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ABSTRACT In order to avoid the noise diffusion and amplification caused by traditional dehazing algo-
rithms, a single image haze removal algorithm based on nonsubsampled contourlet transform (HRNSCT)
is proposed. The HRNSCT removes haze only from the low-frequency components and suppresses noise
in the high-frequency components of hazy images, preventing noise amplification caused by traditional
dehazing algorithms. First, the nonsubsampled contourlet transform (NSCT) is used to decompose each
channel of a hazy and noisy color image into low-frequency sub-band and high-frequency direction sub-
bands. Second, according to the low-frequency sub-bands of the three channels, the color attenuation prior
and dark channel prior are combined to estimate the transmission map, and use the transmission map to
dehaze the low frequency sub-bands. Then, to achieve the noise suppression and details enhancement of the
dehazed image, the high-frequency direction sub-bands of the three channels are shrunk, and those shrunk
sub-bands are enhanced according to the transmission map. Finally, the nonsubsampled contourlet inverse
transform is performed on the dehazed low-frequency sub-bands and enhanced high-frequency sub-bands
to reconstruct the dehazed and noise-suppressed image. The experimental results show that the HRNSCT
provides excellent haze removal and noise suppression performance and prevents noise amplification during
dehazing, making it well suited for removing haze from noisy images.

INDEX TERMS Image processing, image restoration, haze removal, nonsubsampled contourlet transform,
noise suppression.

I. INTRODUCTION
With the rapid development of the Internet of Things, big
data, and cloud computing technologies, video devices are
increasingly used in outdoor video surveillance systems.
However, hazy weather significantly affects the image quality
of the video surveillance systems and the subsequent image
processing results, such as image segmentation, target recog-
nition [1], and other tasks. Numerous haze removal algo-
rithms have been proposed to improve the quality of haze-
affected images.

Most existing dehazing algorithms are based on image
enhancement [2], [3], physical models [4]–[6] or machine
learning [7], [8]. These algorithms can be divided into two
categories, namely those with and without noise suppression.
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Dehazing algorithms without noise suppression ability
focus on estimating atmospheric light or a transmission map.
For example, Ancuti et al. [9] used local atmospheric light to
replace the global atmospheric light of traditional dehazing
algorithms. Shin et al. [10] integrated radiation and reflection
data to optimize the transmission map estimation.

A fast image dehazing algorithm based on a simple linear
transformation was presented by Wang et al. [11], the dehaz-
ing algorithm that used the linear transformation was faster
than classic methods. Lou et al. improved the maximum
reflectance prior (MRP) and used it to remove haze from
nighttime images [12].

The transmission map in these dehazing algorithms is esti-
mated based on a prior obtained from the image statistics;
this topic is a research hotspot. The well-known dark channel
prior (DCP) [13] refers to prior knowledge based on the
statistics of haze-free images. Since it is a statistical law,
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it is inevitable that there is a deficiency in some specific
scenes. The hazy image cannot include the sky area when
the DCP is used to estimate a transmission map, and dehazed
images by DCP are prone to produce halo effect. Therefore,
numerousmethods [14]–[18] that optimize or refine the trans-
mission map estimated by the DCPwere developed. Sahu and
Seal [19] presented an image dehazingmethod that calculated
a transmissionmap of the non-sky and sky regions of the hazy
image using DCP and luminance stretching, respectively. The
luminance stretching method could restore hazy images that
included the sky, and the dehazed images were clearer than
those obtained from the DCP method. In addition to DCP,
some scholars have successively proposed transmission map
estimation methods [20]–[26] with prior constraints, such as
the color ellipsoid prior [20] and the color attenuation prior
(CAP) [21].

With the development of deep machine learning meth-
ods, dehazing algorithms [27]–[31], and [32] based on deep
machine learning methods have also been developed.

Dong et al. [33] proposed a multi-scale boosted dehazing
networkwith dense feature fusion to preserve spatial informa-
tion in the U-Net architecture. The results showed that the U-
Net architecture was suitable for dehazing and provided good
dehazing performance. Shao et al. [34] presented a dehazing
net with a bidirectional translation network to achieve domain
adaptation between the synthetic and real image domains.
The dehazing net improved the performance of the dehazing
model trained by synthetic hazy images. Shao et al. [34]
proposed a binocular image dehazing network (BidNet) for
removing haze from stereo images. The BidNet included a
stereo transmission map estimation network and an atmo-
spheric light estimation network and achieve dehazing for
stereo images based on the physical scattering model.

Nonetheless, the methods of the above-mentioned docu-
ments except for [4], [30], and [31], do not consider noise
interference in hazy images. The noise in hazy images is often
amplified when these algorithms are used to remove haze,
leading to the distortion of the dehazed images and the loss
of details.

Gao and Hu et al. [4] introduced a noise term into the
atmospheric scattering model and analyzed the reasons for
the noise amplification caused by traditional dehazing algo-
rithms. The authors proposed a depth-chromaticity regular-
ization method based on the strong correlation between the
depth and chromaticity of an image and the transmissionmap.
The regularization method aimed to optimize the transmis-
sion map and the dehazed image and suppressed noise (noise
in the original image and noise resulting from dehazing).
In [30] and [31], dehazing algorithms with noise suppression
were proposed.

Although the dehazing algorithms in [4], [30], and [31]
have noise suppression functions, they focus on reducing the
influence of noise on the estimated transmission map and
suppressing the noise amplified by the haze removal process.
However, these algorithms may still amplify the noise during
the dehazing process.

Thus, in this study, a single-image haze removal algorithm
based on nonsubsampled contourlet transform (HRNSCT) is
proposed to prevent noise diffusion and amplification during
haze removal by decoupling the haze removal and noise
suppression processes in the contourlet transform domain.

The highlights of this paper are as follows.
1. The HRNSCT algorithm decouples the haze removal

and noise suppression of hazy images, minimizing the risk
of noise amplification during the haze removal process of
traditional algorithms.

2. The transmission map and atmospheric light are esti-
mated accurately by using the low-frequency sub-bands of
the hazy image and combining the CAP and the DCP.
This approach improves the estimated transmission map and
avoids noise interference when estimating the transmission
map and atmospheric light.

3. The HRNSCT algorithm allows for dehazing only the
low-frequency components of hazy images and provides a
new approach for dehazing hazy images with noise.

4. The noise in the dehazed image is suppressed by shrink-
ing the high-frequency sub-bands of the original hazy image,
providing a newmethod for the noise suppression of dehazing
algorithms.

The remainder of this paper is organized as follows.
TheHRNSCT framework is described in Section II, includ-

ing image decomposition, scene depth, and atmospheric light
estimation, transmission map estimation based on two priors,
noise suppression, haze-free low-frequency sub-band recov-
ery, noise suppression, high-frequency detail enhancement,
and haze removal. The HRNSCT algorithm is described
in Section III. The dehazing results of the HRNSCT are
provided and compared with those of other algorithms in
Section IV. The parameters of the HRNSCT are analyzed in
Section V, and the conclusions are presented in Section VI.

II. DECOUPLED FRAMEWORK OF HAZE REMOVAL AND
NOISE SUPPRESSION
As described in [36], hazemainly occurs in the low-frequency
part of an image. A noise term n is added to the atmo-
spheric scattering model, and the hazy image and the dehazed
image are expressed as high-frequency components and low-
frequency components, respectively. The atmospheric scat-
tering model is defined in Eq. (1):

I = I l + Ih = J l · t + A(1− t)+ Jh · t + n, (1)

where I l = J l · t + A(1 − t), Ih = Jh · t + n. I , I l , and Ih,
respectively, are the hazy image, the low-frequency compo-
nent, and the high-frequency component of the hazy image.
J , J l , and Jh denote the target (dehazed) image, the low-
frequency component, and the high-frequency component of
the dehazed image, respectively. n refers to Gaussian noise
with zero mean. A represents the global atmospheric light.
t = e−βd(x,y) is the transmission map, d(x, y) refers to the
scene depth, and β denotes the scattering coefficient of the
atmosphere.
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FIGURE 1. Framework of the image haze removal algorithm based on the nonsubsampled contourlet transform (HRNSCT).

Equation (1) indicates that if A and t are known, and
the interference of noise n can be eliminated, the dehazed
image J can be obtained from the hazy image I . However,
only the hazy image I is known in Eq. (1). If I can be
decomposed into the low-frequency component I l and the
high-frequency component Ih, I l contains almost all the haze
and the contour structures of the image, and Ih includes the
texture details and noise of the image. Subsequently, the haze
is removed from the Il , and the noise is suppressed in the Ih,
thereby decoupling the haze removal and noise suppression
processes. After the image is decomposed, the haze removal
process is converted into the estimation of the atmospheric
light A and the transmission map. It is known from Refs. [11],
[18] that A and t can be estimated using the CAP or the DCP.
Nonetheless, both priors have advantages and disadvantages;
thus, the two priors are both used to estimate A and t in this
study.

The nonsubsampled contourlet transform (NSCT) is used
to decompose the hazy image, and the CAP and DCP are
combined to estimate the transmission map and atmospheric
light. The framework of the HRNSCT is shown in Figure 1,
where the red, green, and blue borders represent the r, g, b
color channels of the color image.

A. IMAGE DECOMPOSITION USING NSCT
In [37] and [38], the nonsubsampled pyramid (NSP) trans-
form and nonsubsampled directional filter bank (NSDFB)
were used in the NSCT for multi-scale and multi-directional
image decomposition. First, the image was decomposed into
low-frequency and high-frequency components by the NSP.

Then the high-frequency components were divided into dif-
ferent directional sub-bands in the frequency domain by
the NSDFB. The multi-scale decomposition and frequency-
domain segmentation are shown in Figure 2. After N itera-
tions, a low-frequency sub-band and

∑n
j=1 2

j high-frequency
sub-bands were obtained. Since neither the NSP nor the
NSDFB performs nonsubsampled operations, each sub-band
matrix of the NSCT has the same size as the original input
image.

For the convenience of description, the symbol TNSCT () is
used to indicate the NSCT operation. An image I is decom-
posed by the NSCT using the expression in Eq. (2), where Cc

l
denotes the low-frequency sub-bands of the three channels
of the color image, and Cc

l = Icl . C
c
h,j,s represent the high-

frequency directional sub-bands of the three channels, which
contain the texture details and almost all noise in the color
image. L and Sj refer to the maximum decomposition scale
of the NSCT and the number of directions on the given scale,
respectively. c denotes the r, g, b channels of the color image.{
Cc
l ,C

c
h,j,s, j = 1, 2, . . . ,L, s = 1, 2, . . . , Sj

}
denotes a set

of all contourlet sub-bands of the image.

TNSCT (Ic) =
{
Cc
l ,C

c
h,j,s, j = 1, 2, . . . ,L, s = 1, 2, . . . , Sj

}
,

c ∈ {r, g, b} (2)

B. SCENE DEPTH AND ATMOSPHERIC LIGHT ESTIMATION
In [21], the CAP of hazy images was presented. The CAP
indicates that the haze density of a hazy image is closely
related to the brightness and saturation of the image. The
scene depth d(x, y) and the haze density Hd (x, y) of the hazy
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FIGURE 2. Nonsubsampled decomposition and frequency division of the
NSCT. (a) Multiscale decomposition; (b) frequency-domain segmentation.

image are positively correlated with the difference between
the brightness v(x, y) and saturation s(x, y) of the hazy image
in the hue, saturation, value (HSV) color space. The deeper
the scene depth in the hazy image, the greater the haze density
is. In addition, the difference between brightness and satura-
tion increases with increasing haze density. The proportional
relationship between the scene depth of the hazy image and
the haze density is defined in Eq. (3):

d(x, y) ∝ H(x, y) ∝ v(x, y)− s(x, y), (3)

where d(x, y) and H(x, y) denote the scene depth and haze
density, respectively. v(x, y) and s(x, y) denote the brightness
and saturation, respectively, of the hazy image in the HSV
color space, and (x, y) is the pixel coordinate of the hazy
image.

A linear estimation model of the scene depth of a hazy
image based on the CAP was developed in [18]:

d(x, y) = θ0 + θ1v(x, y)+ θ2s(x, y)+ ε(x, y), (4)

where θ0, θ1, and θ2 represent the unknown linear coefficients
of the model. ε(x, y) refers to a random error term of the
model with a Gaussian distribution with mean 0 and variance
σ 2. In [18], themodel (Eq. (4)) is trained using the hazy image
set; the parameters of the trained model are θ0 = 0.121779,
θ1 = 0.959710, θ2 = −0.780245, and σ = 0.041337.
These parameters are used to estimate the scene depth of hazy
images in this study.

Equation (1) indicates that the global atmospheric light A
and transmission map t(x, y) have to be known to remove

haze from the low-frequency components of the hazy image.
According to Eqs. (3) and (4), the greater the v(x, y)−s(x, y),
the farther the scene depth distance is, and the brighter the
area corresponding to the depth map is. Therefore, all grey
values of the depth map are sorted; the pixel positions of the
first 0.1% of the gray values of the depth map are marked,
and the maximum of these pixel values in the low-frequency
component I l is regarded as the atmospheric light A. When
the atmospheric light is computed, and the depth map is
estimated using Eq. (4), white objects in the image can be
mistaken for the atmospheric light. The basic scene depth
db(x, y) is replaced by the regional scene depth d r(x, y) when
computing A to improve the robustness of the atmospheric
light estimation. d r(x, y) is obtained by filtering db(x, y) using
a local minimum filter. The local minimum filter operator is
defined in Eq. (5):

d r(x, y) = Fmin
(x,y)∈wr

db(x, y), (5)

where wr denotes a r × r neighborhood window centered on
(x, y), and Fmin denotes the minimum filter operator.

We mark the pixel position of the first 0.1% of the grey
values of d r(x, y) and determine the maximum value at the
corresponding position of I l as the atmospheric light A.

C. TRANSMISSION MAP ESTIMATION BASED ON TWO
PRIORS
Themost common priors used for estimating the transmission
map include the CAP and the DCP. Since both have advan-
tages and disadvantages, both priors are used to estimate the
transmittance transmission map.

According to the CAP, I l is converted from the RGB color
space to the HSV color space. Equation (4) is used to obtain
the scene depth estimate db(x, y) of I l . Because the edges and
details of the original hazy image I retained by db(x, y) are
not fine enough, halos may occur in the edge contour area
of the dehazed image. Therefore, db(x, y) is filtered with a
guided filter to refine the transmission map.

In [39] and [40], it is assumed during the use of the guided
filter that the output image Q and the guide image G are
locally linear, i.e., in the square window wk centered on k ,
Q is the linear transformation of G, as defined in Eq. (6):

Qi = akGi + bk , ∀i ∈ wk , (6)

where ak and bk are the linear coefficients in the local win-
dow wk , whose value can be estimated by the cost function
(Eq. (7)):

In Eq. (7), λ refers to the balance factor to prevent ak
from becoming too large. Il represents the filtered image.
According to the linear ridge regression model, ak and bk can
be calculated by Eq. (7): ak =

1
|w|

∑
i∈wk GiI li − µk Ī lk

σ 2
k + λ

bk = Ī lk − akµk ,

(7)
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FIGURE 3. Transmission map and temporary values obtained from the
color attenuation prior.

where µk and σ 2
k are the mean and variance of the guide

image G in the local window wk . |w| denotes the number of
pixels in the local window wk , and Ī lk = 1

|wk |

∑
i∈wk I li is the

mean value of the filtered image in the local window wk .
When the scene depth is filtered, the sum image of the

low-frequency sub-bands and the high-frequency directional
sub-bands corresponding to the first decomposition scale of
the hazy image is regarded as the guide image to avoid the
influence of noise in the hazy image and include the sufficient
details in the guide image. In other words, the calculation
result of Eq. (8) is used as the guide image. In Eq. (8),
Cc
l denotes the low-frequency sub-bands, Cc

h,1,s denotes the
high-frequency directional sub-bands corresponding to the
first decomposition scale, and S1 represents the number of
decomposition directions corresponding to the first decom-
position scale of the hazy image.

G = Cc
l +

S1∑
s=1

Cc
h,1,s, c ∈ {r, g, b}, (8)

The final refined scene depth estimate dg(x, y) is obtained
by filtering db(x, y); G is used as the guide image of the
guided filter. For ease of description, the symbol Fg() is used
to represent the guided filter operator, db(x, y) and G denote
the image to be filtered and the guide image, respectively.
This filtering process is expressed as Eq. (9):

dg(x, y) = Fg(G, db(x, y)), (9)

After dg(x, y) is obtained, the transmission map t1(x, y) is
computed using Eq. (10):

t1(x, y) = exp(−βdg(x, y)), (10)

where β denotes the attenuation coefficient. The recom-
mended range of β is [0.8,2.5]; the greater the value of β,
the smaller the value of the transmission map is.

Figure 3 shows the estimated basic scene depth db(x, y),
regional scene depth d r(x, y), final scene depth dg(x, y), and
the transmission map t1(x, y) of the hazy image from left to
right.

Subsequently, the transmission map t2(x, y) is estimated
using the DCP to compensate for the defects of the esti-
mate obtained from the CAP. The DCP is an empirical
result obtained from the statistics of many haze-free outdoor
images. The grey values of one of the three channels of the
haze-free images in the RGB space are always close to zero.
In other words, theminimumgrey values of the three channels
r, g, b tend to zero. Hence, the real scene image without sky

areas satisfies the dark primary color defined in Eq. (11):

Jdark = min
(x,y)∈�(x,y)

( min
c∈{r,g,b}

(Jc(x, y))), (11)

where�(x, y) represents the local window centered on (x, y),
and Jc is one of the color channels of the haze-free image J .
In the non-sky and haze-free image, the dark primary color
Jdark tends to zero according to the DCP.
According to the DCP and the atmospheric scattering

model, the transmission map t̃(x, y) can be estimated by Eq.
(12) when the atmospheric light is known.

t̃(x, y) = 1− α · min
(x,y)∈�(x,y)

( min
c∈{r,g,b}

(Icl (x, y))), (12)

where α denotes a weight factor that controls the residual
haze. The range of α is 0 < α < 1, and the recommended
value is 0.95.

Similar to the basic scene depth estimation db(x, y), t̃(x, y)
also has the disadvantage of insufficient details. Therefore,
t̃(x, y) is also filtered by a guided filter, and G is used as the
guide image to obtain an improved estimate of the transmis-
sion map t2(x, y), i.e., t2(x, y) = Fg(G, t̃(x, y)). Furthermore,
the same guide image G is used for filtering t2(x, y) and
dg(x, y) to minimize inconsistencies in the details of the two
transmission maps estimated by the two priors.

The two transmission maps t1(x, y) and t2(x, y) are fused
using Eq. (13) to obtain the final transmission map t(x, y).
In Eq. (13), µ represents the balance factor that determines
the contribution of each transmission map to the final trans-
mission map t(x, y). The value range ofµ is the interval [0,1].

t(x, y) = µ · t1(x, y)+ (1− µ) · t2(x, y), (13)

D. HAZE-FREE LOW-FREQUENCY SUB-BAND RECOVERY
If A and t(x, y) are known, the value range of t(x, y) is limited
to [0.05,1.0] to eliminate the very low and very high grey
values in the low-frequency sub-bands of the haze-free image.
Thus, the low-frequency sub-bands of the haze-free image are
obtained by Eq. (14). Let Ĉ l = I ld , i.e., the dehazed low-
frequency sub-bands are regarded as the low-frequency sub-
bands of J l .

I ld (x, y) =
I l(x, y)− A

min(max(t(x, y), 0.05), 1.0)
+ A, (14)

E. NOISE SUPPRESSION AND HIGH-FREQUENCY DETAIL
ENHANCEMENT
According to Eq. (1), the remaining task after removing
haze from I l is to remove noise from Ih and obtain the
high-frequency component of Jh. First, the high-frequency
sub-bands

{
Cc
h,j,s, j = 1, 2, . . . ,L, s = 1, 2, . . . , Sj

}
need be

shrunk to remove or suppress noise in the hazy image. Then,
the high-frequency sub-bands after threshold shrinkage are
compensated for the difference relative to Cc

l according to
the transmission map.

Threshold shrinkage is a classic noise suppression method.
When a hard threshold function is used to remove noise,
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the denoised image has a relatively high peak signal-to-noise
ratio, and the edges are emphasized.

A hard threshold function is used for noise suppression in
the high-frequency sub-bands to reduce the loss of details in
the dehazed image. The hard threshold function is defined in
Eq. (15):

C̃
c
h,j,s =

{
Cc
h,j,s,

∣∣∣Cc
h,j,s

∣∣∣ > kjTj,sσ c ,

0, otherwise,
j ∈ 1, 2, . . . ,L, s ∈ Sj, c ∈ {r, g, b} (15)

where kj denotes threshold scale coefficient of the jth decom-
position scale. Tj,s represents the frequency-domain root
mean square of the high-frequency sub-bands, which calcu-
lated using Eq. (16). σ c denotes the noise variance of the
channels of the hazy image, and the other symbols have the
same meaning as in Eq. (2).

Tj,s =

√√√√√ M∑
m=1

N∑
n=1
|F(CMz

j,s )|
2

M × N
, (16)

where MZ is an M × N matrix with the same number of
rows and columns as I c(x, y); the values are defined in Eq.
(17). CMZ

j,s denotes the decomposition sub-bands of MZ ,
which are decomposed by the NSCT. The same parameters
(scale and direction filter number) as in the decomposed
Ic(x, y) are used. F() and | · | denote the two-dimensional
Fourier transform (FT) and the absolute value operator,
respectively.

MZ (m, n) =

{
1, m = M/2, n = N/2

0, otherwise
, (17)

σ c is calculated by the empirical formula of the wavelet
noise estimation (Eq. (18)), wheremed() refers to the median
operator, | · | denotes the absolute value operator, and
W c
d1 denotes the diagonal high-frequency coefficient that is

obtained using single-scale ‘‘sym8’’ wavelet decomposition
of I c(x, y).

σ c =
med(

∣∣W c
d1

∣∣)
0.6745

, c ∈ {r, g, b}, (18)

After the shrunk high-frequency sub-bands C̃c
h,j,s have

been obtained, details enhancement is performed using
Eq. (19) according to the transmission map t(x, y) to com-
pensate for the attenuation of C̃c

h,j,s relative to C
c
l .

Ĉ
c
h,j,s =

C̃
c
h,j,s

min(max(t(x, y), 0.1), 0.9)
, c ∈ {r, g, b}, (19)

where Ĉc
h,j,s denotes the enhanced high-frequency sub-bands.

F. RECONSTRUCTION OF THE DEHAZED IMAGE
After performing low-frequency haze removal, high-
frequency noise suppression, and high-frequency details
enhancement, the noise- and haze-suppressed image Id is
obtained by applying the nonsubsampled contourlet inverse

transformation. For convenience of expression, the symbol
T−1NSCT denotes the nonsubsampled contourlet inverse trans-
formation; this process is defined in Eq. (20).

Id = T−1NSCT

({
Ĉ
c
l , Ĉ

c
h,j,s, j=1, 2, . . . ,L, s=1, 2, . . . , Sj

})
,

c ∈ {r, g, b} (20)

After the dehazed image Id has been reconstructed,
a Gamma correction is performed to increase the grey values
of low-brightness pixels. The gamma correction transform is
defined as:

Id,g = (Id)γ , (21)

where the range of γ is 0 < γ ≤ 1; a value of 0.8 is used in
this study.

III. IMPLEMENTATION OF THE HRNSCT ALGORITHM
The HRNSCT algorithm includes four steps. First, the non-
subsampled contourlet decomposes the hazy image. Second,
in the contourlet domain, the CAP and DCP are used to esti-
mate the transmission map and atmospheric light and obtain
the haze-free low-frequency sub-bands. The high-frequency
sub-bands of the hazy image are shrunk in the contourlet
domain for noise suppression, followed by the enhance-
ment of these sub-bands according to the transmission map.
Finally, the nonsubsampled contourlet inverse transform is
performed to reconstruct the haze-free image in the RGB
space, and the Gamma correction is applied to brighten the
dark areas.

The details of the HRNSCT are defined in Algorithm 1.

Algorithm 1 Image Haze Removal AlgorithmBased on Non-
subsampled Contourlet Transform
Input: Hazy color image I
Initialization: Assign values to all parameters
Step 1While c ∈ {r, g, b}, do

1. Decompose I c using NSCT
Step 2 1. Compute t1(x, y) and t2(x, y)

2. Obtain the dehazed low-frequency image I ld (x, y)
Step 3 1. Compute σ cand σ̂j,s

2. Reduce Cc
h,j,s

3. Obtain the enhanced high-frequency sub-band
Ĉc
h,j,s

Step 4 1. Reconstruct the dehazed image Id using Ĉc
l , Ĉ

c
h,j,s

2. Correct Id using gamma correction
End

Output: Dehazed image Id,g

IV. NUMERICAL EXPERIMENTS
An edge quality metric is often used in image fusion [41].
In this study, the ratio of the increased number of visible edges
in the dehazed image to visible edges of the original image
Rve, the mean visibility levelMvl [42], and the noise variance
Nv are used to evaluate the dehazed images of hazy images
without or with low-density noise. In contrast, the noise vari-
ance, i.e., the natural image quality evaluator (NIQE) [43],
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and the structural similarity index measure (SSIM) are used
to evaluate the dehazed images of hazy images with high-
density noise.

The noise variance is calculated using the empirical for-
mula of wavelet noise (Eq. (18)). Rve and Mvl are defined in
Eq. (22) and Eq. (23), and the SSIM is defined in Eq. (24).

Rve =
nr − n0
n0

, (22)

Mvl = exp

 1
nr

∑
i∈℘r

log ri

 , (23)

where nr and n0 denote the number of visible edges in the
dehazed image and the original hazy image. ri is the gradient
ratio of the dehazed image and the original hazy image. ℘r
represents the number of visible edges in the dehazed image.

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

, (24)

where x and y are the reference image and comparison image,
µx and µy denote the mean values of x and y, respectively,
σx and σy refer to the variances of x and y, respectively, σxy
represents the covariances of x and y, respectively, C1 and
C2 are constants to avoid a zero denominator, where C1 =

(K1L)2 andC2 = (K2L)2; L is the range of grey values. In this
study, L = 255, K1 = 0.01, and K2 = 0.03.
All the codes are implemented in Matlab R2014b, and the

experiments are conducted on a PC runningWindows 10 with
16 G of RAM and a 2.7 GHz i7 CPU.

In the experiment, hazy images were selected from the
image sets in [4], [21], FRIDA [44], O-HAZE [45], I-HAZE
[45], [46], and [47], and the other hazy imagesare selected
from real hazy images.

Three types of experiments were conducted to verify
the performance of low-frequency dehazing, high-frequency
noise reduction, and comprehensive performance for dehaz-
ing and noise reduction of HRNSCT.

A. LOW-FREQUENCY DEHAZING
In the experiment, the low-frequency dehazing performance
is evaluated visually and using objective indicators. The
parameters of the HRNSCT are as follows: the scale of the
NSCT decomposition image is 3; the number of directional
filter banks corresponding to each scale is 2, 4, and 8; λ =
0.015, r = 15, β = 2.2, µ = 0.5, kj = [0 3 3 4], and
γ = 0.6.

A comparison of the original and dehazed images T1-T3 is
shown in Figure 4. The results of the evaluation indicators are
shown in Figure 5.

Figure 4 shows that the HRNSCT significantly reduces
the amount of haze in the images. In the dehazed images,
the amount of residual haze is greater in the distant areas than
nearby. However, most areas are haze-free and show no halos.
The results indicate that it is feasible to achieve haze removal
in the image by removing haze only in the low-frequency
domain.

FIGURE 4. Results of haze removal by the HRNSCT in the low-frequency
domain. (a) Original hazy images; (b) dehazed images.

FIGURE 5. Results of the evaluation indicators of the dehazed images. (a)
Comparisons of Nv in the original and dehazed images; (b) Rve and Mvl.

As shown in Fig. 5 (a), the noise variance of the dehazed
images T1 and T3 is lower than that of the original images,
however, that of dehazed image T2 is slightly higher than that
of T2, but that of dehazed image T2 is less 0.9. The result
shows that the HRNSCT does not result in significant noise
diffusion or amplification during haze removal.

Figure 5 (b) shows that the Rve of the dehazed images is
greater than 1, indicating that the number of visible edges in
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FIGURE 6. Noise variance of original and dehazed images.

FIGURE 7. Dehazing results for hazy images with different noise level. (a)
Original hazy images with different noise levels; (b) dehazed images.

the dehazed images is more than twice that of the original
hazy images. The visibility indicator Mvl is greater than 1,
showing a significant increase in the contrast of the dehazed
image.

The results in Figures 4 and 5 demonstrate that the HRN-
SCT algorithm achieves excellent haze removal performance
only by removing the haze from the low-frequency sub-
bands.

B. HIGH-FREQUENCY NOISE SUPPRESSION
The objective of this experiment was to verify that the
HRNSCT can decouple the haze removal and noise suppres-
sion in the contourlet transform domain. The HRNSCT was
applied to remove haze of 60 hazy images with different
Gaussian noise.

The noise variance of the original and dehazed images is
shown in Figure 6.

The noise variances of the dehazed images and the original
hazy images are considerably different. Those of the dehazed
images are close to 1. The results indicate that the shrink
of the high-frequency directional sub-bands of the original
hazy images successfully suppresses the noise in the dehazed
images.

The original images T61 and T62 with different noise
levels and the dehazed images are shown in Figure 7. The

TABLE 1. Results of the evaluation indicators for the T70 image.

TABLE 2. Results of the evaluation indicators for the T71 image.

enlargements of the dehazed images show that more detail is
lost, and the edges become less clear as the noise variance
increases. The reason is that the noise conceals the details
in the original hazy images, making it impossible to restore
these details at a high noise variance.

Figures 4 to 7 indicate that the HRNSCT algorithm
achieves the decoupling of the haze removal and noise sup-
pression by removing haze from the low-frequency sub-bands
and suppressing noise in the high-frequency sub-bands.

C. COMPREHENSIVE PERFORMANCE VERIFICATION OF
THE HRNSCT
The HRNSCT, HRCAP [21], DehazeNet (deep learning
method) [27], AMEF [48], DHGC [49], DHMP [50], and
MSW [51] are used to dehaze the test images, and the per-
formances of the seven algorithms are compared using visual
evaluations and the objective indicators.

The dehazing results of the seven algorithms for the low-
noise hazy images T69 and T70 and the composite noise-
free hazy image T71 are shown in Figure 8. T69 has dense
haze; thus, the denominator in the indicator Rve (the number
of visible edges n0 in the original hazy image) approaches
zero. Therefore, the dehazing results of the 7 algorithms for
T69 are only evaluated visually.

The results of the evaluation indicators of the dehazed
image T71 are listed in Table 1, and those of T72 are listed
in Table 2.

The results in Fig. 8 show that all seven algorithms
provide good dehazing performance for removing light
haze or medium haze. However, there are great significant
performance differences for removing dense haze.

As shown in Fig. 8 (a), HRCAP, DehazeNet, and AMEF
provide low performance for removing dense haze. The
DHMP results in color distortion, the DHGC causes spots,
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FIGURE 8. Haze removal results for hazy images with low noise. (a) T69;
(b) T70; (c) T71.

and the dehazing result of MSW shows striping. The HRN-
SCT provides the best dehazing performance.

In Figure 8(b), the overall brightness of the dehazed
images obtained from the HRCAP, DHGC, and MSW is
low, and there are several dark areas. The performances of
the DehazeNet, AMEF, DHMP, and HRNSCT are similar.
However, the enlargement shows that the images obtained
from the AMEF and HRNSCT have more detail than those
of the other algorithms. Therefore, the AMEF and HRNSCT
provide the best dehazing performances for T70.

A shown in Figure 8(c), the DHGC provides the best
dehazing performance for T71; however, the results obtained
from the HRNSCT and the other five algorithms are almost
indistinguishable visually.

In Tables 1 and 2, ‘Original Nv
′ denotes the noise variance

of the original hazy images. Nv,Rve, andMvl denote the eval-

uation indicators of the dehazed images. The bold underlined
numbers represent the optimal values. The↓ symbol indicates
that the smaller the value, the better the result is, and vice
versa for the ↑ symbol.
Table 1 shows that the Nv value of the HRNSCT algorithm

is optimal, indicating that the noise level of the dehazed
image obtained from the HRNSCT was the lowest. HRN-
SCT achieved the optimal results for all indicators for a
comparison with HRCAP, DehazeNet, DHMP, and MSW.
Comparing with AMEF and DHGC, the Nv and Rve values of
the HRNSCT were better than those of the AMEF, and the Nv
andMvl values of the HRNSCT were better than those of the
DHGC. Therefore, the dehazing performance of HRNSCT is
better than that of the other six algorithms for T70.

As shown in Table 2, the Nv values of the HRCAP,
DehazeNet, and HRNSCT algorithms were optimal and iden-
tical. The Rve andMvl values of the HRNSCT algorithm were
better than those of the HRCAP, DehazeNet, AMEF, and
DHMP. The Nv and Mvl values of the HRNSCT algorithm
were better than those of the DHGC and MSW. Therefore,
comparing the other six algorithms, the dehazing perfor-
mance of HRNSCT is better than that of the other six algo-
rithms for T71.

The results in Figure 8 and Tables 1 and 2 demonstrate
that the proposed HRNSCT algorithm has similar dehazing
performance to the DHGC and MSW algorithms for haze
removal from images with low or no noise.

Subsequently, to further verify the performances of HRN-
SCT and the other algorithms for removing haze from noisy
images, the seven algorithms were used to remove haze from
hazy images T72, T73, and T90 with Gaussian noise. The
dehazing results of the seven algorithms are shown in Fig-
ure 9.

In Figure 9, comparing with the original hazy images,
dehazing effects of all dehazing images of T72, T73 and
T90 are obvious. However, the enlargements show that the
HRCAP, DehazeNet, AMEF, DHGC, and DHMP result in
noise amplification during haze removal from noisy images.

TheMSW and HRNSCT algorithms provide the best noise
suppression performance. However, the MSW algorithm pro-
duces spots in the dehazed images. Hence, the visual com-
parison of the dehazed images of the 7 algorithms indicates
that the HRNSCT algorithm provides the best performance
for removing haze from noisy images.

Because the Rve and Mvl indicators are sensitive to noise,
the noise variance Nv, the SSIM and NIQE are used to
evaluate the dehazing image. The evaluation indicators of the
dehazing images T72, T73, and T90 are shown in Figure 10.

In Figure 10(a), the smaller the Nv value, the lower the
noise level of the dehazed image is. The Nv values of
the dehazed images obtained from the HRCAP, DehazeNet,
AMEF, DHGC, and DHMP algorithms were larger than those
of the original images, indicating that these five algorithms
increase the noise variance. In contrast, the Nv values of
the dehazed images obtained from the MSW and HRNSCT
algorithms were reduced. The Nv value was lowest for the
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FIGURE 9. Haze removal results for hazy images with noise. (a) T72;
(b) T73; (c) T90.

HRNSCT. These results indicate that the HRNSCT algorithm
provides the best noise suppression performance, followed by
the MSW.

In Figure 10(b), the larger the SSIM value, the higher
the similarity is between the original image and the dehazed
image. The SSIM values are lower for the dehazed images
than the original images for the six algorithms, whereas those
of the HRNSCT are higher in the dehazed images. This
finding indicates that the HRNSCT algorithm causes the least
image distortion among the seven dehazing algorithms.

In Figure 10(c), the smaller the NIQE value, the better
the image quality is. The NIQE values are higher for the
dehazed images than the original images for the five algo-
rithms, whereas those of the MSW and HRNSCT are lower.
This result shows that the MSW and HRNSCT algorithms
increase the image quality after dehazing, whereas the other
five algorithms decrease the image quality during the haze
removal from noisy images. The HRNSCT provides the low-

FIGURE 10. Results of the evaluation indicators for different algorithms
and different images. (a) Nv; (b) SSIM. (c) NIQE.

est NIQE values, demonstrating that it provides the best haze
removal performance for the T71, T73, and T90 hazy images
with noise.

The results presented in Figures 9 and 10 show the superi-
ority of the HRNSCT over the other algorithms for removing
haze from noisy images.

The computational complexity of the HRNSCT depends
primarily on the NSP and NSDFB of the NSCT. The NSDFB
comprises a larger proportion of the NSCT operation than the
NSP. Therefore, the HRNSCT has the same computational
complexity as the NSDFB and a computational complexity
of O(n2) for the NSDFB for an image of size n × n. Hence,
the computational complexity of the HRNSCT is O(n2) for
each channel of the color image.

The average runtimes of the seven algorithms for dehazing
60 hazy images with an average size of 512× 480 are shown
in Figure 11.
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FIGURE 11. Comparison of the runtimes of the seven haze removal
algorithms.

FIGURE 12. Dehazing results for different µ values.

The order of the average runtime of the 7 algorithms
is MSW < HRCAP < DHGC < AMEF < DHMP <

DehazeNet < HRNSCT. The HRNSCT has the longest aver-
age runtime because it is implemented in the Matlab environ-
ment. The HRNSCT algorithm can be improved by increas-
ing its processing speed using program optimization or GPU
hardware acceleration in practical applications.

V. PARAMETER ANALYSIS AND DISCUSSION
The proposed HRNSCT algorithm provides the best dehazing
and noise reduction performances in comparison with com-
parable algorithms. We analyze the role of the main param-
eters of the HRNSCT algorithm in the following section.
The parameter α plays a role in preserving the haze in the
DCP estimation of the transmission map. The balance factor
µ controls the contribution of the CAP and DCP to the
final transmission map. The parameter γ makes the role of
improvement low grey value pixels and compression high
grey value pixels. Threshold proportional coefficient kj plays
a role in setting the threshold. The larger the kj, the stronger
the noise suppression effect. Nonetheless, if kj is large, which
will lead to the loss of weak details. The recommended range
of kj is [4,6] when the noise variance of the hazy image is
less than 2, other recommended ranges are [2,4]. The details
of these parameters are not repeated here. The following
focuses on analyzing the roles of the balance factor µ and
the atmospheric attenuation coefficient β.
Figure 12 shows the results of using different µ values for

haze removal from image T91 (from the O-HAZE dataset).
The dehazed image becomes brighter as the µ value

increases, but the residual haze increases, indicating that the

FIGURE 13. Evaluation indicators of images dehazed with different µ
values.

FIGURE 14. Haze removal results of T4 for different β values.

smaller the value ofµ, the stronger the impact of the DCP and
the weaker the impact of the CAP in the transmission map.

The evaluation indicators of images dehazed with different
µ values are provided in Figure 13.

As the µ value increases, Nv decreases, and the rate of
increase decreases, with few changes after reaching a µvalue
of 0.5. The NIQE shows a similar trend, exhibiting few
changes after reaching a µ value of 0.8. The SSIM value
increases with an increase in the µ value and stabilizes after
reaching a µ value of 0.5.

The visual evaluation and the evaluation indicators suggest
that the optimal µ value range is [05,0.8].

Figure 14 shows the haze removal results of image T74 for
µ = 0.5 and different β values.
As the β value increases, the dehazing performance of the

HRNSCT and the clarify of the images increases. However,
a very large β value will darken the images. Therefore,
the visual quality of the dehazed image should be considered
comprehensively when the parameter values are changed.
The experiment results show that the suitable range of the β
value is [0.8,2.2].

VI. CONCLUSION
TheHRNSCT algorithmwas proposed for haze removal from
noisy images. Based on theoretical analyses and numerical
experiments, the following conclusions can be drawn.

The HRNSCT algorithm has excellent noise- and haze-
suppression performance, only by dehazing the low-
frequency sub-bands and shrinking the high-frequency sub-
bands of the original image. The HRNSCT algorithm decou-
ples the haze removal and noise suppression processes in
the contourlet transform domain. This approach prevents the
noise amplification caused by traditional dehazing algorithms
during the haze removal process. Since most hazy images
include noise, the HRNSCT algorithm is well suited for
dehazing noisy images.
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Although the HRNSCT algorithm provided excellent
results for simultaneous haze removal and noise suppression,
it currently has a relatively long runtime. Thus, it is neces-
sary to optimize and accelerate the HRNSCT algorithm in
the future. Alternatively, similar algorithms based on deep
learning should be developed and designed along with the
idea of decoupling haze removal and noise suppression of the
HRNSCT algorithm.
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