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ABSTRACT In this work, numerical techniques based on Shooting procedure, Relaxation scheme and
Collocation technique have been used for recovering the profile of the membrane of a 1D electrostatic
Micro-Electro-Mechanical-Systems (MEMS) device whose analytic model considers |E| proportional to the
membrane curvature. The comparison among these numerical techniques has put in evidence the pros and
cons of each numerical procedure. Furthermore, useful convergence conditions which ensure the absence
of ghost solutions, and a new condition of existence and uniqueness for the solution of the considered
differential MEMS model, are obtained and discussed.

INDEX TERMS Electrostatic MEMS Devices, Non-Linear Ordinary Differential Models, Shooting
method, Keller-Box Scheme, Lobatto Formulas, Ghost Solutions.

I. INTRODUCTION

Today there is a growing demand to design high-performance
sensors and actuators for cutting-the-edge engineering appli-
cations [1]. In such a context, static and dynamic Micro-
Electro-Mechanical-Systems (MEMS) technology plays a
lead role in implementing these devices [2]. Combining
among them micro-size mechanical and electronic devices,
MEMS technology, emerged in the second half of the 1960s
[3], is now considered as one of the most promising tech-
nologies of the 21th century [4],[5]. The industrial usages
of MEMS are incredibly varied, ranging from surgical-
diagnostic-therapeutic microsystem [6], bio-sensors [7], and
tissue engineering [8] to wireless and mobile applications [9].
Furthermore, MEMS are considered extremely interesting
for mechatronics applications, because of their small size as
well as the easy of realization with relatively low costs [10].
During the years, the advancement in MEMS technology has
gone hand in hand with the development of sophisticated the-

oretical models that more and more adhering to the physics
underlying the operation of these devices [2], [5]. Recently,
some remarkable results have been achieved in several rele-
vant cases, such as thermo-elastic [11], electro-elastic [12],
and magnetically actuated systems [13]. However, almost
all these models are often structured in an implicit form
that does not allow to evaluate explicit analytic solutions
[14]. Accordingly, these have to be necessarily computed
numerically [15]. However, to validate these computational
results, analytical conditions ensuring the existence, unique-
ness, and regularity of the solutions have to be derived
[16]. To this aim, many mathematical models have been
theoretically conceived by using suitable functional spaces
[14]. Along this line, Cassani and coauthors presented in [17]
a sophisticated non-linear differential mathematical model of
a MEMS device, which, due to its intrinsic complexity, has
been subsequently simplified neglecting the inertial and non-
local effects [18]. Now, starting from this simplified model,
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Di Barba et al. have been proposed a new elliptical semi-
linear dimensionless model of a 1D membrane MEMS, based
on the proportionality between the electric field magnitude
|E| and the curvature of the membrane, achieving results
of the existence and uniqueness for the solution [19]. In
[20] this model was numerically solved by Angiulli et al.
by using the Shooting method, whereas in [23] Versaci et
al. have developed a new condition of the uniqueness of
the solution depending from the material properties and
by geometrical characteristics of the device. Based on this
premises, in this work we study and compare the numerical
performances of Shooting procedure, Relaxation scheme,
and Collocation technique in order to reconstruct the MEMS
profile membrane. In particular, the Shooting method is an
iterative procedure capable of transforming a 1D boundary
value problem into an equivalent initial value problem so
that the procedure resembles that adopted by a soldier who
knows the arrival point of a bullet’s trajectory, but who is
in a position to be able to control only the initial values:
position of the cannon and speed or height of the shot. he
is therefore forced to proceed by attempts, observing the
subsequent results in terms of distance from the target and
correcting the rise [21, 22]. Concerning the Relaxation pro-
cedure, it replace an ordinary differential equation by finite-
difference equations on mesh guessing a solution on this
mesh. Mathematically, finite-difference equations are just
algebraic relations between unknowns. The use of iterative
technique to relax this solution allow to get the true solution
[21, 22]. Finally, the collocation methods impose the satisfac-
tion of the differential equation only in selected points of the
definition interval. This is equivalent to placing in the internal
nodes the differential equation assigned after approximation
of the differential operator with an algebraic equivalent, as
well as to satisfy the boundary conditions in the edge nodes.
The methods summarily described above are notoriously the
most effective and efficient for solving numerically boundary
value problems. Furthermore, in the literature, regarding the
study of electrostatic membrane MEMS, there are no studies
comparing the performances obtained with these procedures
[21, 22]. Furthermore, we provide new algebraic conditions
able to avoid ghost solutions, i.e. numerical solution which do
not fit the condition of existence and uniqueness associated to
the analytic differential model at hand [20]. As a final result,
a new theoretical condition of existence and uniqueness
for the solution, which depends from the electromechanical
properties of the membrane, is demonstrated. The paper is
organized as follows. Section II provides a description of
the 1D electrostatic MEMS device considered in this work.
The numerical procedures exploited to recover the membrane
profile are detailed in section III. In section IV numerical
results, carried out by using the Matlab R2017a environment
running on an Intel Core 2 CPU at 1.45GHZ, are presented.
In section V the convergence criteria for the considered
numerical methods are discussed. Results concerning the
existence and the uniqueness of the solution as a function
of the electromechanical properties of the membrane are

demonstrated in section VI. In section VII are illustrated the
issues regarding the problem of the ghost solutions. Section
VIII reports a discussion about the range of parameters for
the correct use of the device. Finally, in section IX some
conclusive remarks and future perspectives are given.

II. BASICS ON THE 1D ELECTROSTATIC MEMS DEVICE
MODEL
A. THE ANALYTIC MODEL
The membrane electrostatic MEMS device considered in this
study is shown in Fig. 1a. The upper plate is fixed, whereas
the lower plate has constrained at its edges a membrane.
The membrane deforms towards the top plate when an exter-
nal voltage V is applied. The corresponding dimensionless
model is:

{
d2y(x)
dx2 = − λ2

(1−y(x))2 , x ∈ Ω = [−L,L],

y(x) = 0, x ∈ ∂Ω
(1)

where y is the profile of the membrane [3], [19]. Since
d � L, the device can be considered as purely one-
dimensional, so that the membrane profile can be described
by a continuous function y(x) (see Figure 1b). Taking into
account that the electric field E is locally orthogonal to the
tangent straight line to the membrane, it can be considered
proportional to its curvature K(x, y(x)) [24]. Also, because

λ2

(1−y(x))2 is proportional to |E|2 (that is d2y(x)
dx2 = −θ|E|2,

θ ∈ R+), we can derive a more realistic model [19], [20]:



d2y(x)
dx2 = − 1

θλ2 (1 + (dy(x)dx )2)3(1− d∗ − y(x))2

y = 0 on ∂Ω

y ∈ C2([∂Ω]),

0 ≤ y(x) < 1− d∗ < 1
d2y(x)
dx2 ∈ (Ω× R× R)

(2)

in which d∗ is the distance that separates the top of the mem-
brane profile from the upper plate (critical security distance).
As above mentioned, the device is subjected to an external
V , and thus we have that

|E| ≈ V

d− y(x)
, (3)

which produces an electrostatic pressure

pel ≈ 0.5ε0|E|2 = 0.5
ε0V

2

(d− y(x))2
. (4)

This results in a mechanical pressure p = kpel (k constant)
that deforms the membrane moving towards the upper plate.
Under the condition of maximum deformation, the mem-
brane will be at a critical distance of d∗ from the upper plate.

B. WHEN |E| IS PROPORTIONAL TO K

In [19], the model (1) has been studied observing that λ2 ∝
V 2, and λ2

(1−y(x))2 ∝ |E|
2. Accordingly, (1) becomes
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(a)

(b)

FIGURE 1: (a) Electrostatic MEMS device, (b) Typical pro-
file of a MEMS membrane.

{
d2y(x)
dx2 = −θ|E|2 in Ω = [−L1, L1]

y(−L1) = y(L1) = 0 θ ∈ R+,
(5)

where L1 is the half-length of the device. Since E is locally
normal to the tangent straight line of the membrane (see
Figure (2)), |E| results proportional to K(x, y(x)), thus we
have that [24]

K(x, y(x)) =

∣∣∣d2y(x)dx2

∣∣∣√
(1 + (y(x))2)3

, (6)

and |E| can be written as follows:

|E|2 = (µ(x, y(x), λ))2(K(x, y(x)))2 =

= λ2(1− y(x))−2
∣∣∣d2y(x)

dx2

∣∣∣2(1 + (y(x))2)−3 (7)

where µ(x, y(x), λ) ∈ C0([−L1, L1]×[0, 1)×[λmin, λmax])
[19].

III. NUMERICAL APPROACHES
A. SHOOTING PROCEDURE & ODE SOLVERS
To apply the Shooting procedure, we consider a generic
second-order non-linear Boundary Value Problem (BVP)
d2y(x)
dx2 = F

(
x, y(x), dy(x)dx

)
: recasting it into a system of

first order differential equations [21]:{
dy1(x)
dx = y2

dy2(x)
dx = F (x, y1(x), y2(x)),

(8)

FIGURE 2: The electrostatic membrane MEMS device: E
(blue vector) is orthogonal to the tangent straight line to the
membrane so that |E| can be considered proportional to the
curvature of the membrane.

and by setting {
y1(x) = y(x);

y2(x) = dy1(x)
dx = dy(x)

dx ,
(9)

the original BVP (8) is turned into an Initial Value Problem
(IVP) by replacing y1(L1) at x = L1 with y2(−L1) = η, η ∈
R. Now, integrating this last problem, we achieve y1(L1) at
x = L1. If y1(L1) = 0 then we have solved the starting BVP,
that in this way defines, implicitly, a non-linear equation of
the form

F (η) = y1(L1; η) = 0 (10)

that can be iteratively solved to find the right value of η [21].

1) Zeros of F (η) = 0: The Dekker-Brent Procedure
The Dekker’s approach exploits the bisection procedure to
solve a given non linear equation [22]. For each iteration,
three points are involved: bk, which approximates temporary
the zero; ak, which is the "contra-point" such that F (ak) and
F (bk) have opposite sign, so that the interval [a0, b0] contains
the solution, and bk−1, which is the value of b at the previous
iteration. Two temporary values are computed: the first one
is achieved by the secant procedure, while the second one is
obtained by bisection method [21, 22];{
s = bk − bk−bk−1

F (bk)−F (bk−1)
F (bk) if F (bk) 6= F (bk−1)

s = m = ak+bk
2 otherwise.

(11)
If s (the result of the secant method) is included between bk
and m, then s = bk+1, otherwise m = bk+1. The new value
of the contra-point is selected so that F (ak+1) and F (bk+1)
have different sign. In this case ak+1 = ak., otherwise,
ak+1 = bk. Finally, if

|F (ak+1)| < |F (bk+1)|, (12)

ak+1 turns out to be a best approximation of the solution
with respect to bk+1, so that ak+1 and bk+1 are exchanged.
However, there are circumstances in which each iteration
uses the secants method, but the term bk converges very
slowly. To avoid this problem, Brent proposed a modification
of this strategy inserting a test that must be satisfied before
the result of the secant method is accepted for the next
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iteration. Given a tolerance δ, if the previous step has been
used in the bisection method,

|δ| < |bk − bk−1| (13)

and
|δ| < |s− bk| <

1

2
|bk − bk−1| (14)

must be applied to perform the interpolation, otherwise the
bisection method is used again. If the previous step used
interpolation,

|δ| < |bk−1 − bk−2| (15)

and
|δ| < |s− bk| <

1

2
|bk−1 − bk−2| (16)

are applied to decide whether to perform the interpolation
(when the inequalities are both satisfied) or the bisection (oth-
erwise). This modification ensures that at the kth iteration,
the bisection method is used at most for 2 log2

(
|bk−1−bk−2|

δ

)
times. Furthermore, the Brent method uses inverse quadratic
interpolation instead of linear one (as in the secant method).
If F (bk), F (ak) and F (bk−1) are different, the efficiency of
the method increases slightly. Consequently, the condition to
accept s must be changed: s must be between 3ak+bk

4 and bk.

2) Obtaining the Solution
At each iteration ηk is obtained by solving the related IVP. A
suitable termination criteria have to be used to verify if ηk →
η as k → ∞. The solutions are obtained by using both teh
Matlab built-in functions ode23 and ode45 [22, 25], with the
accuracy and adaptivity parameters defined by default. We
note that the main difficulty to obtain the solutions concerns
the fact that the integration of IVPs that sometimes could be
not stable. This means that the solutions of the BVP could be
insensitive from the variations of the boundary values, while
the solutions of the IVP obtained by the Shooting method are
computed through the variations of the initial values [26].

B. RELAXATION PROCEDURE & KELLER-BOX SCHEME
In order to apply the relaxation procedure, we employ a mesh
of points x0 = −L1, xj = x0 + j∆x, for j = 1, 2, . . . , J ,
evenly spaced with xJ = L1. We denote the numerical
approximation to the solution y(xj) of (8) by the 2D vector
yj , j = 0, 1, . . . , J [21, 22]. The Keller Box scheme [27] can
be written as follows

{
yj − yj−1 −∆F

(
xj−1/2

yj+yj−1

2

)
= 0

j = 1, · · · , J
(17)

with G(y0,yJ) = 0 and xj−1/2 = (xj + xj−1)/2. Now, we
deal with the system of non-linear equations (17) with respect
to the unknown 2(J + 1)-dimensional vector:

y = (y0,y1, · · · ,yJ)T . (18)

If y(x) and F(x,y) are sufficiently smooth, the solution can
be computed by the classical Newton’s method, provided

that a sufficiently fine mesh and an accurate initial guess
are used. We apply the Newton’s method with the following
termination criterion [21]

1

2(J + 1)

2∑
`=1

J∑
j=0

|∆yj`| ≤ TOL, (19)

where ∆yj`, j = 0, 1, . . . , J and ` = 1, 2, is the difference
between two successive iterate components and TOL is a
fixed tolerance. The adopted initial guess to start the itera-
tions is the following: y1(x) = 1, y2(x) = 1. As far as
the accuracy issue is concerned, the truncation error of the
method (17) has an asymptotic expansion in powers of (∆x)2

[21, 22].

C. COLLOCATION PROCEDURE & III/IV-STAGE
LOBATTO IIIA FORMULAS
1) The Collocation Approach
We consider the following system of ordinary differential
equations (ODEs) [21]:{

dy(r)
dr = F(r,y(r))

G[y(a),y(b)] = 0
(20)

where G[y(a),y(b)] = 0 represents the boundary condi-
tions. Converting (20) in an integral equation, we obtain:

y(x) = y(xn) +

∫ x

xn

F(r,y(r))dr. (21)

Replacing y(xn) by the approximated value yn, we can
write:

y(x) ≈ yn +

∫ x

xn

p(r)dr, (22)

in which p(r) is an interpolation polynomial of degree lower
than s interpoling

[xn,i,F(xn,i),y(xn,i)], i = 1, 2, ..., s, (23)

and

xn,i = xn + τih, i = 1, ..., s, (24)
0 ≤ τ1 < ... < τs ≤ 1.

In order to evaluate this polynomial it is possible to exploit
the Lagrange or the Newton interpolation polynomial tech-
nique [22]. If Lagrange method is exploited, we can write:

p(r) =
s∑
j=1

F(xn,j ,y(xn,j))Lj(r), (25)

where Lj(r) are the fundamental Lagrange polynomials [21,
22]. Then, plugging (25) into (22) we obtain:

y(x) ≈ yn +
s∑
j=1

F(xn,j ,y(xn,j))

∫ x

xn

Lj(r)dr. (26)
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Then, (26) is forced for all the xn,j , so that yn,j at collocation
node points are obtained, for i = 1, ..., s, by:

yn,j = yn +
s∑
j=1

F(xxn,i
,ynn,j

)

∫ xn,i

xn

Lj(r)dr. (27)

If τs = 1,
yn+1 = yn,s, (28)

otherwise:

yn+1 = yn +
s∑
j=1

F(xn,j ,yn,j)

∫ xn+1

xn

Lj(r)dr. (29)

Collocation methods are reliable tools, although may not be
suitable if high accuracy is required [21].

2) Implicit Runge-Kutta Procedures
Runge-Kutta (RK) methods involve many evaluations of the
function F(x,y(x)) in each interval [xn, xn+1]. In its more
general form, an RK method can be written in the following
way [22]:

yn+1 = yn + h

s∑
i=1

biki (30)

where

ki = F
(
xn + cih, yn + h

s∑
j=1

aijkj

)
, i = 1, 2, ..., s (31)

where s denotes the number of stage of the procedure.
Coefficients{aij}, {ci} and {bi} characterize a RK procedure
and can be collected in the Butcher Tableau [21, 22]

c A

bT
(32)

where A = (aij) ∈ Rs×s, b = (b1, ..., bs)
T ∈ Rs and

c = (c1, ..., cs)
T ∈ Rs. IF coefficients aij are equal to

zero for j ≥ i, with i = 1, 2, ..., s, then each ki can be
explicitly computed exploiting the i−1 coefficients k1...ki−1
which have already been calculated. Then, RK procedure is
called explicit. Otherwise, it is said implicit. and to compute
the coefficient ki one has solve a s-dimensional non-linear
system. To construct an implicit RK methods one needs to
consider three conditions as follows [21]:

B(p) :
s∑
i=1

bic
k−1
i = k−1, k = 1, 2, ..., p (33)

C(q) :

s∑
i=1

aijc
k−1
i = k−1cki , (34)

k = 1, 2, ..., p, i = 1, 2, ..., s

D(r) :
s∑
i=1

bic
k−1
i aij = k−1bj(1− ckj ), (35)

k = 1, 2, ..., r, j = 1, 2, ..., s.

Condition (33) means that the following quadrature formula∫ x+h

x

F(s)ds ≈ h
s∑
i=1

biF(x+ cih) (36)

is exact for all polynomials whose degree is lower than p.
If (33) is satisfied, then the RK method has quadrature of
order q. Analogously for condition (34). In other words, if it
is satisfied, then the corresponding quadratures∫ t+cih

x

F(s)ds ≈ h
s∑
j=1

aijF(x+ cjh) (37)

are exact for all polynomials whose degree are lower than
q. In this case the RK procedure is of stage of order q. It is
proved that all methods satisfying condition (34) having ci,
i = 1, 2, ..., s distinct are collocation procedures.
In order to simplify the construction of an implicit Runge-
Kutta procedure, one can exploit the following well-known
Lemma [21, 22].
Lemma 1: Let us consider a RK procedure with s stage hav-
ing c1 6= c2 6= ... 6= cs. In addition, let be bj , j = 1, 2, ..., s.
Then, the two following statements occurs:
1. C(s) ∧B(s+ ν)⇒ D(ν)
2. D(s) ∧B(s+ ν)⇒ C(ν)
so that one ca built the procedure exploiting B(p) and D(r)
or C(q).

3) The Three-stage Lobatto IIIa Formula
This procedure requires that the coefficient ci must be chosen
as roots of [21]:

P ∗s − P ∗s−2 =
ds−2

dxs−2
(xs−1(x− 1)s−1), (38)

where s is the number of the stage, obtaining in this way
c1 = 0 and cs = 1 ∀s, so that the quadrature formula is exact
for any polynomial whose degree is less than 2s− 2 [28].
Let us premise the following two definitions.

Definition 1: (definition of the step-size)
Let us consider the following mesh-grid:

0 = a = r0 < r1 < ... < rn = b = R (39)

and, on it, let us define the step -size hm = rm+1 − rm.

Definition 2: (midpoint and approximation at the midpoint)
Starting from (rm, rm−1), we denote their midpoints by
rm+1/2 and by ym+1/2 the approximation of y(r) at rm+1/2.

Remark 1: (On the order of the polynomial) The cubic
polynomial p(r) satisfy the boundary conditions in (20) and,
in addition, ∀(rm, rm+1), the subdivision (39) is taken into
account. In addition, p(r) is located at the edges of each sub-
interval and midpoint as well where p(r) is continuous.
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This approach is a collocation procedure and it is proved that
is totally equivalent to the three-stage Lobatto IIIa implicit
RK procedure [28] whose Butcher tableau is [21]

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

(40)

Then, the three-stage Lobatto IIIa formula can be written as
follows [21]:

ym+1/2 = ym + hm

[
5

24
F(rm,ym)+ (41)

+
1

3
F(rm+1/2,ym+1/2)− 1

24
F(rm+1,ym+1)

]

ym+1 = ym + hm

[
1

6
F(rm,ym)+ (42)

+
2

3
F(rm+1/2,ym+1/2) +

1

6
F(rm+1,ym+1)

]
.

Remark 2 (on the use of Simpson quadrature formula):
This procedure can be derived from the (21) exploiting
the Simpson quadrature formula to approximate the integral
between xn and x. Obviously, when the procedure is applied
to a quadrature problem, it reduces (42) to the well-known
Simpson formula [22]:

ym+1 = ym +
hm
6

[
F(rm,ym)+ (43)

+F(rm+1,ym+1) + 4F

{
rm+1/2,

ym+1 + ym
2

+

+
hm
8

[F(rm,F(rm,ym)− F(rm+1,ym+1)]

}]
.

(44)

Remark 3 (on the polynomial p(r) and its derivatives: col-
location polynomial): We note that p(r) and their derivaties
satisfy, ∀r ∈ (a, b) [28],

p(l)(r) = y(l)(r) +O(h4−l), l = 0, 1, 2, 3. (45)

Furthermore, equations (20) are satisfied by p(r) at each
intermediate point and at the midpoint of each interval as well
(collocation polynomial). It is worth nothing that the form of
p(r) is chosen by Matlab by means of the determination of
unknown parameters, if any. Finally, we can write:

p′(rm) = F[rm,p(rm)]

p′(rm+1/2) = F[rm+1/2,p(rm+1/2)],

p′(rm+1) = F[rm+1,p(rm+1)]

(46)

which represent non-linear equations that can be solved by
a Matlab solver. Moreover, Matlab, ∀r ∈ (a, b), evaluates
the cubic polynomial by means of its special function bvpval
[25].

Remark 4 (a guess for the solution & initial mesh): It is
known that a BVP could have more than one solution [22].
Then, it is important to supply a guess for both the initial
mess and the solution as well. Obviously, the Matlab solver
adapt the mesh obtaining a solution by means of a reduced
number of mesh points [25].

It is worth noting that, very often, a good initial hypothesis
is extremely complicated. Then, the Matlab solver acts by
checking a residue defined as [25]:

res(r) = p′(r)− F[r,p(r)]. (47)

while the boundary conditions become g[p(a),p(b)]. Obvi-
ously, if res(r) is small, then p(r) represents a good solution
and, in the case of well-conditioned problem, p(r) is close to
y(r). In this paper, the the Matlab R2017a bvp4c solver has
been exploited because, firstly, it implements the collocation
technique by means of a piecewise cubic p(r), whose coef-
ficients are determined requiring that p(r) be continuous on
(a, b). Moreover, both mesh and estimation error are based
on the evaluation of the residual of p(r) whose control is
useful to manage poor or inadequate guesses for both mesh
and solution [25]. In addition, this Toolbox presents a very
reduced computational complexity to achieve the Jacobian

J =
∂Fi
∂y

=

[
∂F1

∂y1
∂F1

∂y2
∂F2

∂y1
∂F2

∂y2
.

]
(48)

Finally, being bvp4c a vectorized solver, it is able to strongly
reduce the run-time vectorizing F(r,y(r)) [25].

4) Four-stage Lobatto IIIa Formula
This formula is derived as an implicit RK procedure whose
Butcher tableau is the following [21]:

0 0 0 0 0
5−
√
5

10
11+
√
5

120
25−
√
5

120
25−13

√
5

120
−1+

√
5

120
5+
√
5

10
11−
√
5

120
25+13

√
5

120
25+
√
5

120
−1−

√
5

120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

(49)

As the three-stage formula, this approach is a polynomial
collocation procedure providing solutions belonging to the
space C1([a, b]) with accuracy of the fifth-order. Unlike the
bvp4c solver that exploits analytical condensation procedure,
Matlab solves the four-stage Lobatto IIIA formula by finite
difference approach (bvp5c solver) and solves the algebraic
equations directly. Moreover, unlike bvp4c solver that han-
dles the unknown parameters directly, bvp5c solver augments
the system with trivial differential equations for unknown
parameters [21, 22, 25].
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FIGURE 3: Profile of the membrane y(x) for different values
of θλ2 when the shooting procedure & ode23 ToolBox Mat-
lab is exploited. The deflection of the membrane increases
when θλ2 decreases.

IV. NUMERICAL RESULTS
In this section, we present the numerical results obtained
by using the numerical procedures discussed in the previous
section. At this purpose, we rewrite (2) as a system of first
order ODEs, and applying (8) and (9), we can write:


dy1(x)
dx = y2(x)

dy2(x)
dx = − 1

θλ2 (1 + y22(x))3(α− y1(x))2,

y1(−L1) = y1(L1) = 0

(50)

Remark 5: It is worth nothing that if y(x) = 1− d∗, from the
model (2) it can be seen that d2y(x)

dx2 = 0. In other words,
this condition has no physical relevance because from the
model (1) (or model (5)) we would supply |E| = 0 with linear
deflection of the membrane.
Figure 3 shows the numerical results for the membrane
profile y(x) computed by using different values of the pa-
rameter θλ2 exploiting the Shooting method implemented
by the Matlab built-in function ode23. It can be noted that
the minimum value of this parameter that guarantees the
convergence of the procedures is equal to θλ2 = 0.63.
Similar results are obtained by applying the other numerical
approaches. For all computation, we choose d∗ = 10−4

and L1 = 0.5. For the Shooting method & ODE solvers
(Shoot&23 and Shoot&45), we set y1(0) = 1 and y2(0) =
1.2 as initial guess for θλ2 = 0, 63, 1, 4 and y1(0) = 0.1
and y2(0) = 0.2 as initial guess for θλ2 = 2, 3. For the
relaxation procedure & Keller box scheme (Rel&Box), we
set both initial guesses as y1(0) = y2(0) = 1. Finally,
y1(0) = y2(0) = 0 are set for the collocation procedure
& Lobatto formulae (Col&III and Col&IV). A comparison
of the results obtained for values of θλ2 = 0.63, 1, 2, 3
is reported in Table 1. Finally, with θλ2 = 4, we obtain
the same value max(y(x)) = 0.029918, for a number of

TABLE 1: Comparison of the results for different values of
the parameter θλ2.

θλ2 = 0.63 θλ2 = 1
Methods max(y(x)) J max(y(x)) J
Shoot&23 0.190943 64 0.113476 20
Shoot&45 0.189749 364 0.113639 56
Rel&Box 0.191257 4000 0.113662 4000
Col&III 0.189623 44 0.113653 12
Col&IV 0.190331 40 0.113662 10

θλ2 = 2 θλ2 = 3
Methods max(y(x)) J max(y(x)) J
Shoot&23 0.057973 14 0.039371 14
Shoot&45 0.058133 52 0.039432 52
Rel&Box 0.058133 4000 0.039452 4000
Col&III 0.058124 4 0.039451 4
Col&IV 0.058133 6 0.039452 4

grid points equal to J = 14, 52, 4000, 4, 6, respectively. The
numerical results demonstrate that each numerical procedure
considered in this study shows an excellent performance in
recovering the membrane profile. However, it can be noticed
as the profile is computed exploiting for each method a differ-
ent order of accuracy and a different number of grid points.
We have that both the relaxation method and the Keller box
scheme reveals robust and accurate. Notably, the Keller box
provides results as accurate as those of the Shooting and
collocation method, because it involves more grid points are
for its computations. However, because of that, it is slower
and has a higher computational cost than these methods. The
Shooting method is not as robust as the relaxation and the
collocation methods, but it has the advantage of the speed
and adaptivity of the Matlab built-in functions ode23 and
ode45, that have been used for solving the related IVPs.
Finally, the collocation method provides a solution by using
very few numbers of grid points. This because the profile is
not characterized by hardly sharp changes. Now, although all
the considered numerical approaches represent efficient and
reliable tools for solving the BVPs in the case of convergence
conditions ensuring the absence of ghost solutions, we can
conclude that the relaxation approach and the Keller box
scheme reveals more robust in all performed numerical tests.

V. CONVERGENCE OF THE NUMERICAL APPROACHES
Indicating by [(θλ2)conv]Sode23

the range of θλ2 ensuring
convergence by means of shooting procedure exploiting
ode23 Matlab®, in [23] it was experimentally achieved that

[(θλ2)conv]Sode23
= [0.63,+∞) (51)

so that if
[(θλ2)no conv]Sode23

= [0, 0.63) (52)

the convergence of the numerical procedure is not ensured.
In addition, exploiting the Keller-Box scheme, in [26], the
experimental range of θλ2 ensuring convergence was

[(θλ2)conv]Keller−Box = [0.592,+∞). (53)

Also in this case, if

[(θλ2)no conv]Keller−Box = [0, 0.592) (54)
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the convergence of the Keller-Box scheme procedure is not
ensured. In this paper, the experimental range of θλ2 ensuring
convergence when the Shooting procedure exploiting ode45
Matlab® is applied, has been achieved. In particular, as for
Shooting with ode23 MatLab®

[(θλ2)conv]Sode45
= [0.63,+∞) (55)

and the range that does not ensure convergence, for this case,
is:

[(θλ2)no conv]Sode45
= [0, 0.63). (56)

Finally, applying both Three and Four Stage Lobatto IIIa
Formulas we have experimentally achieved

[(θλ2)conv]ThreeStageLobatto
= [1.181,+∞) (57)

and

[(θλ2)conv]FourStageLobatto
= [1.181,+∞) (58)

so that, for both Three and Four Stage Lobatto IIIa Formulas,
the range of θλ2 that does not ensure the convergence is:

[(θλ2)noconv]FourStageLobatto
= [0, 1.181). (59)

Table 2 summarizes these conditions. In the event that all
numerical procedures worked in parallel, we are interested
in knowing the minimum value of θλ2 above which the con-
vergence of at least one numerical procedure is guaranteed.
Then, the following makes sense:

min(θλ2)conv = (60)

= min
{

min[(θλ2)conv]Sode23
,

min[(θλ2)conv]Keller−Box,

min[(θλ2)conv]Sode45
,

min[(θλ2)conv]ThreeStageLobatto
,

min[(θλ2)conv]FourStageLobatto

}
= 0.592.

In other words, for values greater than or equal to 0.592 the
convergence of at least one numerical solution is guaranteed.
Accordingly, for θλ2 ≥ 0.63 the convergence is guaranteed
for all the methods. However, we point out that even if a
numerical solution is obtained, we must be sure that this
satisfy the analytical condition of existence and uniqueness
for (2) if we want to avoid the possibility of evaluating a
potential ghost solution.

VI. EXISTENCE AND UNIQUENESS OF THE SOLUTION
DEPENDING ON THE ELECTROMECHANICAL
PROPERTIES OF THE MEMBRANE.
In [19] the problem of the existence and uniqueness of the
solution for (2) has been studied demonstrating that: i) the
uniqueness is always guaranteed, and that ii) the existence
conditions take the form:

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6 <
< 0.5(αL1)−1

(
sup

{∣∣∣dy(x)

dx

∣∣∣})θλ2 (61)

TABLE 2: For each exploited numerical procedure, the
ranges of θλ2 ensuring convergence.

Shooting θλ2 ∈ [0.63,+∞) θλ2 ∈ [0, 0.63)
(ode23) convergence no convergence

Shooting θλ2 ∈ [0.63,+∞) θλ2 ∈ [0, 0.63)
(ode45) convergence no convergence

Keller-Box θλ2 ∈ [0.592,+∞) θλ2 ∈ [0, 0.592)
convergence no convergence

Three Stage θλ2 ∈ [1.181,+∞) θλ2 ∈ [0, 1.181)
Lobatto IIIa (bvp4c) convergence no convergence

Four Stage θλ2 ∈ [1.181,+∞) θλ2 ∈ [0, 1.181)
Lobatto IIIa (bvp5c ) convergence no convergence

where the parameter λ
2

depends by the minimum value of the
applied voltage V needed to overcome the membrane inertia.
Moreover, in [19], it was demonstrated that:

sup
{∣∣∣dy(x)

dx

∣∣∣} = 99. (62)

Remark 6: It is worth noting that sup{|dy(x)dx |} = 99 is quite
high. This is due to the fact that a large number of increases
were necessary to obtain the condition (61). In any case, the
value obtained, albeit high, is certainly a safety advantage.

Remark 7: It is also observable that, in [19], the uniqueness
of the solution for the (2) problem is always guaranteed.
However, the proof, using the joint use of Poincaré inequality
and the Gronwall Lemma, did not highlight behaviors depen-
dent on the electromechanical characteristics of the material
constituting the membrane. In other words, uniqueness was
always guaranteed regardless of the material constituting the
membrane.

In what follows, we present a new condition that links the
uniqueness of the solution for (2) to the electromechanical
properties of the MEMS membrane:

Theorem 1: Let us consider problem (2). If

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6 < (24L1(L1 + 1))−1θλ2 (63)

then (2) admits unique solution.
Proof: see appendix.

Finally, in order to achieve a unique condition that ensures
both existence and uniqueness, we have to solve the follow-
ing system:

1 +
(

sup
{∣∣∣dy(x)dx

∣∣∣})6 <
< 0.5(αL1)−1θλ

2
(

sup
{∣∣∣dy(x)dx

∣∣∣})
1 +

(
sup

{∣∣∣dy(x)dx

∣∣∣})6 <
< (6L1(L1 + 1))−1θλ2 .

(64)
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The system (64) is equivalent to (63). This last relation is of
paramount importance because it reduces the risk to compute
ghost solutions.

VII. CONVERGENCE & GHOST SOLUTIONS
Taking into account that L1 = 0.5, from (63) and (62), we
obtain that θλ2 ≥ 18 so that if θλ2 ∈ [18,+∞) we have that
both existence and uniqueness for (2) are ensured. Moreover,
it is known that [19]:

λ2 =
ε0L

2
1V

2

d3T
<

ε0L
2
1V

2

(1− d∗)3T
. (65)

Multiplying the above relation for θ, we obtain:

θλ2 <
θε0L

2
1V

2

(1− d∗)3T
. (66)

Combining (63) and (66), we can write:

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6 < θλ2

24L1(1 + L1)
≤

≤ θε0L
2
1V

2

24L1(1 + L1)(1− d∗)3T
, (67)

from which:

24L1(1 + L1)
((

sup
{∣∣∣dy(x)

dx

∣∣∣})6) <

≤ θλ2 ≤ θε0L
2
1

(1− d∗)3T
. (68)

But noting that:

0.63� 24L1(1 + L1)
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6) (69)

we obtain:

0.63�

� 24L1(1 + L1)
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6) <
< θλ2 ≤ θε0L

2
1V

2

(1− d∗)3T
, (70)

from which:

V >

√
0.63(1− d∗)3

θε0L2
1︸ ︷︷ ︸

Z1

√
T = Z1

√
T . (71)

This last relation highlights that thicker the membrane, the
higher the voltage V to be applied to the device for overcom-
ing the inertia of the membrane itself. In addition, since:

18� 24L1(1 + L1)
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6), (72)

we can write:

FIGURE 4: T − V plane partitioned into three distinct ar-
eas: non-convergence area; convergence with ghost solutions
area; convergence without ghost solutions area.

V >

√
18(1− d∗)3
θε0L2

1︸ ︷︷ ︸
Z2

√
T = Z2

√
T , (73)

so that both (71) and (73) identify, the plane formed by
the mechanical tension T and the applied external voltage
V, areas of convergence in the presence/absence of ghost
solutions. As shown in Figure 4, (71) defines the non-
convergence area for each numerical procedure (area below
the blue curve). On the other hand, between the blue and red
curves, the convergence is of at least one numerical procedure
is highlighted, but the absence of ghost solutions is not
guaranteed. Finally, above the red curve, the area where both
convergence and absence of ghost solution are guaranteed is
highlighted.

Remark 8: We note that ensuring the absence of ghost solu-
tions is very important for MEMS devices. This is because
it allows, on the one hand, to recover membrane profiles
compatible with the geometry of the device and, on the other,
to obtain ranges of possible values for V , |E| and T able to
define with sufficient rigor operating conditions to which the
device must be subjected.

VIII. RANGE OF PARAMETERS FOR THE CORRECT
USE OF THE DEVICE
As previously described, MEMS devices subjected to ex-
ternal V force the membrane to deform towards the upper
plate. Therefore, it seems natural to ask, once the material
constituting the membrane (ie, fixed T ) has been chosen,
what the range of possible values must be for V and |E|
able to obtain membrane profiles compatible with the device
geometry. Vice versa, having fixed the intended use of the
device (i.e. fixed V and |E|), we also ask which material
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is most suitable for building the membrane. With this aim
in mind, starting from (63) and (66), and considering that
L1 = 0.5, we can easily write:

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6 < θλ2

18
=

=
θ

18

ε0L
2
1V

2

d3T
<

θ

18

ε0L
2
1V

2

(1− d∗)3T
, (74)

from which:

(
sup

{∣∣∣dy(x)

dx

∣∣∣}) < 6

√
θ

18

ε0L2
1V

2

(1− d∗)3T
− 1, (75)

that provides the range of admissible values of sup
{∣∣∣dy(x)dx

∣∣∣},
once known i) the electromechanical properties of the mem-
brane (θ), ii) the lower plate mechanical tension T for V = 0,
and iii) the applied voltage V . Moreover, we can write:

θ|E|2 =
λ2

(1− y(x))2
=

1

(1− y(x))2
ε0L

2
1V

2

d3T
<

<
1

(1− y(x))2
ε0L

2
1V

2

(1− d∗)3T
. (76)

In addition being 1−y(x) > 1−d∗, we have that 1
(1−y(x))2 <

1
(1−d∗)2 from which the condition (76) becomes:

θ|E|2 < ε0L
2
1V

2

(1− d∗)5T
, (77)

finally obtaining

|E|
V

=

√
ε0L2

1

(1− d∗)5Tθ
. (78)

By (78), fixing the electromechanical properties of the mem-
brane θ and the mechanical tension T , we obtain the ratio
between |E| and V , which are the operative electrostatic
parameters of the device. Vice versa, starting from (77), we
can also write:

Tθ <
ε0L

2
1V

2

(1− d∗)5|E|2
, (79)

so that, starting from the knowledge of the couple (|E|, V ),
we obtain Tθ.

IX. CONCLUSIONS
In order to recover the membrane profile of a 1D model
of an electrostatic membrane MEMS device, in which |E|
is locally proportional to the membrane curvature, in this
work the Shooting procedure, the Relaxation scheme, and
the Collocation technique, have been exploited. Numerical
results have highlighted a better performance of the Relax-
ation & Keller-Box method compared to Shooting procedure
and the Lobatto formulas. However, although the relaxation
procedure offers the best performance, it requires a higher

computational time (a large number of grid points) than the
other approaches. Also, we have determined in the plane
formed by the mechanical tension T and the applied external
voltage V, the areas where the numerical procedures can
converge with or without these being affected by possible
ghost solutions. Finally, a new condition of existence and
uniqueness, which depends on the device geometry and the
electromechanical properties of the membrane, has been ob-
tained. To conclude, we point out that, despite the differential
model considered in this work results being simplified in
some aspects, the obtained numerical results provide suf-
ficient qualitative pieces of information to analyze MEMS
device characterized by simple geometry. Anyway, to im-
prove its adherence to the experimental ones, it appears of
paramount importance to improve the MEMS differential
model considered in the present study, taking into account
more sophisticated geometrical curvature formulations.

APPENDIX. PROOF OF THEOREM 1
Let us consider two different solutions y1(x), y2(x) ∈ P ,
where:

P =
{
C2

0 (Ω) : 0 < y(x) < α,∣∣∣dy(x)

dx

∣∣∣ < sup
{∣∣∣dy(x)

dx

∣∣∣} < +∞
}
. (80)

The proof of the Theorem is divided into three steps:
Step 1. We prove that

∣∣∣(1 +
(dy2(x)

dx

)2)3
−
(

1 +
(dy1(x)

dx

)2)3∣∣∣ ≤
≤ 24

(
sup

{∣∣∣dy(x)

dx

∣∣∣})5∣∣∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣∣∣. (81)

In fact, considering that sup
{∣∣∣dy(x)dx

∣∣∣} > 1, we can write:∣∣∣(1 +
(dy2(x)

dx

)2)3
−
(

1 +
(dy1(x)

dx

)2)3∣∣∣ =

=
∣∣∣[(dy2(x)

dx

)2
−
(dy1(x)

dx

)2]
[(

1 +
(dy1(x)

dx

)2)2
+
(

1 +
(dy2(x)

dx

)2)
(

1 +
(dy1(x)

dx

)2)
+
(

1 +
(dy2(x)

dx

)2)2]∣∣∣ ≤
≤ 2
(

sup
{∣∣∣dy(x)

dx

∣∣∣})∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣[(
1 +

(
sup

{∣∣∣dy(x)

dx

∣∣∣})2)2+

+
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})2)(
1 +

(
sup

{∣∣∣dy(x)

dx

∣∣∣})2)+

+
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})2)2] =

= 2
(

sup
{∣∣∣dy(x)

dx

∣∣∣})∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣
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∣∣∣(1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})2)2+

+
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})2)2+

+ +
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})2)2∣∣∣ =

=
∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣(6
(

sup
{∣∣∣dy(x)

dx

∣∣∣})+

+6
(

sup
{∣∣∣dy(x)

dx

∣∣∣})5 + 12
(

sup
{∣∣∣dy(x)

dx

∣∣∣})3) ≤
≤ 24

(
sup

{∣∣∣dy(x)

dx

∣∣∣})5∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣. (82)

Step 2. We prove that:

∣∣∣(1 +
(dy2(x)

dx

)2)3
(α− y2(x))2−

−
(

1 +
(dy1(x)

dx

)2)3
(α− y1(x))2

∣∣∣ ≤
≤ 216

(
sup

{∣∣∣dy(x)

dx

∣∣∣})5∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣+
24(1 +

(
sup

{∣∣∣dy(x)

dx

∣∣∣})6)
∣∣∣y2(x)− y1(x)

∣∣∣. (83)

In fact, ∀ y1(x), y2(x) ∈ P , since α < 1 because 0 < u <
1− d∗, it follows that:

∣∣∣(1 +
(dy2(x)

dx

)2)3
(1− d∗ − y2(x))2−

−
(

1 +
(dy1(x)

dx

)2)3
(1− d∗ − y1(x))2

∣∣∣ =

=
∣∣∣(1 +

(dy2(x)

dx

)2)3(
1 + d∗ + y22(x)− 2d∗−

−2y2(x) + 2y2(x)d∗
)
−
(

1 +
(dy1(x)

dx

)2)3
(

1 + d∗ + y21(x)− 2d∗ − 2y1(x) + 2y1(x)d∗
)∣∣∣ =

=
∣∣∣(1 +

(y2(x)

dx

)2)3
+ d∗

(
1 +

(dy2(x)

dx

)2)3
+

+y22(x)
(

1 +
(dy2(x)

dx

)2)3
−

−2d∗
(

1 +
(y2(x)

dx

)2)3
−

−2y2(x)
(

1 +
(dy2(x)

dx

)2)3
+

+2y2(x)d∗
(

1 +
(dy2(x)

dx

)2)3
−

−
(

1 +
(dy1(x)

dx

)2)3
− d∗

(
1 +

(dy1(x)

dx

)2)3
−

−y21(x)
(

1 +
(dy1(x)

dx

)2)3
+

+2d∗
(

1 +
(dy1(x)

dx

)2)3
+

+2y1(x)
(

1 +
(dy1(x)

dx

)2)3
−

−2y1(x)d∗
(

1 +
(dy1(x)

dx

)2)3∣∣∣ ≤

≤
∣∣∣(1 +

(dy2(x)

dx

)2)3
−
(

1 +
(dy1(x)

dx

)2)3∣∣∣+
+
∣∣∣y22(x)

(
1 +

(dy2(x)

dx

)2)3
−

−y22(x)
(

1 +
(dy1(x)

dx

)2)3
+

+y22(x)
(

1 +
(dy1(x)

dx

)2)3
−

−y21(x)
(

1 +
(dy1(x)

dx

)2)3∣∣∣+
+d∗

∣∣∣(1 +
(dy2(x)

dx

)2)3
−
(

1 +
(dy1(x)

dx

)2)3∣∣∣+
+2d∗

∣∣∣(1 +
(dy2(x)

dx

)2)3
−
(

1 +
(dy1(x)

dx

)2)3∣∣∣+
+2
∣∣∣y2(1 +

(dy2(x)

dx

)2)3
−

−y2(x)
(

1 +
(dy1(x)

dx

)2)3
+

+y2(x)
(

1 +
(y1(x)

dx

)2)3
−

−y1(x)
(

1 +
(dy1(x)

dx

)2)3∣∣∣+
+2d∗

∣∣∣y2(x)
(

1 +
(dy2(x)

dx

)2)3
−

−y2(x)
(

1 +
(dy1(x)

dx

)2)3
+

+y2(x)
(

1 +
(dy1(x)

dx

)2)3
−

−y1(x)
(

1 +
(dy1(x)

dx

)2)3∣∣∣ ≤
≤ 216

(
sup

{∣∣∣dy(x)

dx

∣∣∣})5∣∣∣dy2(x)

dx
− dy1(x)

dx

∣∣∣+
+24

(
1 +

(
sup

{∣∣∣dy(x)

dx

∣∣∣})6)∣∣∣y2(x)− y1(x)
∣∣∣. (84)

Step 3. This point is demonstrated by contradiction. We
assume that y1(x), y2(x) ∈ P are two different solutions.
By differentiation and exploiting a suitable Green’s function
Σ(x, s), (2) can be written into an equivalent integral formu-
lation. Then, for i = 1, 2, we can write:

yi(x) =

∫ L1

−L1

Σ(x, s)

(
1 +

(
dyi(s)
ds

)2)3
θµ2(s, yi(s), λ)

ds =

=

∫ L1

−L1

1

θλ2
Σ(x, s)(

1 +
(dyi(s)

ds

)2)3
(α− yi(s))2ds (85)

dyi(x)

dx
=

∫ L1

−L1

dΣ(x, s)

dx

(
1 +

(
dy1(s)
ds

)2)3
θµ2(s, yi(s), λ)

ds =
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=

∫ L1

−L1

1

θλ2
dΣ(x, s)

ds(
1 +

(dyi(s)
ds

)2)3
(α− yi(s))2ds. (86)

Then, it follows that:

||y1(x)− y2(x)||C1([−L1,L1]) =

= sup
x∈[−L1,L1]

|y1(x)− y2(x)|+

+ sup
x∈[−L1,L1]

∣∣∣dy1(x)

dx
− dy2(x)

dx

∣∣∣. (87)

Then, it follows that:

||T (y1)− T (y2)|| =

=
1

θλ2
sup

x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

Σ(x, s)((1 + (y′1(s))2)3)

(α− y1(s))2ds−
∫ L1

−L1

Σ(x, s)

((1 + (y′2(s))2)3)(α− y2(s))2ds
∣∣∣+

+
1

θλ2
sup

x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

dΣ(x, s)

dx

((1 + (y′1(s))2)3)(α− y1(s))2ds−

−
∫ L1

−L1

dΣ(x, s)

dx
((1 + (y′2(s))2)3)

(α− y2(s))2ds
∣∣∣ ≤ 1

θλ2
L1

2

sup
x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

[(−(1 + (y′1(s))2)3)(α− y1(s))2+

+(1 + (y′2(s))2)3)(α− y2(s))2]ds
∣∣∣+

+
1

2θλ2
sup

x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

[(−(1 + (y′1(s))2)3)

(α− y1(s))2+

+(1 + (y′2(s))2)3)(α− y2(s))]ds
∣∣∣ =

=
1

θλ2

(
0.5 + 0.5L1

)
sup

x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

[(−(1 + (y′1(s))2)3)

(α− y1(s))2 + (1 + (y′2(s))2)3)(α− y2(s))]ds
∣∣∣. (88)

Considering (84), we can write:

||T (y1)− T (y2)||C1([−L1,L1]) ≤

≤ 1

θλ2
(0.5 + 0.5L1)

sup
x∈[−L1,L1]

∣∣∣ ∫ L1

−L1

(
216
(

sup
{∣∣∣dy(x)

dx

∣∣∣})5

∣∣∣dy2(s)

ds
− dy1(s)

ds

∣∣∣+
+24

(
1 +

(
sup

{∣∣∣dy(x)

dx

∣∣∣})6)
|y2 − y1|)ds

∣∣∣ =

=
1

θλ2

(
0.5 + 0.5L1

)
(

216
(

sup
{∣∣∣dy(x)

dx

∣∣∣})52L1

)
sup

s∈[−L1,L1]

∣∣∣dv2(s)

ds
− dv1(s)

ds

∣∣∣+
+

1

θλ2

(
0.5 + 0.5L1

)
(

24
(

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6)2L1

)
sup

s∈[−L1,L1]

|y2(s)− y1(s)|. (89)

We observe that, y1 = T (y1) and y2 = T (y2) so that, ex-
ploiting both (87) and (89), we would obtain a contradiction
if we write:

216 · 2L1(θλ2)−1
(

0.5 + 0.5L1

)
·

·
(

sup
{∣∣∣dy(x)dx

∣∣∣})5 < 1;

24 · 2L1(θλ2)−1
(

0.5 + 0.5L1

)
·

·
(

1 +
(

sup
{∣∣∣dy(x)dx

∣∣∣})6) < 1,

(90)

that is:
216
(

sup
{∣∣∣dy(x)dx

∣∣∣})5 < (L1(L1 + 1))−1θλ2

24
(

1 +
(

sup
{∣∣∣dy(x)dx

∣∣∣})6) <
< (L1(L1 + 1))−1θλ2.

(91)

From the first inequality of (91), it makes sense to write:

1 +
(

sup
{∣∣∣dy(x)

dx

∣∣∣})6 <
< 1 + (216L1(L1 + 1))−1θλ2

(
sup

{∣∣∣dy(x)

dx

∣∣∣}), (92)

so (91) assumes the following form:

1 +
(

sup
{∣∣∣dy(x)dx

∣∣∣})6 <
< 1 + (216L1(L1 + 1))−1θλ2

(
sup

{∣∣∣dy(x)dx

∣∣∣})
1 +

(
sup

{∣∣∣dy(x)dx

∣∣∣})6 <
< (216L1(L1 + 1))−1θλ2.

(93)
Furthermore, we observe that:

(24L1(L1 + 1))−1θλ2 <

< 1 + (216L1(L1 + 1))−1θλ
(

sup
{∣∣∣dy(x)

dx

∣∣∣}), (94)
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in fact, starting from (94), it follows that:

(
sup

{∣∣∣dy(x)

dx

∣∣∣}) > 9(1− 24(θλ2)−1L1(L1 + 1)). (95)

That is definitely true. In fact, supposing, by contradiction,
that

24L1(L1 + 1)−1θλ2 >

> 1 + (216L1(L1 + 1))−1θλ2
(

sup
{∣∣∣dy(x)

dx

∣∣∣}), (96)

we can write:

(
sup

{∣∣∣dy(x)

dx

∣∣∣}) < 9−216(θλ2)−1L1(L1+1) < 0. (97)

In other words,
(

sup
{∣∣∣dy(x)dx

∣∣∣}) assumes a negative value
(value physically impossible). Then, (63) holds so that the
uniqueness of the solution depends on the physical param-
eters of the membrane. Moreover, λ

2
does not appear, con-

firming the experimental fact that when V is applied, the
membrane moves if V overcomes the inertia λ

2
.
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