Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS. 2017.Doi Number

Power Quality Enhancement in Sensitive Local Distribution Grid using Interval Type-II Fuzzy Logic Controlled DSTATCOM

Sathish Babu Pandu¹, Sundarabalan CK², Srinath NS², (Member, IEEE), T Santhana Krishnan³, (Senior Member, IEEE), Soorya Priya G⁴, Balasundar C², (Member, IEEE), Jayant Sharma², Soundarya G², Pierlugi Siano⁵, (Senior Member, IEEE), Hassan Haes Alhelou^{6,7}, (Senior Member, IEEE)

¹Department of Electrical and Electronics Engineering, University College of Engineering, Panruti 607106, Tamil Nadu, India

Corresponding author: Hassan Haes Alhelou (alhelou@ieee.org)

ABSTRACT In the current scenario, integration of renewables, growth of non-linear industrial and commercial loads results in various power quality issues. Among commercial utilities connected to the grid, hospital-operated loads include sensitive, linear, non-linear, and unbalanced loads. These loads are diverse as well as prioritized, which also causes major power quality issues in the local distribution system. Due to its widespread divergence, it leads to harmonic injection and reactive power imbalance. Distribution Static Compensator (DSTATCOM) is proposed as a solution for harmonic mitigation, load balancing, reactive power imbalances, and neutral current compensation. The present work utilizes Interval Type-2 Fuzzy Logic Controller (IT2FLC) with Recursive Least Square (RLS) filter for generating switching pulses for IGBT switches in the DSTATCOM to improve power quality in the Local Distribution Grid. The proposed approach also shows superior performance over Type 1 fuzzy logic controller and Conventional PI controller in mitigating harmonics. For effective realization, the proposed system is simulated using MATLAB software.

INDEX TERMS Local distribution grid, DSTATCOM, Interval type 2 fuzzy logic controller, power quality, and Recursive least square filter.

I. INTRODUCTION

Electrical distribution systems are designed to operate under certain voltage and current values, which are sinusoidal in nature [1]. Adopting new technologies results in increased utilization of non-linear load, which poses a major problem of power quality. Non-linear loads tend to stress the system in terms of damaging equipment, current flow through neutral conductors, distortion in current and voltage waveforms, overheating and power factor reduction [2]. Generally, health care facilities require high quality of power to operate their loads at a better performance [3]. But the load concentration in these medical facilities are diverse and consists of light, heavy, non-linear, linear, balanced and unbalanced models. Also, the majority of them are controlled digitally, and they are sensitive too [4]. A typical trade-off between the control and operation is not recommended. For

a load to be controlled by digital means, it requires Switched Mode Power Supplies (SMPS) which are less sensitive to good power quality. Heavy loads such as X-ray machines, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scan machines, lighting loads at operation theatre and equipment's at Intensive Care Unit (ICU) and Critical Care Unit (CCU) facilities are major power polluters [5]. The operation of these types of the load is unavoidable due to their high degree of sensitivity which on disconnection leads to damage or loss of human life [6].

The majority of the loads connected by commercial utilities are heavy and inductive in nature, which can cause voltage sag and swell during load switching. Mitigation of these power quality issues can be achieved with the help of Custom Power Devices (CPD's) [7]. Improvement of power quality is attained by injecting either voltage or current or

²School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

³Department of EEE, Rajalakshmi Engineering College, Chennai, India

⁴Department of EEE, Loyola Institute of Technology, Palanchur, Chennai, India

⁵Department of Management and Innovation Systems, University of Salerno, 84084 Salerno, Italy

⁶Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen University, Lattakia 2230, Syria

⁷School of Electrical and electronic Engineering, University College Dublin, Dublin 4, Ireland

both into the system at the point of common coupling (PCC) [8]. As a result of this, the terminal voltage is controlled, which results in an improved power factor. CPD's can be of various types such as Distribution Static Compensator (DSTATCOM), Dynamic Voltage Restorer (DVR), and so on [9]. DSTATCOM offers better performance and reliability by injecting necessary reactive power. When there is a sudden removal of large loads, the DSTATCOM provides better voltage support than SVC and other CPD's. Under a non-linear operating range, the DSTATCOM perfectly controls its output current independent of AC system voltage [10]. The DSTATCOM has faultless response time and it has the ability to easily interface with energy storage systems like large capacitors, batteries, Fuel Cell (FC). The DSTATCOM interfaced with FC is proposed in [11].

The control algorithms for DSTATCOM are of many types and its topologies are discussed in [12]. Most commonly used Instantaneous Reactive Power Theory (IRPT), Synchronous Reference Frame Theory (SRFT), and Instantaneous Symmetrical Component Theory (ISCT). The control procedure based on the composite observer is explained in [13]. In [14], the Euclidean Direction Search technique (EDST) is used for the control of VSC along with a zig-zag transformer for the compensation of neutral current. As an advancement of ANN, the Chebyshev functional expansion based artificial neural network (ChANN) algorithm has been proposed in [15].

For effective control of DSTATCOM, controllers other than conventional PI controllers are preferred. Controllers based on Artificial Intelligence (AI) such as Fuzzy Logic Controller (FLC) and Artificial Neural Network (ANN) based controller are presented in [16,17] and the THD values are compared with the PI controller [18]. When compared to the AI controllers mentioned above, the proposed Interval IT2FLC can handle the uncertainty better than Type-1 Fuzzy Logic Controllers (T1FLC) [19, 20]. The IT2FLC has the membership functions as an interval with Upper (U) and Lower (L) functions. So, it is an interval bounding the uncertain data. This helps in obtaining precise output than other AI techniques [21-23]. Thus, IT2FLC provides precise control over the system and hence minimum THD can be achieved [24,25]. The primary contributions of our work are three-fold:

- Design of IT2FLC with RLS filter based DSTATCOM to enhance power quality in Local Distribution Grid (LDG)
- A comprehensive simulation study on the power quality of the LDG with and without the proposed DSTATCOM configuration
- The harmonic spectrum is depicted in detail and the proposed RLS filter based IT2FLC controlled DSTATCOM is compared with the conventional PI, T1FLC controlled DSTATCOM

The article organization is as follows. Section II deals with the system configuration model for the study. Next, a detailed analysis of loads that are connected to the system is provided. This is followed by the design procedure for DSTATCOM that is to be utilized as a mitigating device. Section IV describes in detail the control algorithm formulation for the DSTATCOM operation. Section V gives a detailed analysis of the results obtained during the simulation. In addition, the proposed method is discussed and compared with other similar methods. Finally, the work is concluded in Section VI.

II. SYSTEM CONFIGURATION

A three-phase four-wire local distribution grid (LDG) is modeled with sensitive hospital loads, as shown in Fig. 1. The core concentration of the work falls on analyzing the loads at the medical facility along with the RLS filter and IT2FLC based DC voltage controller. The real-time data of a hospital is used for load modeling. The proposed load model consists of a combination of heavy, linear, non-linear, and unbalanced loads at varying times. The LDG of capacity 11 kV is supplied to the hospital loads of 415 V via a step-down transformer. A DSTATCOM is connected in shunt with the LDG and helps mitigate the current harmonics, neutral current, reactive power compensation, and load balancing.

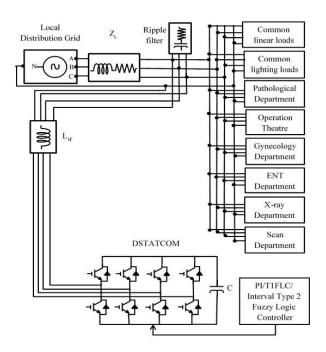


Figure 1. Proposed DSTATCOM Configuration with Interval Type-2 Fuzzy Logic Controller

IT2FLC is used as the reference current generator for DSTATCOM and the generated current eliminates the reactive component of the load. Thus, the source current component is reduced only to real terms leaving behind the reactive terms. As an effect of this, the reactive power burden of the generator is released by the DSTATCOM.

III. SYSTEM MODELING

The load modeling plays a crucial role in this proposed work. The hospital consists of linear, non-linear, balanced and unbalanced loads. There are numerous DC loads connected to the AC supply via a rectifier. The hospital loads are much sensitive to power quality issues. Various classes of medical loads [26] are considered for the proposed system. There are various departments like ICU, pathological department, theatre, **ENT** department, operation gynecological department, X-ray department, scan centers, and so on. The total load in the system depends on various factors like peak loads, critical loads, continuous operation, and seasonal loads.

A. DC bus voltage

Usually, the DC voltage V_{dc} value should be higher than the AC voltage amplitude. Hence, V_{dc} is determined from the voltage of PCC at LDG. The V_{dc} is calculated from (1)[2]

$$V_{dc} = \frac{2\sqrt{2}V_{LL}}{\sqrt{3}mi} \tag{1}$$

where, m is the modulation index and it is chosen as one, V_{LL} is the line-to-line ac voltage of the DSTATCOM. The obtained value of V_{dc} is 677 V with V_{LL} as 415 V. So, the DC voltage reference V_{dc} * is selected as 700 V.

B. DC bus capacitor

The DC bus capacitor plays an important role and it is designed on the basis of variation in the DC voltage. The DC bus capacitor (\mathcal{C}_{dc}) is designed from (2) [2]

$$\frac{1}{2}C_{dc}[(V_{dc}^*)^2 - (V_{dc})^2] = k3V_{ph}(aI)t$$
 (2)

where, V_{ph} is the phase voltage and V_{ph} =240 V, I is the phase current, t is the recovery time of the DC bus voltage & t=0.04s, a is overload factor & a= 1.2 and k=0.1. The value of C_{dc} is calculated and is approximated to 10000 μ F.

C. AC inductor

The AC inductor is designed based on the ripple current and the switching frequency. The AC inductor is designed from (3) [2]

$$L_{if} = (\sqrt{3} * m * V_{dc}) / (12 * a * f_{sw} * i_{cr})$$
(3)

where, f_{sw} is switching frequency and it is chosen as 10 kHz. The value of the AC inductor is calculated as 2.25 mH.

D. Ripple filter

The ripple filter is designed with a capacitor in series with a resistor. A high pass filter of the first order is modeled and is used to filter high-frequency signals of the PCC voltage. The values of the capacitor and resistor are calculated from equations (4) to (5) [2].

$$R_{rf} * C_{rf} \le T_s \tag{4}$$

If the switching time is low,

$$R_{rf} * C_{rf} \le \frac{1}{4f_c} \tag{5}$$

The resistance value is selected as 5Ω and the capacitance for the filter is obtained by equation (6) [2],

$$5 * C_{rf} \le 1/4 * 10000 \tag{6}$$

IV. CONTROL ALGORITHM

In this work, IT2FLC based SRF is formulated to generate a reference current signal for the proposed DSTATCOM and the corresponding structure is shown in Fig. 2. The SRF theory operation commences with the transformation of the voltages and currents into the α - β - θ axis. The d-d axis represents the d-direct axis and the d-quadrature axis.

$$\begin{bmatrix} V_0 \\ V_{\alpha} \\ V_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$
 (7)

$$\begin{bmatrix} i_0 \\ i_{\alpha} \\ i_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$
(8)

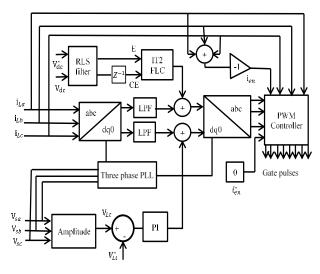


Figure 2. Control algorithm for the IT2FLC based DSTATCOM with RLS filter

The angle θ is obtained from the Phase Locked Loop (PLL) in reference to the α - β axis. Using this, a reference dq frame is established. The conversion of α - β -0 to d-q-0 frame is given as,

$$\begin{bmatrix} i_0 \\ i_d \\ i_q \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \begin{bmatrix} i_0 \\ i_\alpha \\ i_\beta \end{bmatrix}$$
(9)

The *d-q* component of current is the sum of their respective DC and AC components and given as,

$$i_d = i_{dDC} + i_{dAC} \tag{10}$$

$$i_q = i_{qDC} + i_{qAC} \tag{11}$$

The generation of reference source current is given by (12)

$$i_d^* = i_{dDC} + i_{d2} \tag{12}$$

where, i_{d2} is the output of IT2FLC of the DC voltage controller.

There should be no zero-sequence component at the PCC and the reference source current should be in-phase with the voltage. By reverse transformation, the d-q- θ frame is transformed again to α - θ - θ axis.

$$\begin{bmatrix} i_{s0}^* \\ i_{s\alpha}^* \\ i_{s\beta}^* \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \begin{bmatrix} 0 \\ i_d^* \\ 0 \end{bmatrix}$$
 (13)

The reverse transformation is applied to the source current and converted from $a-\beta-0$ frame to a-b-c frame.

$$\begin{bmatrix} i_{sa}^* \\ i_{sb}^* \\ i_{sc}^* \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{bmatrix} i_{s0}^* \\ i_{s\alpha}^* \\ i_{s\beta}^* \end{bmatrix}$$
(14)

The IT2FLC is used as the DC voltage controller, and its performance is compared with the T1FLC and PI controllers. Using the PI controller, the AC terminal voltage (V_{Lt}) at the PCC is controlled with respect to the reference terminal voltage (V_{Lt}^*) . The reactive component of current is the output of the PI controller. This helps in regulating the AC voltage of the PCC at LDG. The AC terminal voltage (V_{Lt}) at the PCC is calculated from the AC source voltages of the three phases (V_{sa}, V_{sb}, V_{sc}) as,

$$V_{Lt} = \sqrt{\frac{2}{3}}\sqrt{(V_{sa}^2 + V_{sb}^2 + V_{sc}^2)}$$
 (15)

$$i_{qr(n)} = i_{qr(n-1)} + K_{pq} (V_{te(n)} - V_{te(n-1)}) + K_{iq} V_{te(n)}$$
 (16)

Where, the terminal voltage error is $V_{te(n)} = V_{Lt}^* - V_{Lt(n)}$, n is the number of samples, K_{pq} , K_{iq} are the PI controller gains.

The reference current in the quadrature axis is calculated as,

$$i_q^* = i_{qDC} + i_{qr} \tag{17}$$

This is again transformed to α - β -0 axis as follows,

$$\begin{bmatrix} i_{s0}^* \\ i_{s\alpha}^* \\ i_{s\beta}^* \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \begin{bmatrix} 0 \\ i_d^* \\ i_q^* \end{bmatrix}$$
 (18)

The reverse transformation is applied to the source current and converted from α - β - θ frame to a-b-c frame.

$$\begin{bmatrix} i_{Sa}^* \\ i_{Sb}^* \\ i_{Sc}^* \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{bmatrix} i_{S0}^* \\ i_{S\alpha}^* \\ i_{S\beta}^* \end{bmatrix}$$
(19)

The reference value of the reference current is zero. This helps in neutralizing the load-neutral current. The comparison is made between the extracted current and the reference currents. The amplification of the error is performed by the PI controller. This is compared with the carrier signal, which is triangular. This helps in generating the gate pulses for the 6 switches in VSC. The gate pulses for the 4^{th} leg of DSTATCOM are generated on the basis of the comparison made between the extracted neutral current (i_{en}) and the reference neutral current (i_{en}) . These are attained from equations (20) and (21).

$$i_{en}^* = 0 (20)$$

$$i_{en} = -(i_{ea} + i_{eb} + i_{ec}) (21)$$

A. RLS filter

The RLS filter helps in computing the output in its filtered form, error, and the weights for the provided actual signal and the reference signal [23]. The estimation of the least square of the coefficients of the filter is performed with the identified initial conditions. The filter keeps on being updated by the new data from the old estimated data. The main objective function F(n) of this filter is to minimize the error [24].

$$F(n) = \sum_{k=1}^{n} \eta_n(n)e^2(n)$$
 (22)

where, $\eta_n(n)$ is the weighting factor, e(n) is the error and n represents the iteration number.

The error is calculated from the equation (23),

$$e(n) = V_{dc}^{*}(n) - V_{dc}(n) = V_{dc}^{*}(n) - w^{T}(n-1)x(n)$$
 (23)

where, V_{dc}^* is the reference DC voltage, V_{dc} is the DC estimated voltage i.e. the actual DC voltage

$$x(n) = [x(n) \quad x(n-1) \quad \cdots \quad x(n-M+1)]^T$$
 (24)

$$w(n) = [w_1(n) \quad w_2(n) \cdots w_M(n)]^T$$
 (25)

where, M is the vector length.

The equations below show the weight of the RLS filter after the update.

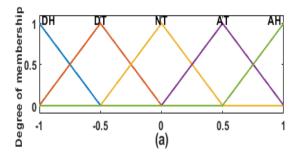
$$k(n) = \frac{P(n-1)x(n)}{\lambda + x^{T}(n)P(n-1)x(n)}$$
 (26)

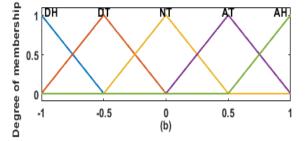
$$w(n) = w(n-1) + k(n)e(n)$$
(27)

$$P(n) = \frac{1}{4} [P(n-1) - k(n)x^{T}(n)P(n-1)]$$
 (28)

where,k(n) is the kalman gain vector, P(n) represents the input correlation matrix inverse, λ indicates the forgetting factor. The forgetting factor value stays at 0 to 1. The filter attains fast convergence when the value of λ is nearer to 1. The λ value can be calculated from.

$$1 - \frac{1}{2L} < \lambda < 1 \tag{29}$$


where, L is the length of the filter.


B. Type 1 fuzzy logic controller

The FLC gives better performance, less complicated and precise control when compared to conventional techniques. The input variables are error (E) and Change in Error (CE) and the output. The CE is calculated by the equations (30) and (31).

$$E(k) = V_{dc}^* - V_{dc(k)}$$
 (30)

$$CE(k) = E(k) - E(k-1)$$
 (31)

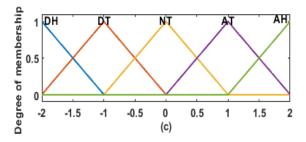


Figure 3. Membership functions of T1FLC as DC voltage regulator (a) Error (b) Change in error (c) output

where k is the time sample. The E, CE, and the output are divided into five fuzzy sets and the Membership Functions (MFs) are shown in Fig. 3. The triangular MFs are chosen for the T1FLC DC voltage controller in this paper. When comparing to other types of MFs, triangular MFs have earlier settling time, less overshoot, less complex as well as precise output. The MFs are DH (Depreciate Huge), DT (Depreciate Tiny), NT (Neutral), AT (Appreciate Tiny), and AH (Appreciate Huge). The centroid method is used in the defuzzifier module to estimate the output of this T1FLC. The output is given to the current regulator for the extraction of reference current signals. The output is $i_{\rm d2}$ which uses the rule base provided in Table 1.

TABLE 1 RULE BASE FOR T1FLC

E	DH	DT	NT	AT	AH
CE	ווע	וע	111	AI	AII
DH	NT	NT	AH	AH	AH
DT	NT	NT	AT	AT	AT
NT	AT	NT	NT	NT	DT
PS	DT	DT	DT	NT	NT
AH	DH	DH	DH	NT	NT

C. Interval type 2 fuzzy logic controller

The Interval Type 2 FLC (IT2FLC) works more effectively in handling the imprecise data when compared to T1FLC. In T1FLC, the membership values are single, while the membership functions of IT2FLC are intervals instead of single values. The MFs of IT2FLC have Lower (L) and Upper (U) regions. The IT2FLC has an additional step of Type Reduction (TR). This TR helps in reducing the IT2 fuzzy sets into IT1 fuzzy sets. Also, the footprint of uncertainty present in the IT2FLC provides better performance than conventional PI and type1 fuzzy logic controller in a complex system. So, IT2FLC is employed in the proposed system to improve performance. In addition, IT2FLC provides more precision, less complex and fast convergence [15]. The basic working scheme of Interval Type 2 Fuzzy Logic Controller is given in Fig. 4. It comprises of fuzzifier, rule base, fuzzy inference system, type reduction and defuzzifier blocks. The crisp value is converted to type 2 fuzzy sets through the fuzzifier block. The rules are stored in the rule base. A type2 fuzzy set output is generated through a fuzzy inference system based on the input fuzzy sets and the stored rules. The type reduction block is used to convert the type2 fuzzy set to the type1 fuzzy set before converting to the crisp value. Finally, the crisp output is obtained from the defuzzifier block. The E and CE are divided into three fuzzy sets each. The MFs of E and CE and the surface view are shown in Fig. 5. The surface view gives the relationship of two inputs and one output in the 3D view.

There are numerous approaches in TR. Most extensively, the Karnik Mendel (KM) TR method is used. But, in this work, the Nie-Tan TR method is selected. The Nie Tan method provides more precise output, less complex and swift convergence when compared to KM and other TR methods.

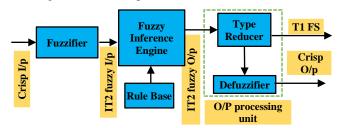


Figure 4. Interval Type 2 Fuzzy Logic Controller working scheme

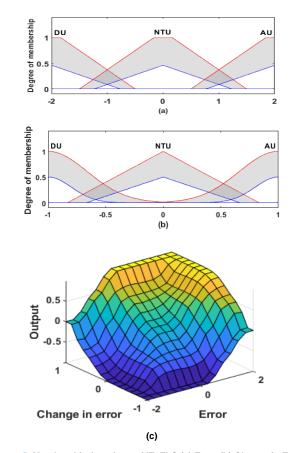


Figure 5. Membership functions of IT2FLC (a) Error (b) Change in Error (c) Surface view

The error (E) MFs are chosen as trapezoidal MFs and the change in error (CE) MFs are the combination of trapezoidal as upper MF and Gaussian as lower MF for providing

accurate results. The MFs are D (Depreciate), NT (Neutral) and A (Appreciate). The Nie-tan method is used as the TR method. The output is based on the rule base provided in Table 2.

TABLE 2
RULE BASE FOR IT2FLC

E	D	NT	A .
CE	D	NI	A
D	D	D	NT
NT	D	NT	A
A	NT	A	A

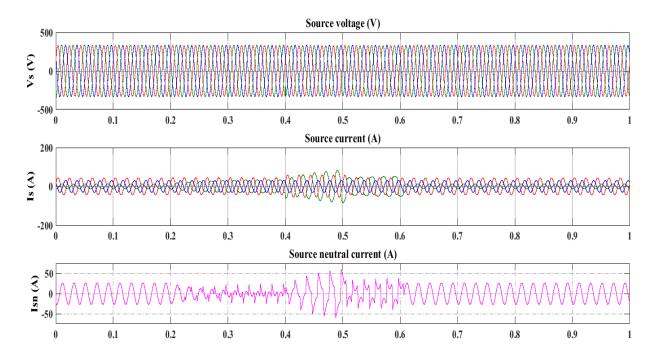
When comparing with T1FLC, the number of rules in IT2FLC gets decreased. So, the speed of the Vdc controller increases when compared to T1FLC, and also computation time is reduced. The IT2FLC provides better interval and mapping of values which helps in executing the rules accordingly. So, it is evident that IT2FLC is faster and precise than T1FLC.

V. SIMULATED RESULTS AND ANALYSIS

This paper analyzes and quantifies the effect of power quality issues arising due to sensitive loads at the hospitals and a novel method to improve power quality, thus making the distribution grid reliable. PQ improvement is achieved by incorporating IT2FLC based DSTATCOM combined with an RLS filter which provides better THD. The simulation parameters are listed in Table. 3

TABLE 3 System Parameters

Parameters	Value		
Supply Voltage (V)	415 V		
Supply Frequency (f)	50 Hz		
Interfacing inductor (L _f)	5 mH		
DC Link capacitor (C _{dc})	3300 µF		
Ripple Filter (R _f , C _{f)}	5Ω, 30μF		
Load Power (W)	1414 W		
Switching Frequency	10 kHz		
K _p	1		
K _i	1		


Initially, the system is operated without DSTATCOM and parameters such as source voltage, source current, load voltage and load current waveforms are obtained and shown in Fig. 6. As a next step, the system is simulated with DSTATCOM connected across the load, in addition to the source and load waveforms, DSTATCOM voltage and currents are also obtained. In order to quantify the measure of power quality, harmonic spectrum for both cases are obtained at times of peak load operation, and the results are tabulated in Table 4. Detailed discussion for both the cases is handled in sub-sections A and B.

A. Performance analysis of LDG without DSTATCOM

Generally, hospitals consist of diverse and sensitive loads connected both in single and three-phase connections along with a neutral conductor. The loads are modelled with the help of the datasheet of the respective load equipment. The 108-kW linear and lighting load consisting of numerous LED lamps of different power ratings 12 W, 16 W, 32 W, 36

W, 40 W are treated as a continuous operating load. This includes the loads at emergency units such as ICU, CCU. These loads are not only sensitive but also critical. In this system, the PD and the OT loads are connected from 0.2 s to 0.4 s since its operating time is mostly from 6.00 A.M to 11.00 A.M. The GD and ENTD loads are connected from 0.4 s to 0.5 s since its operating time is mostly from 9.00 A.M to 1.00 P.M. The XD and SD loads are connected from 0.4 s to 0.6 s, indicating that it works from 9.00 A.M to 4.00 P.M. The XD and SD loads are heavy loads and treated as single-phase, non-linear loads. There is a peak load of 178 W from 0.4 s to 0.5 s. Fig.6 shows the performance of the hospital loads connected with the LDG without DSTATCOM. In Fig.6, V_s signifies the source voltage, I_s denotes the source current, I_{sn} indicates the neutral current on the source side, V_t

is the load voltage, I_l is the load current and I_{ln} indicates the neutral current on the load side. From 0.4 s to 0.6 s, the heavy, unbalanced and non-linear loads are operated. This leads to severe current harmonics and hence distortion in the source current waveform. Although the entire system contains both linear, non-linear, balanced and unbalanced loads, the severity of the disturbance due to loads occurs from 0.4 s to 0.5 s. From 0.5 s to 0.6 s, the disturbance due to non-linear loads reduces slightly and at the same time, power consumption slightly decreases as the GD and ENTD loads are disconnected from 0.5 s. At 0.6 s, all the heavy unbalanced load from PD, OT, GD, ENTD, XD and SD are shut down, indicating the night time. The remaining linear continuously operated loads are still connected to the system.

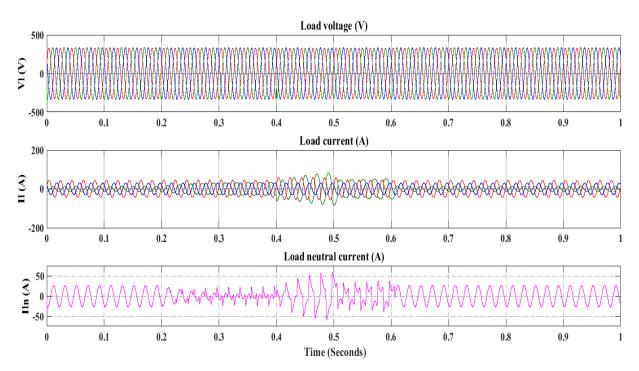


Figure 6. Source and Load current waveforms of the hospital loads connected to LDG without DSTATCOM

From Fig. 6 it can be observed that the XD and SD loads draw heavy current and create an unbalance as well as injects harmonic into the system. Due to the operation of non-linear loads, the source current is unbalanced and hence distortions occur, which results in higher THD. Also, loads at the X-ray and scan departments are high in capacity, which consumes power in several kW. This facilitates the enormous flow of neutral current in the system. The neutral current flow starts to increase from 0.2 s and at 0.4 s, nearly 50 A of current flows in it. This indicates that the entire hospital load is connected to the system and thus, peak power consumption occurs.

As per the IEEE- 519 standard, the THD should be less than 5%. The majority of the heavy non-linear loads are connected in phase B. Particularly, from 0.4 to 0.5 s, in which the entire load of the hospital is connected to the system, it is identified that the THD of the source current for phase A at 0.2 s is 8.94%, at 0.4 s is 13.77%, at 0.5 s is 14.46% and at 0.6 s is 9.36%. The THD of the source current of phase B at 0.2 s is 28.65%, at 0.4 s is 31.14%, at 0.5 s is 29.50% and at 0.6 s is 29.34%. As per the data, the bulk loads are connected in phase B followed by phase A. So, the current drawn is also larger in phase B from 0.4 s to 0.5 s which is followed by phase A. The perceived THD of the source current in phase C at 0.2 s is 19.13%, at 0.4 s is 13.59%, at 0.5 s is 16.85% and at 0.6 s is 7.07%. Because of the large non-linear loads, the THD is greater in phase B when compared to phase A and phase C. Critical loads of OT and PD are connected in phase A and phase C from 0.2 s to 0.4 s. So, the current drawn by these two phases are greater than phase B. The sample harmonic spectrum of Phase B for 5 cycles at 0.4 s is shown in Fig. 7.

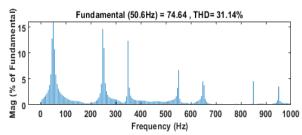


Figure 7. Phase B harmonic spectrum

B. Performance analysis of the system with DSTATCOM

There are various light and heavy loads connected individually as single-phase loads and three-phase loads. This causes severe load imbalance, harmonics due to nonlinear loads and a huge amount of current in the neutral conductor. These power quality issues are mitigated using DSTATCOM. PI controller, T1FLC and IT2FLC are the controllers used in the control of DC voltage in the DSTATCOM. Fig. 8 and Fig. 9 shows the performance of the hospital loads connected with the LDG system with DSTATCOM and IT2FLC. V_{dst} indicates the DSTATCOM

the compensating neutral current from DSTATCOM. The DSTATCOM compensates the power quality issues by injecting the essential current (I_{dst}). This compensating neutral current makes the source current (Is) to be sinusoidal and balanced. V_{dc} indicates the DC voltage with IT2FLC based DSTATCOM. The IT2FLC provides precise control when compared with T1FLC and PI controllers. The IT2FLC aids in maintaining the V_{dc} almost near the reference DC

voltage, *I*_{dst} signifies the DSTATCOM current, *I*_{dstn} denotes

voltage 700 V during varying load conditions. The RLS filter provides filtered error output and it recursively performs and squares the error to provide the best possible output. The forgetting factor helps in attaining swift convergence. Moreover, it works at high speed and performs perfectly even when the difference between the reference DC voltage and the actual DC voltage is diminutive. This feature of the RLS filter enhances the DSTATCOM performance. The RLS filter operates with better precision than the conventional LPF. The precise error output from the RLS filter is taken as one of the inputs to IT2FLC. The change in error is the other input for IT2FLC. Since the error output of the RLS filter is accurate, the CE is also precise. The usual performance of IT2FLC is better than the PI and T1FLC. With the aid of RLS filter, the performance of IT2FLC in controlling the DC voltage is precise and perfect. This can be realized with the V_{dc} waveform shown in Fig. 9. This V_{dc} output after compensation is more precise than the PI and T1FLC controllers. The harmonic spectrum of the Phase B source current for 5 cycles from 0.4 s with IT2FLC based DSTATCOM is shown in Fig. 10. From the harmonic spectrum, the source current THD for phase A at 0.2 s is 4.16%, at 0.4 s is 4.33%, at 0.5 s is 4.19% and at 0.6 s is 3.57%. The THD of the source current of phase B at 0.2 s is

4.35%, at 0.4 s is 4.43%, at 0.5 s is 4.25% and at 0.6 s is 3.98%. As per the data, the bulk loads are connected in phase B followed by phase A. The perceived THD of the source current in phase C at 0.2 s is 4.14%, at 0.4 s is 4.36%, at 0.5 s is 4.17% and at 0.6 s is 3.76%. The DSTATCOM effectively reduces the harmonics by injecting the required compensating current at varying load conditions. The higher THD of various phases under varying load conditions without compensation is drastically reduced to below 5% with the installation of IT2FLC based DSTATCOM comprising of RLS filter. Table 4 summarizes the source current THD values in percentage with and without DSTATCOM installation for time-varying load conditions.

From Table 4, it is evident that the IT2FLC based DSTATCOM with RLS filter shows better performance in terms of both harmonics and neutral current compensation than the PI and T1FLC based controllers. This control strategy of DSTATCOM exhibits improved performance at all types of loading conditions over a diverse time period. The neutral current mitigation is also carried out effectively with the help of this novel approach. The switching pulses generated by the proposed IT2FLC based DSTATCOM is given in Fig. 11.

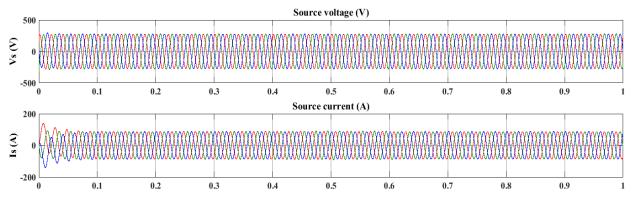
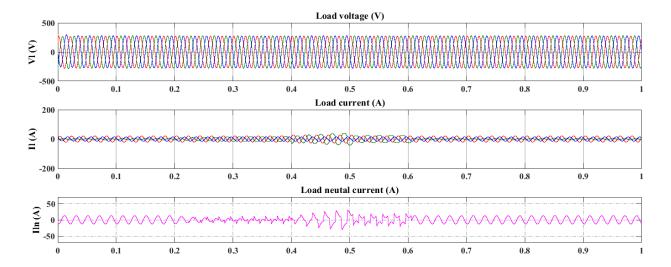



Figure 8. Source current waveforms of the hospital loads connected to LDG with DSTATCOM

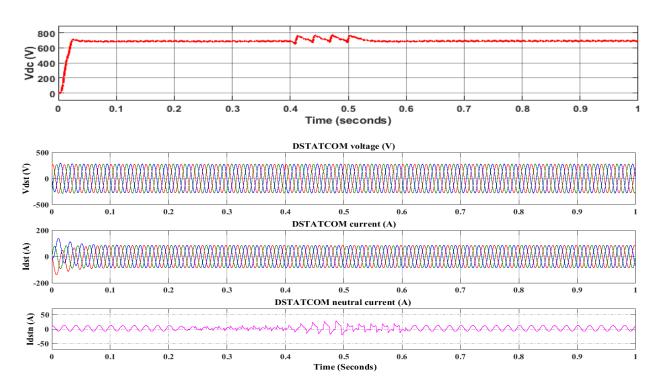


Figure 9. Load current waveforms of the hospital loads connected to LDG with DSTATCOM

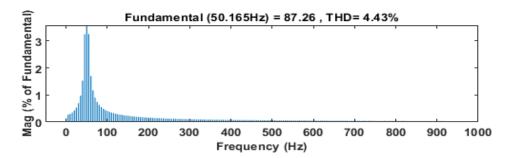


Figure 10. Source Current Harmonic Spectrum with DSTATCOM

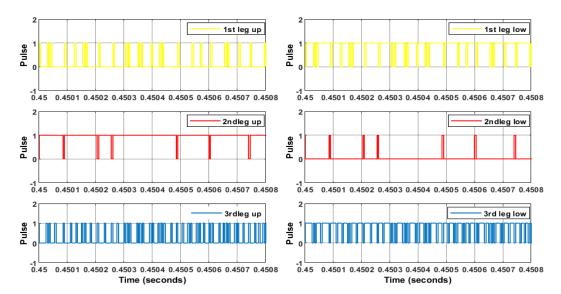


Figure 11. Switching Pulses generated for DSTATCOM switches

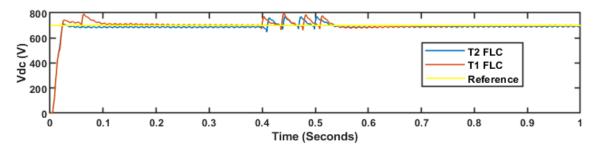


Figure 12. Dynamic response of controllers based on DC link voltage

TABLE 4
COMPARISON OF SOURCE CURRENT THD

LITERATURE	CONTROLLER	SOURCE CURRENT THD (%)
[10]	RGA OPTIMIZED PI	4.44
	PI	4.77
PROPOSED	T1 FLC	4.56
	T2FLC	4.43

The dynamic response of the controllers based on the DC link voltage is shown in Fig. 12 and the corresponding performance characteristics are listed in Table 5.

TABLE 5
COMPARISON OF PERFORMANCE CHARACTERISTICS

Parameter	Controller		
	T1 FLC	T2 FLC	
Rise Time (ms)	14.7	14.2	
Settling Time(ms)	648.1	525.6	
Peak time (ms)	440.9	443.1	
Overshoot (%)	13.79	11.20	
Peak (V)	795.48	771.52	

The performance of IT2FLC based DSTATCOM has been validated in this work and satisfactory results corroborate its effectiveness when sensitive loads are connected to the grid. With proficient behavior of control along with its fast response, it has been proved effective in mitigating harmonics. The simulated results and tabulation highlight the efficacy of the proposed controller over conventional ones. This paper paid close attention to the effective operation of the local distribution grid with sensitive loads which are the source of disturbances from the generation viewpoint. Integration of IT2FLC based DSTATCOM in the system significantly reduces the total harmonic distortion in the system and the RLS filter helps in fine-tuning it to the acute levels. Also, substantial improvement in the total harmonic distortion is aided by reducing the harmonic value of currents at the source side and provides a much better profile of voltage and current waveforms. Neutral current flow due to unbalanced loads is mitigated with the help of the fourth leg of VSC. Summarized results show that THD levels are less when compared with PI controller and T1FLC at various time instant.

REFERENCES

VI. CONCLUSION

- Ghosh A, Ledwich G. Power quality enhancement using custom power devices. Kluwer; 2002.
- [2] Singh B, Chandra. A, Al-Haddad K, "Power quality: problems and mitigation techniques," John Wiley & Sons Ltd., United Kingdom, 2015
- [3] Bert R. Power Quality Issues and the effects on Medical Equipment, Journal of clinical engineering. 1997 Vol. 22. pp. 35-40
- [4] Rao, U, Singh SN, Thakur, CK. 2010. Power Quality Issues with Medical Electronics Equipment in Hospitals. 2010 International Conference on Industrial Electronics, Control and Robotics. pp. 34-18.
- [5] Angantyr, L.G. 2009. The Power Failure at Karolinska University Hospital, Huddinge 7 April 2007 – Observer Studies, Kemedo Report 93. National Board of Health and Welfare.
- [6] Hingorani NG, Gyugyi L (2000) Understanding FACTS concept and technology of flexible AC transmission system. IEEE Press, New York.
- [7] Sreenivasarao D, Agarwal P, Das B. Performance enhancement of a reduced rating hybrid D-STATCOM for three-phase, four-wire system. Int J Electr Power Energy Syst, 2013; 97:158-71.
- [8] Singh Bhim, Jayaprakash P, Kothari DP, Chandra A, Haddad KA. Comprehensive study of DSTATCOM configurations. IEEE Trans Ind Inf 2014; 10:854-7
- [9] B. Singh, P. Jayaprakash, D. Kothari, New control approach for capacitor supported dstatcom in three-phase four wire distribution system under non-ideal supply voltage conditions based on synchronous reference frame theory, International Journal of Electrical Power & Energy Systems, 33 (5) (2011)
- [10] C. Sundarabalan, K. Selvi, PEM fuel cell supported distribution static compensator for power quality enhancement in three phase four-wire distribution system, International Journal of Hydrogen Energy 39 (33) (2014) 19051–19066.
- [11] B. Singh and J. Solanki, "A Comparison of Control Algorithms for DSTATCOM," in IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2738-2745, July 2009.
- [12] S. R. Arya, B. Singh, R. Niwas, A. Chandra, and K. Al-Haddad, "Power quality enhancement using DSTATCOM in distributed power generation system," IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 5203– 5212, Nov./Dec. 2016
- [13] P. Chittora, A. Singh and M. Singh, "Chebyshev Functional Expansion Based Artificial Neural Network Controller for Shunt Compensation," in IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 3792-3800, Sept. 2018.
- [14] Bhim Singh, Sunil Kumar Dube, Sabha Raj Arya. An improved control algorithm of DSTATCOM for power quality improvement. International Journal of Electrical Power & Energy Systems. Volume 64. 2015. Pages 493-504, ISSN 0142-0615.
- [15] Chun Yong Wang, Lijuan Wan, Type-2 fuzzy implications and fuzzy-valued approximation reasoning, International Journal of Approximate Reasoning, Volume 102, 2018, Pages 108-122, ISSN 0888-613X.
- [16] Abolfazl Doostparast Torshizi, Mohammad Hossein Fazel Zarandi, Hamzeh Zakeri, On type-reduction of type-2 fuzzy sets: A review, Applied Soft Computing, Volume 27, 2015, Pages 614-627, ISSN 1568-4946.
- [17] Taskin, A. and Kumbasar, T., 2015. An open source Matlab/Simulink Toolbox for Interval Type-2 Fuzzy Logic Systems, IEEE Symposium Series on Computational Intelligence – SSCI 2015, Cape Town, South Africa.
- [18] Wu, Dongrui and Maowen Nie. "Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems." 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) 2011: 2131-2138.
- [19] Wagner, Christian. "Juzzy A Java based toolkit for Type-2 Fuzzy Logic." 2013 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ) 2013: 45-52.

- [20] Balasundar. C, Sundarabalan. Ck, Srinath. Ns and J. M. Guerrero, "Interval Type-II Fuzzy Logic Controlled Shunt Converter Coupled Novel High-Quality Charging Scheme for Electric Vehicles," in IEEE Transactions on Industrial Informatics
- [21] Sreenivasarao D, Agarwal P, Das B. Neutral current compensation in three-phase four-wire systems A review. Electr Power Syst Res, 2012; 86:170-80
- [22] Haykin, Simon S. Adaptive filter theory. Pearson Education India, 2005.
- [23] M. Bagheri, V. Nurmanova, O. Abedinia and M. Salay Naderi, "Enhancing Power Quality in Microgrids With a New Online Control Strategy for DSTATCOM Using Reinforcement Learning Algorithm," in IEEE Access, vol. 6, pp. 38986-38996, 2018, doi: 10.1109/ACCESS.2018.2852941.
- [24] Sahoo SK, Kumar S, Singh B (2020) Vssmlms-based control of multifunctional PV-DSTATCOM system in the distribution network. IET Gener Transm Distrib 14(11):2100–2110
- [25] Energy Audit Report, OIL hospital, India. https://oilweb.oilindia.in/techauditweb/.../reports/

Sathish Babu Pandu received the B.E. degree in Electrical and Electronics Engineering from University of Madras, in 1999. M.E degree in Power Electronics and Industrial drives from Sathyabama Institute of Science and Technology, Chennai and Ph.D. degree in Faculty of Electrical Engineering from Anna University-Chennai in 2005 and 2016 respectively. He is currently working as Assistant Professor (SG) in Department of Electrical and Electronics Engineering, Anna University-University College

of Engineering, Panruti, Tamilnadu, India. His research interests include power quality improvement, intelligent controllers, optimization techniques and energy storage technologies.

journals.

C.K. Sundarabalan received the B.E. degree in EEE from Anna University in 2010, and the M.E. and Ph.D. degrees in power systems and power quality from the same University in 2012 and 2016, respectively. He is currently working as an Assistant Professor in SASTRA Deemed University, Thanjavur, Tamilnadu, India. His main research areas are power quality, electric vehicle, and distribution grid impacts. He serves as a reviewer for various IEEE and other reputed

grids.

Srinath N.S. received the B.Tech. degree in EEE & the M.E. degree in Power System Engineering from the SASTRA Deemed University & Annamalai University in 2014 and 2016, respectively. From 2016 to 2019, he has worked in various electrical engineering domains both in India & Abroad. Since 2019, he is working towards his Doctoral Degree in smart and microgrid in the Department of EEE, SASTRA Deemed University, India, where he is responsible for the research in smart & micro

T. Santhana Krishnan (Santhana Krishnan Thirumalai) obtained his Bachelor's degree in Electrical and Electronics from Madurai Kamaraj University in 1999. Then he obtained his Master's and doctorate degree in Management and systems from Madurai Kamaraj University in 2001 and Master's degree in Power Electronics and drives from SRM University in 2005 and completed his PhD in Electrical Engineering from Anna University, Chennai in 2020. He is an active life member of IEEE and ISTE. Currently, he is an

Assistant Professor (SG) at Faculty of Electrical and Electronics, Rajalakshmi Engineering College (Autonomous), Chennai. His specializations include Power Electronics and drives, Special Electrical Machines and Renewable energy systems. His research interests are DC-DC soft switched resonant converters, wind energy conversion systems.

G. Soorya Priya obtained her Bachelor's degree in Electrical and Electronics from Velammal Engineering College affiliated to University of Madras in 2003. Then she obtained her Master's in Power systems from B.S.A Crescent Engineering College affiliated to Anna university, Chennai in 2005 and currently pursuing her PhD in Electrical Engineering from Anna University, Chennai. Currently, she is an Assistant Professor at Faculty of Electrical and Electronics, Loyola Institute of Technology, Chennai. Her specializations include

Power Systems, Transmission and Distribution and Electromagnetic theory. Her current research interests are ABT on automatic generation control of DG penetrated power systems.

C. Balasundar received the B.E. degree in EEE from Anna University in 2012, and the M.E. degree in Electrical Drives and Embedded Control from Anna University in 2015. He is currently pursuing the Ph.D. degree in electric vehicle battery charging and grid integration in the School of EEE at SASTRA Deemed University, Thanjavur, Tamilnadu, India. His fields of interest include power electronics, power quality, fuzzy logic, and

the design of electric vehicle charging system.

Jayant Sharma received the Bachelor of Engineering degree in Electrical and Electronics Engineering from RGPV, India, in 2012, and the M.Tech. degree in Power electronics and drives from NIT Rourkela, India, in 2015. He joined SASTRA Deemed University, Thanjavur, Tamilnadu, India, as an Assistant Professor in 2017, where he is currently working toward the Ph.D. degree in the Department of Electrical and Electronics Engineering. His fields of interest include power electronics, power quality, fuzzy

logic, and the design of electric vehicle charging systems.

Soundarya G received her B.E. degree in Electrical and Electronics Engineering from Anna University, Chennai, Tamilnadu, India, in 2013, and M. Tech degree in Power Systems from SASTRA Deemed University Thanjavur, Tamilnadu, India in 2019. Her main research interests include Power Quality, Renewable Energy system and Fuzzy Logic Controllers.

Pierluigi Siano (M'09–SM'14) received the M.Sc. degree in electronic engineering and the Ph.D. degree in information and electrical engineering from the University of Salerno, Salerno, Italy, in 2001 and 2006, respectively.

He is a Professor and Scientific Director of the Smart Grids and Smart Cities Laboratory with the Department of Management & Innovation Systems, University of Salerno.

His research activities are centered on demand response, on energy management, on the integration

His research activities are centered on demand response, on energy management, on the integration of distributed energy resources in smart grids, on electricity markets and on planning and management of power systems. In these research fields he has co-authored more than 500 articles including more than 300 international journal papers that received in Scopus more than 10100 citations with an H-index equal to 49.

In 2019 and 2020 he received the award as Highly cited Researcher by ISI Web of Science Group. He has been the Chair of the IES TC on Smart Grids. He is Editor for the Power & Energy Society Section of IEEE Access, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Open Journal of the IEEE IES, IET Smart Grid and IET Renewable Power Generation

Hassan Haes Alhelou (Senior Member, IEEE) is a faculty member at Tisheen University, Lattakia, Syria. He is with UCD, Ireland. He is included in the 2018 and 2019 Publons list of the top 1% best reviewer and researchers in the field of engineering. He was the recipient of the Outstanding Reviewer Award from Energy Conversion and Management Journal in 2016, ISA Transactions Journal in 2018, Applied Energy Journal in 2019, and many other Awards. He was the recipient of the best young

researcher in the Arab Student Forum Creative among 61 researchers from 16 countries at Alexandria University, Egypt, 2011. He has published more than 130 research papers in the high-quality peer-reviewed journals and international conferences. He has also performed reviews for high prestigious journals including IEEE Transactions on Industrial Informatics, IEEE Transactions on Industrial Electronics, Energy Conversion and Management, Applied Energy, International Journal of Electrical Power & Energy Systems. He has participated in more than 15 industrial projects. His major research interests are Power systems, Power system dynamics, Power system operation and control, Dynamic state estimation, Frequency control, Smart grids, Microgrids, Demand response, Load shedding, and Power system.