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Abstract The quantitative inspection of unknown targets or bodies by means of microwave tomography requires a proper 

modeling of the field scattered by the structures under test, which in turn depends on several factors related to the adopted 

antennas and measurement configuration. In this paper, a multifrequency tomographic approach in nonconstant-exponent 

Lebesgue spaces is enhanced by a preliminary step that processes the measured scattered field with a neural network based on 

long short-term memory cells. In the considered cases, this approach allows dealing with measurements in three-dimensional 

settings obtained with non-ideal antennas and measurement points, while retaining a canonical two-dimensional formulation of 

the inverse problem. The adopted data-driven model is trained with a set of simulations of cylindrical targets performed with a 

finite-difference time domain method, considering a simplified bistatic measurement configuration as an initial case study. The 

inversion procedure is then validated with numerical simulations involving cylindrical and spherical structures. 

 
 

Index Terms—Microwave imaging, inverse scattering, long short-term memory. 

 

 

I. INTRODUCTION1 

HE RECENT advances in microwave imaging are 

paving the way to many interesting scenarios, which 

range from innovative biomedical diagnostics [1], [2] to 

security applications [3], [4] and civil engineering [5].  

The attractive possibility of analyzing unknown targets 

and bodies by means of microwave radiation has stimulated 

the research community for decades and is nowadays at a 

turning point [6], [7]. On the one hand, the development of 

advanced inverse scattering techniques is demonstrating the 

ability to deal with complex scenarios [8]–[12], which is 

supported by the design of proper antennas [13]–[17] and 

measurement systems [18]–[20]. On the other hand, the 

ever-increasing available computing power is providing 

unvaluable tools for the practical implementation of the 

proposed solution techniques. In this rapidly-evolving 

situation, the recent introduction of novel methods based on 

artificial intelligence [21] and in particular deep learning 

approaches [22], [23] is opening new doors, overcoming 

several limitations of the traditional inversion techniques 

and lowering computational times [24]–[27]. 

In the framework of quantitative microwave tomography, 

an interesting class is represented by nonlinear Newton-

based approaches [28]–[30], which have also been recently 

formulated in non-Hilbertian Lebesgue spaces with constant 

and nonconstant exponents [31]. The good performance of 
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these methods has been proven in different case studies, 

with both single- and multifrequency data [32]. So far, this 

kind of tomographic Newton-based techniques have been 

formulated by considering excitations from infinite line-

current sources and ideal observation domains [31], [33] or 

with rectangular waveguide models of the radiating and 

receiving antenna elements [34]. However, there are several 

situations where the assumption of idealized or simplified 

probing elements does not lead to correct results. Since the 

adopted antenna elements and measurement configurations 

have a significant impact on the measured scattered field – 

especially in near-field conditions – it is recommended to 

model or calibrate them within the inversion procedure.  

One possible solution is to include advanced three-

dimensional (3D) forward solvers with accurate numerical 

models of the antennas inside the inversion algorithm. 

However, this solution leads to a great increase in the 

required computational resources compared to a standard 

tomographic inversion with ideal sources and measurement 

points. In addition, a change in the probing elements may 

require substantial modifications in the solving procedure. 

Another possibility, commonly practiced in microwave 

tomography, is data calibration in the frequency domain 

[35], [36]. This is usually done by considering the incident 

field or the field scattered by a known target [37]. In both 

cases, a set of complex coefficients are found to scale the 

measured quantities in order to match the field values 

simulated with the same numerical solver adopted for 

inversion. Among these methods, scattered field calibration 

is proven to be the most successful [30], [38]. It is worth 

noting that calibration techniques where antenna effects are 

modeled with characteristic coefficient functions [39], [40] 

or with radial basis functions networks [41] have also been 
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proven effective in monostatic and bistatic configurations. 

In this paper, a different strategy is pursued: a time-

domain data-driven processing of the scattered field is 

done, and the combination of this approach with a 

multifrequency tomographic method in nonconstant-

exponent Lebesgue spaces is explored. In particular, the 

inversion method is enhanced by a preliminary step that 

processes the measured scattered field with a neural 

network based on long short-term memory (LSTM) cells 

[42]. The use of an LSTM-based network was selected in 

order to address the problem at hand in the time domain, 

which may be useful to process wideband data. 

Specifically, for sequence-to-sequence processing of time 

series, recurrent neural networks (RNNs) have shown 

advantages against standard convolutional neural networks 

(CNNs), e.g., the natural ability to process input sequences 

of arbitrary length without impacting on the network layout 

and size. Among RNN architectures, LSTMs are one of the 

most promising choices, as their ability to “selectively 

remember” their state allows them to capture long- and 

short-term dependencies between the input sequences of 

data in a very effective way, avoiding the tricky problem of 

vanishing gradients [43]. Due to these advantages, LSTMs 

are widely used in different areas (e.g., natural language 

processing) [44]. These interesting properties have also 

been successfully exploited to predict the evolution of field 

values in transient electrodynamics [45] and for buried 

object detection from ground penetrating radar signals [46]. 

In our case, the LSTM-based network is trained to learn 

the connection between the time-domain scattered field 

measured by non-ideal probing elements in the 3D case 

(assuming a cylindrical configuration) and the 

corresponding scattered field that would be given by a 

canonical two-dimensional (2D) case with line-current 

sources and ideal measurement points. As a result, in the 

considered cases, this approach allows dealing with data 

collected in 3D cylindrical configurations with non-ideal 

probes, while retaining a canonical 2D formulation of the 

inverse problem. Of course, this connection is intrinsically 

approximate, but leads to significant benefits in the 

quantitative reconstruction of unknown scatterers. It is 

interesting to notice that such an approach shares the same 

goal of the scattered field calibration techniques, although 

the problem is tackled from a different perspective. 

The adopted model is trained with a set of simulations 

performed with a finite-difference time domain (FDTD) 

solver, and the inversion approach is then initially validated 

with numerical simulations. As a first case study, a bistatic 

measurement configuration has been considered, since it 

allows speeding up the model training and checking the 

behavior of LSTM-based processing in a precise and rather 

simple way, by analyzing B-scan-like images. Moreover, 

the bistatic case models a quite challenging configuration 

for the quantitative inversion (that can be found, for 

example, in through-the-wall or ground penetrating radar  

 

 

Fig. 1. Configuration of the imaging problem and proposed approach to 

microwave tomography. 

 

configurations) where small errors may impair a correct 

reconstruction of targets. Therefore, it represents a case 

where a correct modeling of the scattered field is essential. 

The paper has the following organization. Section II 

formulates the inverse problem, discussing both the 

preprocessing step and the imaging scheme. Results 

achieved in a simulated environment are reported in Section 

III. Finally, Section IV delineates concluding remarks. 

II. PROBLEM FORMULATION AND INVERSION SCHEME 

The configuration of the imaging problem and the 

proposed inversion approach are drafted in Fig. 1. We 

assume to scan an object under test, characterized by an 

unknown dielectric permittivity ���� and electric 

conductivity ����, by means of set of antennas (e.g., two 

elements). The goal is to reconstruct the spatial distribution 

of the dielectric properties of the target in a cross-sectional 

investigation domain ℐ. Both antennas and ℐ are aligned on 

the same horizontal plane at � � �	. Antennas are 

connected to a time-domain measurement system, whose 

output is a quantity related to the �-component of the 

scattered electric field, 
	�� ��, ��. Here, � indicates the 

position of the receiving antenna element and � is the time. 

In a near-field 3D configuration, the presence of the 

antenna structures may have a non-negligible influence on 

the measured scattered field. In other words, 
	�� ��, �� not 

only depends on the target properties, but also on the 

characteristics of the measurement system and the deployed 

antennas, due to their direct interaction with the (unknown) 

object under test. Sometimes these effects can be neglected 

to some extent. Nevertheless, if such an interaction cannot 

be ignored, an adequate modeling of the measurement 

configuration inside the imaging algorithm is required to 

obtain a suitable quantitative reconstruction of the dielectric 

properties of the target. This work primarily aims at dealing 

with near-field conditions, and this makes different the 

framework of this contribution with respect to standard 

antenna and geometry compensation strategies. 

Here we try to retain a 2D formulation of the inversion 

algorithm with a canonical tomographic measurement 

configuration characterized by ideal observation points and 

line-current sources. Of course, even in the presence of the  
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Fig. 2. Proposed LSTM-based processing of the scattered field at the time 

step �Δ�: scheme of a single LSTM-FC block. Thick arrows denote vector 

quantities; scalar values are indicated by thin arrows. 

 

same object under test, the scattered electric field expected 

by the inversion algorithm, 
	���, ��, would be different 

from 
	�� ��, ��. This modification in the scattered field is 

modeled by the LSTM-based approach described in Section 

II.A, whose objective is to estimate 
	���, �� from the 

measured values. Subsequently, data are converted to the 

frequency domain and processed by a nonlinear 

multifrequency tomographic approach formulated in 

Lebesgue spaces ���⋅� with nonconstant exponent function, 

outlined in Section II.B. 

A. LSTM-based preprocessing of the scattered field 

For processing the scattered field input data to feed the 

microwave tomographic algorithm, we define a data-driven 

model that maps the measured scattered field 
	��  to its 

counterpart 
	�  given by a canonical measurement 

configuration. In other words, we aim at finding a nonlinear 

operator � such that 


	���, �� � � �
	�� ��, ���. (1) 

Let us suppose that the scattered field 
	�� ��, �� is known 

at the discrete time steps �Δ�, with � � 0, … , �. For each 

time step, � is modeled with a neural network based on 

LSTM cells, whose output is processed by fully connected 

(FC) neural layers. The architecture of the adopted LSTM-

FC cell is reported in Fig. 2. 

At the �th time step, the LSTM cell receives in input the 

measured scattered field 
	��  and two “state” vectors that 

allow remembering information about the previous time 

history of the scattered field component, namely the cell 

state � ∈ ℝ� and the hidden state � ∈ ℝ�. These quantities 

are both real vectors of size  , and come directly from the 

previous time step, i.e., �� ! 1�Δ�.  

The first operation performed inside the LSTM is the 

decision about what to retain or forget from the previous 

cell state ���, �� ! 1�Δ��. This is done by the forget gate #, 

whose vector output is given by 

#��, �Δ�� � $%&'
	�� ��, �Δ��( )'���, �� ! 1�Δ�� ( *'+, (2) 

where &' ∈ ℝ�, )' ∈ ℝ�,� and *' ∈ ℝ� are real 

parameters tuned by the training phase, and $�⋅� denotes the 

sigmoid gate activation function. In particular, given a 

vector - � ./0, /1, … , x�34, we have 

$�-� � 5 11 ( 6789 , 11 ( 678: , … , 11 ( 678;<4 . (3) 

Another important operation inside the LSTM is to 

define a possible cell candidate, i.e., a vector = that is used 

to update the cell state �, computed as 

=��, �Δ�� � >%&?
	�� ��, �Δ��( )?���, �� ! 1�Δ�� ( *?+, (4) 

with &? ∈ ℝ�, )? ∈ ℝ�,�, *? ∈ ℝ�, and a state activation 

function 

>�-� � .tanh /0 , tanh /1 , … , tanh /�34 . (5) 

The update of the cell state is weighted by the so-called 

input gate 

D��, �Δ�� � $%&E
	�� ��, �Δ��( )E���, �� ! 1�Δ�� ( *E+, (6) 

where, like before, &E ∈ ℝ�, )E ∈ ℝ�,� and *E ∈ ℝ�. 

Finally, the output of the LSTM cell is driven by the output 

gate, which is specified by the following function: F��, �Δ�� � $%&G
	�� ��, �Δ��( )G���, �� ! 1�Δ�� ( *G+, (7) 

with &G ∈ ℝ�, )G ∈ ℝ�,� and *G ∈ ℝ�. 

Having defined all these internal gates and their 

operation, the cell state at the time step �Δ� is computed as ���, �Δ�� � #��, �Δ�� ⨀ ���, �� ! 1�Δ��( D��, �Δ�� ⨀ =��, �Δ��, (8) 

and the hidden state is calculated as 

���, �Δ�� � F��, �Δ�� ⨀ >%���, �Δ��+, (9) 

where the operator ⨀ represents an element-wise vector 

multiplication (Hadamard product). 

The scattered field 
	�  at time step �Δ� is then computed 

from the hidden state ���, �Δ�� by means of three fully 

connected layers; the first two layers have J neurons with 

hyperbolic tangent activation function, and the last one has 

a single neuron (scalar output), i.e., 


	���, �Δ�� � K%���, �Δ��+ � &L4)1��, �Δ�� ( ML (10)

where &L ∈ ℝN, ML ∈ ℝ, )1��, �Δ�� � >.&L014 )0��, �Δ�� ( ML01, … ,&LN14 )0��, �Δ�� ( MLN134 (11)

)0��, �Δ�� � >.&L004 ���, �Δ�� ( ML00, … ,&LN04 ���, �Δ�� ( MLN034 (12)

with parameters  &L00, … , &LN0 ∈ ℝ�, &L01, … , &LN1 ∈ℝN, ML00, … , MLN0 ∈ ℝ, ML01, … , MLN1 ∈ ℝ. 
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Fig. 3. Process diagram which described the extraction of frequency-

domain data from time-domain scattered field measurements with the 

LSTM-FC network. As an example, three time steps have been unrolled. 

 

As highlighted in Fig. 3, where three time steps are 

unrolled in order to understand the data processing 

workflow, the presence of the LSTM layer implies that 
	���, �Δ�� is estimated by taking into account all the 

relevant information from the past evolution of the field 

component, which is remembered by the network by means 

of the state vectors � and �. After the scattered field at all 

the required time steps is processed, a fast Fourier 

transform (FFT) is applied to the resulting time series 
	���, �Δ��, � � 0, … , � in order to extract scattered field 

data at frequencies O0, … , OP. These data are directly given 

in input to the microwave tomographic algorithm outlined 

in the following section.  

B. Tomographic inversion of scattered field data 

The processed scattered field data are inverted in the 

frequency domain by assuming a scalar and two-

dimensional EM model. We define a position vector �Q on 

the cross-sectional imaging plane such that � � �Q ( RS�	. A 

multiview setup, with T positions of the source, is adopted 

for collecting scattered-field measurements. However, for 

the sake of simplicity, the single-view case is described 

here. For each view, the investigation domain is illuminated 

by a radiation generated by an ideal line-current source 

located at �Q4U with a current density VW��Q� � RSXY��Q !�Q4U�. This source generates a transverse-magnetic incident 

radiation whose �-component of the electric field is 
E��Q , O� � Z2\O]WX^��Q|�Q4U, O�, where O is the frequency, ]W is the magnetic permeability of vacuum, and ^��Q|�Q4U , O� � ZJW�1��`W|�Q ! �Q4U|�/4 is the related 

Green’s function, with `W � 2\Oc]W�W, �W being the 

dielectric permittivity of vacuum. Under these hypotheses, 

if the object under test is infinite along the � axis, it causes 

a scattered field [7] 


	���Q , O� � !`W1 d^��Q|�Qe, O�f�O�-��Qe�
Q��Qe, O�g�Qeℐ ,  (13)

where the properties of the object are expressed with the 

term -��Q� � .����Q�/�W ! 1� ���Q� �2\O0�W�⁄ 34, f�O� �.1 !Z O0 O⁄ 3, and 
Q��Q , O� � 
	���Q , O� ( 
E��Q , O� is the 

total electric field. Since 
Q depends on -, (13) reveals a 

nonlinear relationship between the scattered field and -, 

which can be written as [31] 


	���Q , O� � ℱ'�-���Q�.  (14)

For solving the inverse problem, the available values of 

the scattered electric field at j frequencies Ok (` � 1, … , j) 

are simultaneously processed, forming a system of 

nonlinear equations: 

l
	���Q , O0�⋮
	���Q , OP�n � o ℱ'9�-���Q�⋮ℱ'p�-���Q�q , �Q ∈ r, (15)

where r is the observation domain where scattered-field 

data are collected by the measurement devices. 

This system, which has to be solved in the unknown -, 

can be compactly written as 
s	� � ℱs�-�, with  - ∈ t, 
s	� ∈u, and ℱs is a nonlinear operator such that ℱs: t → u. In the 

present approach, (15) is solved with an iterative strategy. 

At each iteration x � 1, 2, … the nonlinear operator ℱs is 

subject to a Newton linearization around the current 

estimation of the unknown function -, denoted as -E. 
Indicating with ℱs-ye  the Fréchet derivative of ℱs around -E, 
the resulting linearized counterpart of (15) is 


s	� � ℱs-y′ {E ( ℱs�-E� (16)

The problem described by (16) is solved by the truncated 

Landweber technique in Lebesgue spaces ���⋅� with 

nonconstant exponents [47], where the space of unknown t 

is characterized by a variable exponent function |E��Q�, �Q ∈ℐ, computed from the normalized magnitude of -E as 

|E��Q� � 2 ( Δ| o ‖-E���‖max��∈ℐ ‖-E���‖ ! 1q (17)

with Δ| being the range of the exponent function. In the 

first Newton iteration a null starting guess -0 and a constant 

exponent |0��Q� � 2 ! Δ| are used. The application of (17) 

leads to low values of |E��Q� outside the detected targets, 

and higher values inside. As to the space of data u, a 

constant exponent equal to the average of |E��Q� in the 

investigation domain ℐ is assumed. Once that {E is found by 

solving (16), this term is applied to update the unknown as -E�0 � -E ( {E , and a new linearization/solution process is 

executed until convergence is reached. 

III. NUMERICAL VALIDATION OF THE APPROACH 

The approach to microwave tomography described in the 

previous sections has been validated by means of numerical 

simulations. In more detail, the validation consisted in two 

distinct phases. The first one, explained in Section III.A, is 

dedicated to the training of the model represented by (1). 

The second phase involved the testing of the trained model 

for the inverse scattering of cylindrical and spherical 

structures. Results are presented in Section III.B. 
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(a) 

 
(b) 

Fig. 4. Configuration of a pair of simulations used for the model training. 

(a) 3D setup with two bowtie antennas. (b) Corresponding 2D case with 

line-current source and ideal measurement point. 

 

A. Forward modeling and network training 

For both simulating the data acquisition and training the 

proposed LSTM-based network, 3D and 2D EM 

simulations have been done. As forward solver, the gprMax 

open-source software has been adopted, which allows an 

efficient FDTD solution of the EM problem with GPU 

computing capabilities [48].  

In each simulated case, a pair of forward simulations 

have been executed, in order to obtain both 
	�� ��, �� and 
	���, ��. The first quantity, which emulates the “actual” 

measurement, is given by a 3D configuration with two 

bowtie antennas (a transmitting and a receiving one). The 

second quantity, which represents the “canonical” 

measurement situation, is retrieved by simulating a 2D 

horizontal slice of the previous 3D model, where the 

transmitting antenna is an infinite �-directed line-current 

source and the probe is an ideal measurement point (i.e., 

which does not perturb the EM field). 

As to the 3D case, the geometry is reported in Fig. 4(a). 

The simulation domain has dimensions � , � , �, with � � 1.5 m, � � 1 m, � � 0.5 m, and is discretized into 6 , 10� cubic FDTD cells of 5 mm side. At the boundaries 

of the simulation domain, a 10-cells wide perfectly matched 

layer (PML) has been used to implement absorbing 

boundary conditions. As a preliminary example, two 

aligned bowtie antennas are present, at a fixed distance g4� � 0.12 m between their centers, each one with arms of 

width � � 0.1 m and height � � 0.05 m. The transmitting 

antenna is driven by a voltage source excited with a Ricker 

pulse whose spectrum is centered at 1 GHz. 

To generate the training data, for each object TQ � 20 

simulations have been done with different positions of the 

antennas, where the source element is centered at 

�4U � �/	 ( ���� ! 1� �TQ ! 1�⁄ , �	, �	� (18)

and the receiving element is at ��U � �/	 ( ���� ! 1� �TQ ! 1�⁄ ( g4� , �	, �	� (19) 

with /	 � 0.2 m, �	 � 0.85 m, �	 � �/2, �� � 1 m, and � � 1, … , TQ. A time window of duration � � 10 ns, 

subdivided into � � 1040 samples with a time step Δ� �9.62917 ps, has been simulated. A dataset composed by 

200 different objects has been created, where the simulation 

domain hosts a single dielectric cylinder (0.5 m high) with 

random diameter (between 0.2 and 0.6 m), dielectric 

permittivity (between 1.5�W and 4�W) and electric 

conductivity (between 0 S/m and 0.2 S/m). Since each 

object has been simulated with TQ  antenna positions, a 

global number of 4000 simulations has been run. Among 

them, the first 3920 were used as the training set, and the 

last 80 for validation. During the training phase, the 

minimum distance between the antennas and the targets is 

equal to 5 cm, leading to near-field operating conditions. 

All these 3D simulations have been replicated in the 

corresponding 2D canonical case, taking into account the 

cross-sectional slice at � � �	. The geometry is reported in 

Fig. 4(b) and is analogous to the 3D case, except for the 

absence of the actual antenna structures. The 2D simulation 

domain has the same /, � size of the 3D domain (� , �) 

and the same spatial discretization, resulting in 6 , 10� 

square FDTD cells. A 10-cells wide PML is adopted. 

Moreover, a time window � and time step Δ� equal to the 

3D simulations have been considered. In both 3D and 2D 

cases, an additional simulation without objects has been 

done to calculate the scattered field. 

The training dataset has been generated on a workstation 

with an Intel® Core™ i7-2600K CPU at 3.40 GHz, 8 GB of 

RAM, and an NVIDIA® GeForce® GTX 650 GPU with 1 

GB of dedicated RAM. A single 3D simulation required a 

computational time of 31.6 s, 366 MB of RAM and 544 

MB of GPU RAM; 2.9 s, 90.3 MB RAM and 219 MB GPU 

RAM are needed for running each 2D case. 

The LSTM-FC network described in Section II.A has 

been implemented within a MATLAB environment, which 

is also used to load the FDTD simulations and perform the 

training phase. In particular, after heuristic trials, a size of 

the LSTM cell state  � 150 has been chosen, and J � 40 

neurons have been selected for the two hidden FC layers. 

The number of real parameters of the LSTM cell is thus 

equal to ���4� � 4�2 (  1� � 91200, and the FC layer 

has ��� �  J ( J1 ( 3J ( 1 � 7721 real coefficients. 

Therefore, the whole number of parameters to be learned is ���4� ( ��� � 98921. The Adam algorithm [49] with 

mini-batch size of 50 and learning rate 5 , 107� has been 

used to train the network for 20 epochs. For performing the 

training phase and running the inversion method, a personal 

computer with an Intel® Core™ i7-5500U CPU at 2.40 
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(a) 

 
(b) 

Fig. 5. Example of scattered electric field in the time domain due to a 

dielectric cylinder. (a) 3D simulation, which represents the input data. (b) 

Output of the proposed LSTM-based processing block, compared to the 

corresponding 2D canonical simulation with an ideal measurement setup. 

 
GHz, 8 GB of RAM, and NVIDIA® GeForce® 940M GPU 

with 2 GB of RAM has been employed. On such a device, 

the training phase took less than 9 minutes.  

An example of the obtained results is shown in Fig. 5, 

where both 
	��  and 
	�  are reported. In this case (which 

belongs to the validation set) the object is a circular 

cylinder with � � 2.77�W and � � 0.015 S/m centered at �Q � �0.436, 0.325� m; the position of antennas is given by 

(18) and (19) with � � 12. The value of 
	��  in time domain 

resulting from the 3D simulation with bowtie antennas is 

plotted in Fig. 5(a), and its counterpart in the canonical 2D 

case can be found in Fig. 5(b). In the same figure, the result 

of applying the proposed LSTM-based preprocessing to 
	��  

is also shown, which gives rise to a value of 
	�  quite close 

to the one obtained in the canonical 2D case with ideal 

antennas and measurement points. 

B. Inverse scattering results 

The proposed multifrequency tomographic inversion 

method enhanced by the data-driven scattered-field 

processing step has been tested against preliminary 

numerical simulations. The forward EM simulations have 

been always performed with the gprMax FDTD solver with 

the same antennas as before, but a slightly different 

measurement setup is used to collect information all around 

the object under test. The FDTD simulation domain has 

side lengths � , � , �, with � � � � 1.5 m, � � 0.5 m, 

and is subdivided into 9 , 10� cubic FDTD cells of 5 mm 

side. The same time window and temporal discretization 

have been adopted. A multi-view measurement setup is 

considered, where the object is sequentially illuminated 

from T � 40 positions of the source antenna, with just one 

position of the receiving antenna for each view. Despite its 

simplicity, this kind of measurement configuration is very 

challenging for the inverse scattering procedure due to the 

limited available data. In particular, in the �th view (� �1, … , T) the position of the source is given by �4U ��/4U, �4U , �	� such that 

/4U �
⎩⎪⎪
⎨
⎪⎪⎧g	 ( ���� ! 1��	 ! 1 1 � � � �	� ! gQ ��   � � 2�	� ! g	 ! ���� ! 2�	 ! 1��	 ! 1 2��   � � 3�	gQ 3��   � � T

 (20)

�4U �
⎩⎪⎪
⎨
⎪⎪⎧

� ! gQ 1 � � � �	� ! g� ! ���� ! �	 ! 1��	 ! 1 ��   � � 2�	gQ 2��   � � 3�	g� ( ���� ! 3�	 ! 1��	 ! 1 3��   � � T
 (21)

where g	 �  0.2, gQ � 0.15, �	 � T/4, and the other 

parameters are the same as in Section III.A. The receiving 

element is centered at ��U � �/�U, ��U , �	� such that 

�/�U, ��U� �
⎩⎪⎨
⎪⎧�/4U ( g4�, �4U� 1 � � � �	�/4U, �4U ! g4�� �	   � � 2�	�/4U ! g4�, �4U� 2�	   � � 3�	�/4U, �4U ( g4�� 3�	   � � T

 (22) 

Low-loss objects have been preliminarily considered in 

this work for validating the proposed approach in the 

presence of undamped multiple reflections phenomena 

inside targets, which represents a quite critical situation for 

the proposed time-domain preprocessing step.  

The first considered target is a single circular dielectric 

cylinder (Cylinder #1) characterized with � � 2�W and � �0.01 S/m, with diameter g�0 � 0.2 m, centered at the point �Q�0 � �0.8, 0.55� m in the cross-sectional plane. This target 

configuration is visible in Fig. 6. 

The time-domain data corresponding to the scattered 

electric field 
	��  from the 3D simulation with bowtie 

antennas is reported for all the considered views (� �1, … , T) in Fig. 7(a). For comparison purposes, a cross 

section of the same test case has been simulated also with a 

2D canonical setup that involves line-current sources and 

ideal test points, obtaining the result of Fig. 7(b). The 

output of the LSTM-FC network, when its input is the 

scattered field of Fig. 7(a), is reported in Fig. 7(c). It is 

worth noting that all the views � are separately processed 

by the neural network in a sequence-to-sequence regression 

approach. As can be seen, there is a good matching with the 

canonical 2D data of Fig. 7(b). 

 
Fig. 6. Configuration of the first target considered for the numerical 

validation: single dielectric cylinder. 
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 (a) (b) (c) 

       

 (d) (e) (f) 

Fig. 7.  Numerical results: single dielectric cylinder. Scattered field data in time domain, for different views: (a) 3D simulation; (b) 2D simulation with ideal 

measurement setup; (c) 3D data processed by the LSTM-based network. Reconstructed distributions of the relative dielectric permittivity with (d) 3D data, (e) 

2D data with ideal measurement setup, and (f) 3D data processed by the LSTM-based network.  

 

The next step of the validation consisted in applying the 

inverse scattering algorithm of Section II.B. To this end, 

frequency domain data at j frequencies equally spaced 

between 0.1 and 1 GHz have been extracted with the FFT, 

obtaining 
	���, O� with � ∈ r and O ∈ ¢O0, … , OP£. It is 

worth noting that the total electric field in the frequency 

domain (i.e., after the LSTM-FC processing) has been 

corrupted with an additive Gaussian noise with zero mean 

value and  �K � 25 dB. The forward solver included in 

the inversion method is based on a 2D implementation of 

the method of moments and assumes that line-current 

sources illuminate the region under test. The investigation 

domain ℐ is a square horizontal cross section of the 

simulated region at the same height of the antenna centers, 

with dimensions �ℐ � �ℐ � 1 m and centered at point � ��0.75 m, 0.75 m, �	�. It has been partitioned into 900 square 

subdomains with side length 0.033 m. The inversion 

method has been run with the following parameters: 

exponent range Δ| � 0.5; maximum numbers of Newton 

and Landweber iterations equal to 20 and 10, respectively; 

threshold on the relative variation of the data residual Δ¦ �1%. The reconstructed distributions of the relative 

permittivity of the investigation domain are reported in Fig. 

7(d)-(f). In particular, Fig. 7(d) shows the reconstruction 

coming from directly using 3D data (with only a simple 

incident field calibration [35]) which is quite poor and 

presents a noticeable underestimation of the dielectric 

properties of the target. Fig. 7(e) shows the reconstruction 

obtained with the ideal data of Fig. 7(b), i.e., those 

simulated in 2D settings. Fig. 7(f) illustrates the 

corresponding reconstruction achieved with the 3D data 

processed by the LSTM-FC network of Fig. 7(c). In the last 

two cases, the reconstruction required 114.1 s, and 94.7 s, 

reporting relative reconstruction errors on the contrast 

function of 0.13 and 0.14, respectively. The reconstruction 

obtained with 2D data took slightly more time, mainly due 

to the different number of performed Newton iterations (5 

and 4, respectively), which is related to the stopping 

criterion based on Δ¦. As can be seen, the introduction of 

the LSTM-FC processing enables a quite good retrieval of 

the dielectric properties of the target, comparable to that 

yielded by canonical 2D data.  

To assess the proposed procedure in a more challenging 

case, a numerical test with two dielectric cylinders with 

different properties has been done (Fig. 8). This test is also 

useful to evaluate the generalization capabilities of the data-

driven processing model, since it was trained with 

configurations including only a single dielectric cylinder. 

 
Fig. 8. Configuration of the second target considered for the numerical 

validation: two dielectric cylinders with different properties. 
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 (a) (b) (c) 

       

 (d) (e) (f) 

Fig. 9.  Numerical results: two dielectric cylinders with different properties. Scattered field data in time domain, for different views: (a) 3D simulation; (b) 2D 

simulation with ideal measurement setup; (c) 3D data processed by the LSTM-based network. Reconstructed distributions of the relative dielectric permittivity 

with (d) 3D data, (e) 2D data with ideal measurement setup, and (f) 3D data processed by the LSTM-based network.  

 

In addition to Cylinder #1, a second circular dielectric 

cylinder (Cylinder #2) characterized with � � 1.5�W, � �0.005 S/m and diameter g�1 � 0.3 m has been placed at �Q�1 � �0.45, 0.9� m in the cross-sectional plane. All the 

parameters are the same as before except for the simulated 

time window, which has been enlarged to � � 15 ns to 

allow receiving the multiple reflections between the two 

targets. It is important to notice that, in general, multiple 

interactions between targets may be not desirable, 

especially if linearized scattering models are employed. 

However, in the present case, to obtain a good quantitative 

reconstruction it is also required to consider such effects, 

that arise even in the “ideal” 2D configuration. Therefore, � 

has been extended to avoid cutting out these phenomena 

and to see how the proposed LSTM-based network deals 

with them. This extension has no impact on the network 

layout, and time sequences of arbitrary lengths can be 

processed with the same trained model. 

Fig. 9(a) and (b) report the scattered field obtained from 

3D simulation and from the corresponding 2D simulation 

with ideal measurement setup. Clearly, reflections from the 

two different scatterers overlap in time. The 3D data 

processed by the LSTM-FC network are shown in Fig. 9(c). 

Although the direct application of the inversion technique 

to 3D data is again unsatisfactory, as illustrated by Fig. 

9(d), the trained network can model the scattered-field data 

with a reasonable level of accuracy even in this more 

complicate situation. This is further confirmed by observing 

the reconstructions of the relative dielectric permittivity 

reported in Fig. 9(e) and (f). The relative reconstruction 

errors are 0.15 and 0.16, respectively, with computational 

times of 83.81 s and 69.20 s (obtained with 4 and 3 Newton 

iterations). The result achieved starting from the 3D data 

processed by the LSTM-FC layer is similar to the 

reconstruction given by the simulation with an ideal 

measurement setup, except a slight underestimation of the 

target properties and some background artefacts. These 

small differences are however tolerable in the light of the 

significant advantages of avoiding a cumbersome EM 

modeling inside the inversion algorithm. It is important to 

remark that, in these cases, the minimum distances between 

antennas and targets are equal to 30 cm (Cylinder #1) and 

15 cm (Cylinder #2). Considering the frequency band 

adopted for the reconstructions, these distances correspond 

to near-field conditions, i.e., a situation where a strong 

coupling between targets and antennas occurs. 

In order to further test the capabilities of the developed 

LSTM-FC preprocessing approach, two more complex 

target configurations have been simulated, both of them 

including objects significantly different from those of the 

training set. 

The first case involves a dielectric sphere [Sphere #1, 

shown in Fig. 10(a)] which is characterized by diameter g	0 � 0.3 m, dielectric permittivity � � 2�W and electric 

conductivity � � 0.01 S/m. The target is centered at �	0 ��0.6, 0.9, �	� m. All simulation and inversion parameters 

are kept the same as before. The reconstruction obtained by 

directly using 3D data is reported in Fig. 10(b), whereas the  
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 (a) (b) (c) 

       

 (d) (e) (f) 

Fig. 10.  Numerical results. Dielectric sphere: (a) Target configuration; Reconstructed relative dielectric permittivity with (b) unprocessed 3D data; (c) 3D data 

processed by the LSTM-based network. Inhomogeneous dielectric target: (d) Configuration; Reconstructed relative dielectric permittivity with (e) unprocessed 

3D data; (f) 3D data processed by the LSTM-based network. 

 

processed data give rise to the result of Fig. 10(c). Although 

the considered target is intrinsically three-dimensional, the 

developed processing method leads to an acceptable 

dielectric reconstruction, with a notable improvement 

compared to the unprocessed data (in terms of both 

localization and characterization accuracy). 

Finally, an inhomogeneous target has been taken into 

account [Fig. 10(d)]. This target, whose cross section has 

been inspired by the well-known Fresnel dataset [50], is 

composed by two nested circular dielectric cylinders. 

Cylinder #1 is characterized by � � 1.3�W, � � 0.01 S/m, 

diameter g�0 � 0.32 m and is centered at the point �Q�0 ��0.95, 0.95� m. Cylinder #2 is placed inside Cylinder #1; it 

has diameter g�1 � 0.124 m, center �Q�1 � �0.97, 0.95� m 

and is characterized by � � 5�W, � � 0.005 S/m. The 

reason for choosing such values of the dielectric 

permittivity was also to test the method with an object 

characterized by values of permittivity outside the range of 

the training set. The dielectric reconstruction obtained with 

unprocessed 3D data is reported in Fig. 10(e), while Fig. 

10(f) shows the results achieved by applying the inversion 

algorithm to the 3D data processed by the proposed 

network. The target appears slightly shifted, and the 

reconstruction is less accurate than before. Furthermore, the 

retrieved values of the permittivity are “compressed” in the 

range of those considered inside the training set. (This fact 

also happens by changing the dielectric properties of the 

targets in Fig. 8; results are not shown for brevity.) 

However, despite the inaccuracies caused by the more 

involving configuration, the enhancement given by the 

LSTM-FC processing network is still relevant. Since the 

proposed method is data-driven, further improvements are 

expected if the training set is enriched by additional 

inhomogeneous targets, as well as involving wide ranges of 

their dielectric properties. 

IV. CONCLUSION 

In the field of microwave tomography, an adequate 

modeling of the measured scattered-field data is crucial to 

retrieve correct quantitative reconstructions of the 

properties of unknown scatterers. In this contribution, the 

combination of a data-driven LSTM-based preprocessing of 

the scattered field with a nonlinear multifrequency 

tomographic approach in Lebesgue spaces with nonconstant 

exponents has been investigated. The proposed strategy 

enables quite accurate inversion results starting from 

simulated measurements in 3D cylindrical settings with 

non-ideal probes, while retaining a 2D canonical 

formulation of the electromagnetic problem inside the 

imaging algorithm. The data-driven preprocessing network 

has been trained with time-domain numerical simulations 

involving cylindrical targets, where a simplified bistatic 

measurement configuration has been taken as a preliminary 

case study. The inversion procedure has been assessed in a 

simulated environment.  

Future developments of this study will include the 

extension of the proposed approach to more involved 

measurement configurations (e.g., the multistatic case) as 

well as the testing with lossy targets and experimental data. 
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The possible extension to the frequency domain of concepts 

derived from the present approach will also be analyzed. In 

addition, since CNNs and LSTMs are not mutually 

exclusive, the use of CNN-LSTM hybrid networks to 

accomplish this task will be explored. 
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