate
the benefit of performing optimization in subintervals. OI-greedy needs the same number of
iterations as H-greedy. This, nevertheless, does not mean it converges faster, since it has one
more level of inner iterations (Algorithm 4) than H-greedy. Similarly, ASI-greedy and SSI-
greedy consume the same number of iterations and more interesting is that their error decay
behaves exactly the same. This means, both algorithms have chosen the same interpolation
points ωk at each iteration. It justifies the robustness of adaptively selecting the subintervals by
the SSI-greedy. As optimization is only done in the selected subintervals, SSI-greedy converges
much faster than ASI-greedy as shown in Table 1.

Figure 2(b) plots the error decay w.r.t. the selected frequency interpolation points at each
iteration of H-greedy and SSI-greedy, respectively. Note that instead of ω, only the frequency
ω is plotted. The midpoint ω with ω = 1 × 1010 is taken as the initial interpolation point for
SSI-greedy, while H-greedy uses ω with ω = arg max

ω∈[0,ωmax]
∥H(ω)∥2 as the initial interpolation

point. Further different points are selected according to the different errors of the reduced
transfer function produced by the two algorithms at each iteration. Define the subintervals (of
ω) divided by the interpolation points selected by SSI-greedy with N = 10 according to their
appearances as

I1 = [1e4,1e10], I2 = [1e10,2e10], I3 = [1e4,2.2e09], I4 = [2.2e09,1e10],
I5 = [2.2e09,5.e09], I6 = [5.e09,1e10], I7 = [2e10,2e10], I8 = [1e10,1.4e10],
I9 = [1.4e10,2e10], I10 = [1.4e10,1.8e10], I11 = [1.8e10,2e10], I12 = [1e10,1.2e10],
I13 = [1.2e10,1.4e10].

Table 3 shows which subintervals have been selected for updating at each iteration of SSI-
greedy. The local maximizers are those points at which the error ∥Ĥe(s)∥2 is maximized in
their corresponding subintervals. The number of the local maximizers is equal to the number
of current total subintervals. Note that, once a new interpolation point is selected, the interval
which includes the point is divided into two subintervals. The interval will be replaced by the
two subintervals in the later iterations.

At each iteration, if a subinterval is not updated, its corresponding local maximizer remains
unchanged. For example, at Iter.2, I2 is not updated, so its local maximizer 1.4e10 remains
unchanged. At Iter.3, I3 is not updated, so its local maximizer 1e4 remains unchanged. With
the number of subintervals increasing, the number of local maximizers also increases. To keep
the table within the page size, we do not list all the local maximizers at Iter. 4-7, except the
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Table 3: Selected intervals by SSI-greedy (N = 10) for the dipole antennas.
Iterations Inter. ω Current all intervals Selected intervals Local maximizers
Iter. 1 1e10 I1, I2 I1, I2 2.2e9, 1.4e10
Iter. 2 2.2e09 I2, I3, I4 I3, I4 1e4, 5e9, 1.4e10
Iter. 3 5.e09 I2, I3, I5, I6 I2, I5, I6 1e4, 4.2e9, 7.4e9, 2e10
Iter. 4 2e10 I2, I3, I5-I7 I2, I3, I7 1e4,..., 1.4e10, 2e10
Iter. 5 1.4e10 I3, I5-I9 I5, I6, I8, I9 1e4, ..., 1.8e10, 2e10
Iter. 6 1.8e10 I3, I5-I8, I10, I11 I8, I10, I11 1e4, ..., 1.2e10, ...
Iter. 7 1.2e10 I3, I5-I7, I9-I13 I3, I5-I7, I10-I13 5.5e8, 3.8e9, 7.4e9, ...

Table 4: Runtime for the dipole antennas.
FOM runtime 21,580s over 1000 frequency samples.

Method ROM runtime Offline time Speed-up
H-greedy, N = 100 19.5s 3,507s 6.1
SSI-greedy, N = 10 4s 20,552s 1.1

FOM runtime 215,200s over 10,000 frequency samples.
Method ROM runtime Offline time Speed-up
H-greedy, N = 100 140s 3,507s 59
SSI-greedy, N = 10 119s 20,552s 10

one which is selected as the interpolation frequency for the next iteration. It is clear that the
interpolation frequencies in the second column of Table 3 are selected from the local maximizers
from the last iteration. Except for the first iteration, the number of updated subintervals is always
less than the number of all the subintervals, which further justifies the advantage of SSI-greedy
over ASI-greedy.

In Table 4, we compare the runtime spent on computing the transfer function H(s) of the
FOM at 1000 frequency points with the runtime of computing the reduced transfer function
Hr(s) at the same frequencies. We use the two algorithms: H-greedy and SSI-greedy for
comparison. It can be seen that simulating the ROM is much faster than simulating the FOM.
By including the offline time of constructing the ROM, we have achieved the best speed-up
factor of 6.1. However, the SSI-greedy has only a little speed-up for this model. Nevertheless,
if the FOM needs to be evaluated at more frequency points, e.g., over 10,000 frequency points,
then speed-ups of 59 and 10 are obtained, respectively. Much better results have been obtained
for the following splitter model.

Example 2 (Three port splitter). The second example is a three-port microstrip power-divider
circuit has been modeled. The structure is shown in Fig. 3 (P1, P2 and P3 denote the ports).
The dimensions of the circuit are [20, 20, 0.5] mm in the [x, y, z] directions and the width of
the microstrips is set as 0.8 mm. Furthermore, the dimensions lX1, lY 1, and lY 3 are 9, 7.2
and 7.2 mm, respectively. The relative dielectric constant is εr = 2.2. As before, the delayed
PEEC method [15] has been used to describe the electromagnetic problem and cast it in a
circuit form which admits a DDE model (2). We use two different mesh sizes to derive two
systems with different numbers of unknowns. The first system has n = 5,019 unknowns with 88
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Table 5: Comparison of the proposed algorithms for the splitter with n = 5,019.
Method name Runtime r Validated error FOM eval. ROM eval.
H-greedy, N = 50 2,295s 30 5.1e-03 66 400
H-greedy, N = 100 4,500s 48 6.7949e-05 116 400
SSI-greedy, N = 5 8,267s 48 8.2827e-05 288 816
SSI-greedy, N = 10 9,850s 48 8.1736e-05 282 1,463

Table 6: Comparison of the proposed algorithms for the splitter with n = 10,626.
Method name Runtime r Validated error FOM eval. ROM eval.
H-greedy, N = 50 18,291s 60 1.6 70 500
H-greedy, N = 100 37,204s 66 1e-02 122 1100
SSI-greedy, N = 5 97,662s 84 4.3159e-05 552 1572
SSI-greedy, N = 10 121,830s 78 7.2937e-05 600 3157

different delays besides the delay-less portion of the system. The frequency range of this system
is [0, ωmax] = [0,2π × 1010]. The second system has n = 10,626 unknowns with 93 delays. The
frequency range of the second system is [0, ωmax] = [0,4π × 1010].

Table 5 and Table 6 show simulation results for the three port splitter. Here, the results of
OI-greedy and ASI-greedy are not presented, as they are much less efficient than SSI-greedy.
The results of SSI-greedy using the optimization solver eigopt is not shown either, because
of its many inner-loop iterations taken by Algorithm 4 and the resulting extremely long runtime.
Unfortunately, H-greedy cannot provide sufficiently accurate ROMs for the three-port splitter
model in general, except for the smaller system with N = 100. The results are not surprising for
this heuristic algorithm. If N is further increased, better results can be obtained. However, this
requires some try-and-error approach and is not fully automatic. SSI-greedy produces ROMs
meeting the error requirement ε = 1 × 10−4 for both systems of this model. H-greedy needs
less FOM and ROM evaluations and therefore uses less runtime than SSI-greedy. Trends of
the error changes ∥H(ω) −Hr(ω)∥L∞ of each algorithm for the smaller system are plotted in
Figure 4(a). For each algorithm, the two different cases of different N have almost the same
error decay in the first few 2-3 iterations, implicating the same interpolation points ωk have been
computed. Figure 4(b) indicates the error decay w.r.t. the selected interpolation points at each
iteration of H-greedy and SSI-greedy, respectively.

Analogously, we list in Table 7 the interpolation frequencies, selected subintervals, as well
as the local maximizers computed by SSI-greedy for the splitter model with smaller size n =

5,019. The subintervals (of f ) appearing in the SSI-greedy iteration are

I1 = [1e4,5e9], I2 = [5e9,1e10], I3 = [1e10,1e10], I4 = [1e4,1.2e9],
I5 = [1.2e9,5e9], I6 = [5e9,7.3e9], I7 = [7.3e9,1e10], I8 = [7.3e9,9.3e9],
I9 = [9.3e9,1e10], I10 = [1.2e9,3e9], I11 = [3e9,5e9] I12 = [1e4,1e4],
I13 = [1e4,6.5e6], I14 = [6.5e6,1.2e9],

To avoid repetition, we do not explain the results in detail. By comparing column 3 and column
4, it can be seen that optimization is performed only in some selected subintervals at most
iteration steps.
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Table 7: Selected intervals by SSI-greedy (N = 10) for the splitter with n = 5,019.
Iterations Inter.f Current all intervals Selected intervals Local maximizers
Iter. 1 5e9 I1, I2 all 1.2e9, 1e10
Iter. 2 1e10 I1-I3 all 1.2e9, 7.3e9, 1e10
Iter. 3 1.2e9 I2-I5 I2, I4, I5 1e4, 3e9, 7.3e9, 1e10
Iter. 4 7.3e9 I2-I7 I4-I7 1e4, 9.3e9,..., 1e10
Iter. 5 9.3e9 I3-I6, I8-I9 I5-I6, I8-I9 1e4, 3e9,..., 1e10
Iter. 6 3e9 I3-I4, I6, I8-I11, I4, I10-I11 1e4, ...,9.7e9
Iter. 7 1e4 I3-I6, I8-I9, I11-I12 I4, I12 1e4, 6.5e6,...,1e10
Iter. 8 6.5e6 I3, I6, I8-I14 all 1e4, 1.7e5,...

Table 8: Runtime for the splitter
FOM with n = 5,019, runtime 30,775s over 1000 frequency samples.

Method ROM runtime Offline time Speed-up
H-greedy, N=50 11.7s 2,283s 17
H-greedy, N=100 10s 4,490s 8.5
SSI-greedy, N = 5 11s 8,256s 7.9
SSI-greedy, N = 10 11s 9,839s 5
FOM with n = 10,626, runtime 257,670s over 1000 frequency samples.
Method ROM runtime Offline time Speed-up
H-greedy, N=50 16.2s 18,275s 14.1
H-greedy, N=100 16.5s 37,187s 6.9
SSI-greedy, N = 5 26.8s 97,635s 2.6
SSI-greedy, N = 10 20s 121,810s 2.1

In Table 8, we compare the runtime spent on computing the transfer function H(s) of the
FOM with the runtime of computing Hr(s) at 1,000 frequency points. Simulating the ROM is
finished within seconds. Again, H-greedy has much better speed-ups than SSI-greedy. How-
ever, the ROMs with the best speed-ups by H-greedy are not reliable as shown in Table 5 and
Table 6: the ROM errors are still much larger than the error tolerance. We compare the ac-
curacy of the transfer functions computed from the ROMs with the original transfer function
in Figure 5. Since the two models are multi-input and multi-output, the transfer functions are
matrices. We only compare the transfer function from input port 1 to output port 1, and we
have similar observations on the transfer functions associated with other input-outputs. The
magnitudes of the transfer functions are plotted. It is seen that all ROMs there produce accurate
transfer functions for both models, though the L∞-error of the ROM obtained by H-greedy with
N = 100 is still larger than the error tolerance (see the validated error in Table 6). This is be-
cause the L∞-error is neither the error of the magnitude nor the error of the phase of the reduced
transfer function. However, it contributes to the error bound for the output error in (9), when
(varying) inputs are applied to the system and can be an indicator for choosing the expansion
points.

Example 3 (A multilayer irregular power bus model). The geometrical details of the model are
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Table 9: Comparison of the proposed algorithms for the power bus model with n = 13,048.
Method name Runtime r Validated error FOM eval. ROM eval.
H-greedy, N = 50 36,605s 96 8.7e-2 66 400
H-greedy, N = 100 77,511s 132 4.5e-03 122 1100
SSI-greedy, N = 5 167,300s 156 1e-03 464 1314
SSI-greedy, N = 10 232,110s 156 2.3-03 560 2937

Table 10: Runtime for the power bus model.
FOM with n = 13,048, runtime 487,590s over 1000 frequency samples.
Method ROM runtime Offline time Speed-up
H-greedy, N=50 41.7s 36,563s 13.3
H-greedy, N=100 78.9s 77,432s 6.2
SSI-greedy, N = 5 108s 167,202s 2.9
SSI-greedy, N = 10 109s 232,001s 2.1

described in Figure 6. The thicknesses of conductors and dielectrics are t = 50µm and h =

700µm, respectively. The relative permittivity of the dielectric is εr = 4.1 and the conductivity
of conductors is σ = 5.8 × 107 S

m . There are 6 input ports and 6 output ports. All the ports are
terminated with 10Ω resistors. The delayed PEEC method [15] has been used to describe the
electromagnetic problem which results in a DDE model with n = 13,048 unknowns and 118
different delays. The frequency range of the model is [0, ωmax] = [0,4π × 109].

Table 9 presents the computational results of the proposed algorithms. To avoid redundancy,
we do not show the selected intervals and local maximizers of the SSI-greedy algorithm, as
those in Table 3 and Table 7. SSI-greedy still takes much longer time than H-greedy to converge.
However, it achieves better accuracy than H-greedy as can be seen from the validated errors,
though they are all larger than the error tolerance. It is worth pointing out that SSI-greedy with
N = 5 gets even better accuracy than it with N = 10. This implicates that more robust and
efficient optimization solvers (Step 12) used in Algorithm 4 should be proposed in the future.

In Figure 7, we plot the transfer function of the original model and those of the ROMs
computed with H-greedy and SSI-greedy, respectively. It is shown that both reduced transfer
functions match the original transfer function very well, though the desired error tolerance is
not met everywhere.

In Table 10, we compare the runtime spent on computing the transfer function H(s) of the
FOM with the runtime of the proposed algorithms. ComputingH(s) needs almost 6 days, while
computing Hr(s) at the same 1,000 frequency points is done within a few seconds. Taking the
offline time into consideration, we have achieved speed-up factors between 2 and 14. Finally,
it should be pointed out that for all the examples, the offline time is done only once. If further
simulations need to be implemented, e.g., by varying the inputs, the ROM can be further used
as surrogate without being reconstructed, and only online ROM simulations are implemented.
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6 Conclusions
Simulating large-scale systems with many delays is a tough task. In this work, greedy inter-
polation algorithms for reduced order modeling of time delay systems with many delays are
proposed. The interpolation points are selected iteratively according to the L∞-error. Several
techniques are proposed for computing the L∞-error. While the heuristic algorithm H-greedy
is faster than the other algorithms based on optimization, the SSI-greedy algorithm is more ac-
curate. In general, the proposed algorithms H-greedy and SSI-greedy have gained noteworthy
accelerations as compared to full simulations. As future work, on the one hand, more practical
and fast-to-compute error estimators will be developed in order to replace the L∞-error bound to
improve the efficiency of the greedy algorithms. On the other hand, the efficiency of Algorithm
4 for solving large-scale systems should be further improved to make the SSI-greedy algorithm
more attractive in practical applications.
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Figure 1: Transmitting and receiving dipole antennas.

(a) (b)

Figure 2: L∞ error behavior, dipole antennas.
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Figure 3: The three-port microstrip power-divider circuit.
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(a) (b)

Figure 4: L∞ error behavior, splitter with n = 5,019.

(a) (b)

Figure 5: Comparison of the transfer function from port 1 to port 1. Left: dipole antennas, right:
splitter with n = 10,626.
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Figure 6: The multilayer irregular power bus.

(a) (b)

Figure 7: Comparison of the transfer function for the power bus model from port 1 to port 1.
Left: Magnitudes of the transfer functions. Right: Magnitude of the error functions.
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