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ABSTRACT This work presents a simple integer-only instruction set architecture and microarchitecture
derived from One Instruction Set Computers (OISCs) and embedding multiple execution modes (mOISC),
capable of running at a reasonable performance level to enable basic usability in microcontroller appli-
cations. The purpose of mOISC is to enable simple data transfer tasks and run small programs while
maintaining ultimate simplicity. We present the internal organization for a computer architecture including
an 8 bit I/O register, and 64 kB central Random Access Memory (RAM), organized in two-bytes words.
The processor can run code generated assuming an OISC or a Complex Instruction Set Computer (CISC)
scheme (op-code based), depending on the programmer’s demands and based on the initial setting of a
register during start-up. To enable practical applications and demonstrate successful exploitation of mOISC
in view of integration in a compiler back-end, we designed a custom Proof-of-Concept (PoC) software
design toolchain based on LLVM and clang. Although not targeting all the features of commercial ISA,
the toolchain is capable of compiling C code from LLVM intermediate representation or generating mOISC
code translated from ARM, x86, RISC-V, and MIPS assembly. The toolchain also enables practical Value
Change Dump (VCD) simulations output with graphical plots of the CPU state and associated symbols. A
PoC microcontroller system has been synthesized in a low power Field Programmable Gate Array (FPGA)
and verified in a basic wireless telemetry application including a Synchronous Peripheral Interface (SPI)
RFM9x Long RAnge (LoRA) transceiver and a MAX30205 Inter Integrated Circuit (I2C) temperature
sensor, using its 8 bit I/O port, with software bus interface implementation. mOISC occupies ∼6% of
resources on a Cyclone 10LP FPGA, for 1397 Adaptive Look-Up Tables (ALUTs) and 461 dedicated
logic registers. The measured dynamic current consumption of the complete FPGA board with synthesized
mOISC is 12 mA at 100 MHz clock.

INDEX TERMS One Instruction Set Computer, Microcontroller, Instruction Set Architecture, Compiler.

I. INTRODUCTION

ONE Instruction Set Computers represent the ultimate
simplicity in the implementation of calculators [1], [2].

Notwithstanding that they run with only a single instruction,
OISCs can implement Turing-complete machines, therefore,
at the cost of higher execution time, they can solve any
computing problem. A well-known Turing-complete OISC
considers the subleq instruction [1]. In subleq, three
memory cells named a, b and c, are accessed sequentially, to
run both an arithmetic operation and control flow. subleq
performs first an arithmetic operation, i.e., mem[b] =
mem[b]-mem[a], and based on the new value of mem[b]
control flow is implemented conditionally: if mem[b] <=
0, then pc = c, otherwise pc += 3, where pc is program

counter. Being an instruction that embeds both arithmetic
operation and control flow, subleq can be classified as
belonging to a CISC, although it is commonly referred
to Reduced Instruction Set Computers (RISCs) [2]. This
minimalistic approach to implement a computer (i.e., by
compacting both data and control flow in a single instruction)
has been even specialized using dedicated arithmetics to
run encrypted and unencrypted computation [3]. However,
OISCs are only mainly applied to computer teaching and in
structural computing models [4], [5], thus, so far, used in
domains at a significant distance from practical engineering.

subleq is not the only possible one-instruction capable
of running universal computation. Besides Bit-Copying Ma-
chines [6], Transport Triggered Architectures (TTA) provide
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another way to implement Turing-complete machines [7]. In
TTA, the only instruction present is a move, and depending
on the accessed memory address, the operation applied on
their values changes to run, for instance, arithmetic opera-
tions or control flow. TTA architectures, with enough arith-
metic and logic capability, notwithstanding their simplicity,
have even been commercialized (refer to the MaxQ processor
[8]). On the other hand, subleq schemes have not been
implemented yet in practical computers, probably due to
their reduced performance, hence, the necessity to run mul-
tiple instructions to implement ordinary operations required
in practical programs. Indeed, in subleq, the emulation
of a processor requires a large amount of memory, and
typically multiple cores are required to provide acceptable
performance [1]. Implementation of stack and function calls
typically required in high-level languages are possible with
subleq (see for instance the C Higher subleq compiler in
[9], [10]). However, implementing a back-end for a modern
compiler assuming a single instruction is not straightforward,
even for low-complexity computers tailored to microcon-
troller applications. Moreover, a simple OISC, due to its
aggressive minimalism, fails to consider power consumption
aspects, that are instead fundamental in the design of current
integrated systems.

The design of a tiny CPU core remains an interesting
research topic, even today when microprocessors design is
totally focused on performance and energy efficiency opti-
mization, and designers just started considering, as a whole,
production impact on sustainability [11]. First, Internet-of-
Things (IoT) and Wireless Sensor Networks (WSN) appli-
cations require the revisitation of low-area-cost processors
[12], [13]. Second, next-generation sustainable electronics,
will probably require significant attention to silicon area
[14]. Not so recent considerations on electronic systems
fabrication, indeed, suggest that during a standard lifetime of
a consumer electronic device, the energy burnt by the system
is lower than the energy required by the fabs to produce its
internal electronics [15]: consequently, assuming the same
number of pieces, large silicon areas typically indicate larger
environmental impact. Cross-sectional approaches such as
Design Technology Co-Optimization have been considered
to add sustainability in the power consumption, area and
cost trade-off [16], thus enriching existing PACE analyzes
[17]. These approaches consider multiple performance points
to optimize a complete integrated system. However, from
a practical viewpoint, it is evident that silicon area will
remain a fundamental feature in next generation sustainable
electronics, therefore posing the amount of combinational
logic and registers required by digital circuits as a possible
major player. Moreover, complexity plays a very important
role as typically the environmental impact of semiconductor
manufacturing is directly proportional to the number of metal
layers used in the process back-end of line [18], hence on
the interconnection complexity, by design. Thanks to its
minimalism, OISC is an excellent paradigm for the imple-
mentation of von Neumann computers with non-traditional

materials [19], and alternatives to ordinary silicon are highly
demanded in sustainable manufacturing [20].

Modern microcontrollers are all dominated by reduced
instruction sets, that enable efficient computation, pipelining,
and low power consumption, by shifting complexity to the
compilers. Notable examples that do not need introduction
are ARM and RISC-V ISAs, that, although targeted for
ultra-low power applications, are powerful enough, through
their optimized microarchitectures, to run general-purpose
operating systems. These ISAs and their associated hardware
are supported by widespread consolidated software tools,
compilers and optimizers that enable efficient code gener-
ation. Towards limited resources occupation, an open ISA
that can be efficiently synthesized from Register Transfer
Language (RTL) is the integer-only instruction set of RISC-
V (RV32I) that has proven very efficient area and resource
occupation on FPGA [21]. This instruction set can be widely
extended adding ad-hoc instructions and customized even us-
ing commercial tool-chains engineered with leading compiler
infrastructures. This notwithstanding, in general, the number
of resources used to implement speed-focused RV32I mi-
croarchitectures is still considerable (see [22], [23]) assuming
aggressive low-area requirements. With minimal synthesized
features, for an RV32I the number of LUTs FF and memory
elements required is on the order of 0.9 k, 0.4 k, and 1 k on
an Intel Cyclone-IV FPGA [21]. Area optimized implemen-
tations are possible (see for instance PicoRISCV [24]), that
are even synthesized with lower gate and register count. In
light of this, can a tiny CPU devised from a minimalistic
OISC model, provide reduced resource occupation and run
at a reasonable performance?

The object of this work is to design a minimal but practi-
cally usable computer for basic microcontroller applications
by extending OISCs. We present an ISA with an associ-
ated machine, named multiple One-Instruction Set Computer
(mOISC, or dynamic RISC, dRISC, for similarity with ul-
timate RISC [2]) that can toggle among 14 run modes,
each corresponding to a single OISC, with low resource
occupation and based on a hybrid TTA/OISC scheme [25].
Notwithstanding its minimal instruction set, though with
significantly lower performance compared to commercial
processors, our computer can run basic microcontroller tasks
to enable wireless telemetry applications and implement both
SPI and I2C interfacing based on C soft cores. Thanks to its
simple organization, mOISC has the advantage of enabling
straightforward compilation directly from LLVM Interme-
diate Representation (LLVM-IR), or direct code translation
from other ISA. The known OISC in literature, are not
capable of emulating commercial CPUs and running complex
programs mainly because they require a large amount of
memory in low resources FPGA [1]. By maintaining com-
patibility to subleq OISCs, mOISC, in a very limited logic
resource budget, has the advantage of making it possible thus
being capable of running code translated from x86, ARM,
RISC-V, and MIPS assembly. It has the advantage of being
modular and logic synthesis is possible including only the
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(a) (b)

FIGURE 1. mOISC central memory mem[·] organization – OISC execution mode (a), and CISC execution mode (b).

instructions required by the application. mOISC implements
a very simple but effective interrupt mechanism in which
the CPU stops until a logic transition is detected at one or
more I/O pins. Ultra-low power consumption with reduced
switching activity is generally possible by waiting, for in-
stance, that an energy conversion sub-system generates a
stable voltage using a wake-up signal. We present the mOISC
organization, a PoC microarchitecture, a basic compilation,
code generation, and simulation toolchain, and we show
results of a test case implemented using commercial I2C and
SPI chipset demonstrating a LoRA over-the-air transmission
with an Intel Cyclone 10LP evaluation board and commercial
rapid prototyping shields. Finally, we compare the resource
occupation and the performance of the processor with respect
to state-of-the-art open-source CPU implementations and
simulation models.

II. MOISC ARCHITECTURE
mOISC is based on a single instruction that for simplicity,
readability, and for its multiple significance we call exec. We
assume that the computer utilizes only absolute addressing
and a single memory that includes both instruction and
data (von Neumann architecture). To pose a comparison
with respect to well known architectures, mOISC provides
an equivalent register-plus-memory addressing (with total
orthogonality, [26]), i.e., the same instruction is valid for any
memory address, registers included, without exceptions. The
mOISC instruction format has the same notation of subleq-
based OISC (i.e., subleq a, b -> c), and program
memory can be compactly expressed as, addr: exec a,
b -> c, where addr is the current memory address, a,
is the source memory address, b is the destination memory
address, and c is the jump memory address. a, b and c

are also called operands. To run multiple OISC schemes,
a specific register called Machine Code Register (MCR) is
defined. mOISC can execute different run modes based on
the value of MCR, hence, exec assumes different meanings,
for instance, different OISC schemes such as subleq or
addleq. This way, by tolerating the overhead of writing to
MCR the machine issues at all effects instructions of multiple
types but it can work as an OISC by statically setting a
machine code without changes.

Based on the initial value of MCR during processor
start-up, mOISC can support two execution modes. The
first, called OISC mode, is compatible with state-of-the-art
subleq machines (i.e., an instruction is encoded with 3
contiguous memory locations). The second, we call CISC
execution mode, includes 4 subsequent addresses in program
memory, with the first one storing the associated instruction
MCR before the OISC memory addresses a, b and c. In this
last run mode, the MCR register value is made explicit at
each instruction. This trivial memory organization is ineffi-
cient from the code size viewpoint but has the advantage of
being flexible, as the unused bits of the MCR can be used
for multiple purposes, for instance, to implement other run
modes or to further extend the number of machine codes.

Fig. 1(a) shows the organization of the memory of mOISC
mem[·], which is a Random Access Memory (and can be
alternatively considered as a RAM-based register file) under
an OISC execution mode. To enable non-volatile storage this
memory can be implemented, e.g., as a Non-Volatile RAM
(NVRAM). In our mOISC prototype, memory is 32768 ele-
ments wide (0xFFFF), and each cell has a width of 2 bytes
for an overall of 64 kB. Each element value is represented
in two’s complement format. The mOISC, being a pure
von Neumann architecture, has data and program memory
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Address Name Register Properties (RW/R) Execution Effects
0x00 Machine Code Register MCR RW R, W: non-blocking
0x01 CPU status and Halt Register CHR RW R: non-blocking, W (0xFF): blocking
0x02 Interrupt Wait Register IWR RW R: non-blocking, W: blocking
0x03 Interrupt Configuration Register ICR RW R, W: non-blocking
0x04 Clock Speed Register CSR RW R, W: non-blocking
0x05 Interrupt Status Register ISR R R: non-blocking
0x06 I/O Direction Register IDR RW R, W: non-blocking
0x07 Input-Output Register IOR RW R, W: non-blocking

TABLE 1. mOISC memory mapped machine registers.

b < 0x08
MCR Mnemonic Name Data Flow Control Flow
– MOV MOVe mem[b] = mem[a] pc = c

b >= 0x08
MCR Mnemonic Name Data Flow Control Flow
0xFF SUBLEQ SUBtract and jump if Less or EQual mem[b] = mem[b] - mem[a]

if mem[b] <= 0:
pc = c

else:
pc += 3 + u

0xEE MOVLEQ MOVe and jump if Less or EQual mem[b] = mem[a]
0xCC ADDLEQ ADD and jump if Less or EQual mem[b] = mem[b] + mem[a]
0x99 SHLLEQ SHift Left and jump if Less or EQual mem[b] = mem[a] « mem[b]
0x88 SHRLEQ SHift Right and jump if Less or EQual mem[b] = mem[a] » mem[b]
0x77 ORLEQ bitwise OR and jump if Less or EQual mem[b] = mem[b] | mem[a]
0x66 ANDLEQ bitwise AND and jump if Less or EQual mem[b] = mem[b] & mem[a]
0x55 XORLEQ bitwise XOR and jump if Less or EQual mem[b] = mem[a] ˆ mem[b]
0x44 XNORLEQ bitwise XNOR and jump if Less or EQual mem[b] = ˜(mem[a] ˆ mem[b])
0x33 PC Program Counter save mem[b] = pc
0x22 MEM MEMory double-depth addressing mem[mem[b]] = mem[a] pc += 3 + u
0x11 MEMR MEMory Reverse double-depth addressing mem[a] = mem[mem[b]] pc += 3 + u

0x00 PCS Program Counter Set –

if mem[b] == 0:
pc = c

else:
pc = mem[b]

TABLE 2. mOISC machine run modes (ISA) for the execution of the generic instruction exec a, b -> c, that are set by writing to MCR.

collapsed in the same storage unit. Memory is divided into
three logic parts: Machine Memory (or, registers), Program
Memory, and Data Memory. While the 8 addresses 0x00–
0x07 are fixed, the program and data memory size depend
on the program to be run. Each machine register (where the
first is the above-defined MCR) has a specific function (see
Sec. II-A and II-B for further details).

Fig. 1(b) shows the organization of the internal memory in
the mOISC processor mem[·] under a CISC execution mode.
The organization is the same as for the OISC execution mode,
with the only difference in the opcode and operands packing.
In CISC mode the MCR is made explicit and consequently,
the program counter is advanced by 4 and not 3 as in OISC
mode.

The machine registers depicted in Fig. 1(a) and Fig. 1(b)
are summarized in Tab. 1, with read/write or read-only prop-
erties. Besides run mode, machine registers are used to set
and read the I/O port, its input-output direction, the internal
clock speed of the machine, to stop the CPU while waiting for
an I/O event on physical pins, and to read the last arithmetic
comparison results between mem[a] and mem[b], includ-
ing overflow status.

A. MACHINE CODE REGISTER AND MOISC RUN
MODES
Tab. 2 shows all the possible machine run modes supported
by mOISC. At program counter level, the difference between
OISC and CISC execution modes is only given by the amount
of its increment. We use an additional number u to identify
the run mode of the machine: if u is 0, the program counter
is advanced by 3 memory addresses (OISC mode), and if u is
1 program counter is advanced by 4 addresses (CISC mode).
Observe that the execution of the machine does not change
between these two modes, as it differs only in the program
counter increment.

We have chosen to design mOISC with 14 run modes,
a good trade-off between simplicity and the performance
level required to manipulate integer data and implement a
basic bus interfacing. In OISC mode, after the MCR is set
with a specified 1 byte constant, and it is not overwritten,
all subsequent instructions will be of that type and the run
mode is maintained. We here report all the run modes. In
the description of each one we refer to a generic program
line identified as exec a, b -> c, with the operands a,
b, c defined previously. The processor program counter is
identified as pc. Since in mOISC each machine register has
a width of 1 byte, when MCR is set, e.g., an instruction
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exec const.14, MCR is issued (where const.14 is a
constant value in the data memory), the processor considers
the lowest 8 significant bits of the source operand, in this case
implicitly computing 0x00FF &const.14. When operand
b is within 0x00 and 0x07, the machine always operates
as a move machine irrespective of the current setting of the
operational machine mode, but without control flow (i.e.,
always pc = c). In this run mode and for these memory
regions, the computer can be defined as transport triggered.
With respect to subleq which implements universal com-
putation, we have chosen to include other elementary instruc-
tions to speed up computation in practical applications and
save memory.

Arithmetic and logic operations, i.e., SUBLEQ, MOVLEQ,
ADDLEQ, SHRLEQ, SHLLEQ, ORLEQ, ANDLEQ, XORLEQ,
XNORLEQ, apply the same conditional control flow of
state-of-the-art subleq OISC, by simply assuming a
generic operand op, for an opLEQ data flow in the form
mem[b] opmem[a]. This control flow is applied also to the
instruction PC. All the aforementioned arithmetic and logic
machine codes are not strictly necessary to enable practical
programming: only SUBLEQ, MOVLEQ, PC, MEM, MEMR, and
PCS are enough to implement computing, notwithstanding
lower performance compared to machines with a larger num-
ber of hardware-accelerated instructions.

Apart from the OISC instructions SUBLEQ and ADDLEQ
and the remainder logic instructions in which the same con-
trol flow of subleq is applied, we provided the last four
instructions to easily implement stack and function calls.
The instruction PC (with no conditional control flow on the
value of mem[b]) saves the current program counter on a
generic memory cell mem[b], where b can be any memory
address except machine memory (i.e., b > 0x07). a is a
dummy operand and is not considered during execution. This
instruction can be useful to store the program counter value
before jumping to a determined function. Practically, the
stored value needs to consider the memory offset required to
execute the jump therefore, in general, it needs to be updated
based on the instructions between the PC instruction address
and the jump instruction address to a function. Observe that
PC is a simple move instruction where mem[a] is program
counter.

The instruction MEM saves the content of a memory cell
in another memory cell whose address is specified, in turn,
in a third memory cell x, i.e., x = mem[b], mem[x] =
mem[a] where a and b can be any memory address. As
the program counter is automatically advanced, c is here a
dummy operand. This instruction is useful to emulate the
stack in the main mOISC memory. The stack can be very
simply represented by a data memory cell, for instance, called
m_ptr, that is initialized with a value corresponding to the
stack pointer at the beginning of the program. By adding
an offset to m_ptr and by applying the MEM instruction
on it, it is possible to read data from a generic memory
cell. We name this instruction as double depth addressing
because it operates with two nested memory addressing. This

instruction can be applied to any memory cell, including
machine registers, except from MCR (i.e., mem[b] > 0)
that cannot be updated using MEM. Since MEM is typically
used to access data values, we have chosen to exclude MCR
to reduce the number of comparisons applied on the value of
mem[b], thus conceptually simplifying our control unit.

The instruction MEMR saves the content of the memory
whose address is specified in another memory cell x, i.e.,
x = mem[b], mem[a] = mem[x] where a and b can
by any memory address. Similarly to MEM, the instruction
cannot be applied to MCR (i.e., a > 0). MEMR is the
complementary instruction of MEM, and it can be used to
pop values from the stack by using a pointer variable and
subsequently decreasing it by a specific offset. Observe that
MEM and MEMR, given the elementary architecture of this
computer, work at all effects as a load and store operation
in typical RISC and CISC architectures. In conventional
processors typically a limited-sized register file is mostly
accessed, while data from memory, that requires a larger
number of clock cycles to be retrieved or saved, is specifically
accessed through dedicated load and store instructions.
In mOISC, given its absolute addressing, the memory can
be considered, indeed, as a large RAM-based register file.
Finally, the instruction PCS sets the program counter with
the value specified in mem[b]. This instruction can be
effectively used to return from function calls. The program
counter is set only if mem[b] is non-zero.

B. OTHER MACHINE REGISTERS
The CPU status and Halt Register (CHR, address 0x01)
provides the overflow status for the last executed SUBLEQ or
ADDLEQ operation, provides the operands comparison flags,
and halts the machine indefinitely until a new hardware reset
is issued. The machine is stopped only when 0xFF is written
to CHR. An overflow condition is detected only when a
SUBLEQ or ADDLEQ operation is run. If overflow occurs, the
CHR least significant bit (overflow flag, 0x01) stays ’1’ until
the next correct SUBLEQ or ADDLEQ is executed. Every time
an arithmetic SUBLEQ or ADDLEQ operation is run the 4th,
3th, and 2th least significant bits (operand flags) are updated
based on the last processed values mem[b] and mem[a].
If mem[b] > mem[a] then the value 0x02 is set (b is
bigger than a). If mem[b] < mem[a] then value 0x04 is
set (b is smaller than a). If mem[b] = mem[a] then value
0x08 is set (b is equal than a). Multiple bits set can occur
depending on the values of mem[a] and mem[b]. In any
other condition, CHR remains latched to the previous value.
CHR can be always read without impacting the CPU control
flow.

Writing IWR (address 0x02) stops the processor and
waits for an interrupt from a physical pin whose transition
direction 0-to-1 or 1-to-0 is specified in the Interrupt Con-
figuration Register. The IWR bits are associated directly to a
physical IOR I/O pin, from 0 to 7. The bits set to 1 enable
the CPU to filter the expected pins for the specific transitions
specified using ICR. For instance, if IWR is set to 0x05,
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the CPU will resume only if a logic transition occurs at
IOR2 or IOR0 (because 0x05 is 0b00000101). The IWR
setting is valid only if the direction of the IOR pins is in
read-mode. Particular attention must be taken while writing
IWR in moments other than bootstrap. For instance, if the
value 0x00 is written the effect is the same as a CPU halt
without recovery from any transition (at least one bit needs
to be set to make the machine sensitive to a logic transition).
Moreover, in case of interrupt wait on an I/O pin that has been
configured as an output, the requested condition will never be
reached, still resulting in a CPU halt.

ICR (address 0x03) sets the transition direction 0 to 1 or
1 to 0 for all the IOR pins of the CPU to be detected during
an interrupt wait trigger (see IWR). Bits set to logical 0,
identify a 0-to-1 transition while bits set to logical 1, identify
a 1-to-0 transition. For instance, if ICR is set to 0x07,
logic transitions expected for IOR2, IOR1 and IOR0 are
1-to-0 while for IOR3–IOR7 are 0-to-1 (because 0x07 is
0b00000111). The ICR setting is valid only if the direction
of the IOR pins is in input mode.

CSR (address 0x04) sets the current CPU clock fre-
quency. The CPU speed is set on the fly, that is the clock
is immediately toggled without any delay given by the hard-
ware implementation of an internal Phase Lock Loop (PLL)
or, alternatively, an oscillator array. The possible CPU speeds
are hardware and implementation-dependent. ISR (address
0x05) contains the indication of the pin that is set after an
IWR write occurred. The register is set immediately after
the specified trigger occurred and the value is made available
for the instruction immediately succeeding the previous IWR
write. The bit set to logical 1, identifies that the processor
has been woken up on the specified IOR pin (that implicitly
toggled with the transition direction specified in ICR). The
IDR register (address 0x06) sets the input/output direction
of all IOR pins. Bits at logical 0, are in input mode, bits at
logical 1 are in output mode. IDR bits are associated directly
with a physical IOR I/O pin.

The IOR register (address 0x07) sets and reads the current
output and input logic values of the I/O pins. IOR bits are
associated directly to a physical IOR I/O pin, from 0 to 7.
Observe that an IOR write is masked using the IDR register,
therefore if IDR =0xF0, setting the IOR register to 0x0F
has the effect of zeroing the high nibble because the 4 least
significant bits are in input mode (IDR =0b11110000). A
read-write operation on IOR is always non-blocking.

C. ASSEMBLY LANGUAGE
We have considered a sufficiently simple assembly language
to to be able of writing basic programs without the need
of high-level languages and associated toolchains. We have
maintained a case sensitive syntax for compatibility with Lin-
ux/Unix systems conventions. To increase code readability,
comments can be entered using the character # which is used
to turn a complete line into a comment. In the assembly file
characters \n,\r are allowed and do not represent addresses
(the same as for #, that is, an empty line in the assembly

does not identify a data memory address or an instruction).
To make the code more readable, the programmer can use
\t or spaces to separate labels with instructions/data. In
general, every assembly line identifies an address. Addresses
are encoded incrementally where address 0x0000 is the
first non-commented line. The first 8 addresses (0x0000–
0x0007) must be reserved for machine registers that are
placed at the beginning of the program and must be specified
all, with no exceptions. The value of IWR is discarded during
the bootstrap sequence, i.e., when program execution starts
for program counter equal to zero. Starting from address
0x0008 program memory can be specified. addr can be
also omitted as it can be statically computed at assembly
time. If operand c is unspecified, it is implicit that c contains
the next instruction address (that is added by the assembler
program). Operands a and b are mandatory.

When the program memory is concluded, data memory can
be appended next. There are no limitations for both program
and data memory size as long as they fit mem[·]. In mOISC
a single data memory cell mem[x] stores one operand. The
data memory is then a collection of variables with symbolics
that can be utilized as operands a, b, c in the program
memory section. The mOISC data memory can be expressed
using the notation symbolic-address:value to identify the
content of the memory cell. Each data memory line is a
program variable (indeed called symbolic address), whose
address is calculated at assembly time. The data memory
needs to be declared after the program memory, with the only
exception of the first 8 addresses from 0x00 to 0x07 that
include the initial value of the machine registers. Variables,
i.e., symbolic addresses, are alphanumeric but they cannot
start with a number. Valid names are, e.g., t0, line1,
lab.1, _a, bB, $g.56. The character - is used to identify
negative numbers and cannot be used for variable names.

All values in the machine, program, and data memory
sections must be specified as decimal signed numbers.

1) OISC Execution Mode
In OISC mode, the only instruction that is allowed is exec.
An example of mOISC assembly is given in Lst. 1.

1 # Machine registers section
2 MCR: 255
3 CHR: 0
4 IWR: 0
5 ICR: 0
6 CSR: 192
7 ISR: 0
8 IDR: 0
9 IOR: 0

10 # Program memory section
11 exec _SUBLMCR, MCR
12 exec _NULL, _NULL -> main
13 memcpy: exec _SUBLMCR, MCR
14 exec _NULL, _NULL
15 exec _MEMRMCR, MCR
16 exec Var_2_memcpy, m_ptr
17 exec _SUBLMCR, MCR
18 exec const.0, m_pt
19 ...
20 exec _MEMMCR, MCR
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21 exec const.20, Var_33_main
22 exec _SUBLMCR, MCR
23 exec _NULL, _NULL -> Label_19_main
24 # Data memory section
25 _SUBLMCR: 255
26 _MEMMCR: 34
27 _MEMRMCR: 17
28 _NULL: 0
29 m_ptr: 31500
30 _NULL: 0
31 link_register: 0
32 _TMP: 0
33 const.0: 1
34 Var_2_memcpy: 0
35 Var_33_main: 0
36 const.1: 2
37 const.20: -3
38 ...

Listing 1. Example snippet of mOISC assembly code (OISC mode).

The first 8 assembly lines specify the values of the machine
registers at start-up time. In this example MCR is 255 to set
the machine execution mode as OISC. The first instruction
of the routine memcpy is specified as a symbolic address so
that the subsequent code can implement jumps to it. All the
data memory identifies both variables and constants with a
specific symbolic address. Observe that it is possible to have a
mix of program and data memory in the assembly (therefore,
without keeping these two parts strictly separated). This
can be done only if the preceding and subsequent exec
instructions above and below a given data memory region
implement unconditional jumps to wrap data around. The
size of a data memory variable is 2 bytes (16 bit), while the
size of an instruction is 3 · 2 bytes (48 bit).

2) CISC Execution Mode
In CISC mode, the internal organization of the program mem-
ory is modified, while data memory is unmodified. Indeed,
instructions are packed using 8 bytes, in particular given an
instruction nth, for each instruction the information MCR,
a, b and c is stored. The assembly syntax and conventions
remain the same of the OISC mode, with the difference of
explicitly defining the setting of the MCR. For instance, the
following OISC mode code (machine registers not shown),

1 lineE: exec mcr0, MCR
2 lineF: exec a0, c0
3 lineG: exec mcr1, MCR
4 lineH: exec a1, c2
5 lineI: exec a3, d4
6 lineJ: ...
7 ...
8 mcr0: 255
9 mcr1: 238

is equivalent to the following CISC mode code,
1 lineF: subleq a0, c0
2 lineH: movleq a1, c2
3 lineI: movleq a3, d4
4 lineJ: ...
5 ...

where subleq and movleq are the operational codes (as-
sembly mnemonics) associated to the values 255 and 238 of
MCR (i.e., 0xFF and 0xEE), respectively. When operating

for b< 8, i.e., assuming a mov instruction, for simplicity a
movleq identifier is used. OISC mode assembly files can
be automatically converted in CISC assembly files by storing
the last value of MCR (that is set by exec <addr>, MCR,
where <addr> is a memory address that stores a valid
machine code) and applying it to the next instructions in
sequence. This type of translation is always applicable with
the foresight of making explicit the MCR at every possible
label. This way an OISC code can be translated into CISC
mode using a simple sequential scan.

III. PROOF-OF-CONCEPT IMPLEMENTATION
A. BLOCK SCHEME
Fig. 2 shows a block scheme of a proof-of-concept im-
plementation of the mOISC ISA, including the 1 byte in-
put/output port, internal PLL for clock generation, and reset
pin. The design has been synthesized in a low-cost Cyclone
10LP device with sufficient M9K block-RAM elements to
support 32768 addresses at 16 bit data for central memory
[27]. The PLL, I/O Buffer, and Memory block are built-in
mega-functions provided by the Quartus™ design software.
The proof-of-concept hardware does not include any bus and
it has been kept trivial to enable the easy verification with the
compiler and simulator that will be presented later on. All the
code has been written in RTL form. The processor firmware
is flashed by programming the Cyclone 10LP device through
initialization of all the RAM elements through a .mif file
generated by the compilation toolchain.

The microarchitecture accepts the main 50 MHz clock
provided by the Cyclone 10LP evaluation kit to generate four
different clocks, 100 MHz, 50 MHz (re-clocked), 1 MHz, and
10 kHz, for respective CSR values 0x00, 0x40, 0x80,
and 0xC0. The clocks feed a multiplexer controlled by
both CSR and a halt signal that completely gates the clock
propagation when the machine is halted. The multiplexed
system clock CLK is propagated in all internal sub-systems,
comprising a system RST signal that is derived from the
external reset pin of the FPGA through a debouncer (synthe-
sized assuming trigger event filtering of 16 CLK cycles). The
debouncer filters also the HALT signal from the CPU. The
Arithmetic Logic Unit (ALU) accepts as inputs the current
MCR value and the memory elements determined during
instruction fetch, i.e., mem[a] (MEM_A), mem[b] (MEM_B)
and mem[mem[b]] (MEM_MEM_B), used in double depth
addressing. To execute the PC instruction the ALU accepts
also the program counter PC as input so that it can generate
the value of DATA to be stored in memory during the CPU
cycle. To identify overflow and provide comparison flags,
the ALU provides also OVERFLOW and CMP, 1 bit and 3 bit
respectively (greater, lower or equal). To permit set-up and
hold timing constraints closure, all the three outputs of the
ALU are sampled used dedicated registers.

In this implementation, the single mOISC memory is a
single port RAM with a parallel interface and includes write
and read enable signals WREN and RDEN. This interfacing
normally matches commercially available NVRAM that can
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FIGURE 2. mOISC proof-of-concept microarchitecture block scheme.

be utilized in future prototypes of the processor, for in-
stance with optimized microarchitecture or area occupation.
Given the low availability of internal RAM on the used
Cyclone 10LP FPGA, the memory is addressed by 15 bit
only (MEM_ADDR), while data width is 16 bit (MEM_DATA
and MEM_Q). The interrupt mechanism of the CPU is han-
dled by the I/O CONTROLLER that utilizes a number of
register values to implement a wait cycle on the input port,
to filter the required transitions (low-to-high or high-to-
low) and block the CPU until these transitions are detected.
The I/O CONTROLLER considers the input data from the
I/O BUFFER (that provides separate input and output ports
for driving and reading physical pins defined by the IDR
register), ICR, and IWR to mask the I/O pins and set the
transitions edge type. The controller is invoked by using a
dedicated INTERRUPT signal that stops the CPU by rising
a CPU_STOP signal and by continuously determining the
transitions at the I/O BUFFER until one of them satisfies
the trigger condition. When detected, the controller sets the
ISR accordingly to the I/O pin that actually triggered the
interrupt (useful for the SW in case more than one I/O pin
has been activated in the IWR), returns in a wait state for a
successive interrupt trigger and issues signal CONTINUE for
the CPU to continue execution.

B. FINITE STATE MACHINE
The control unit of the CPU is implemented using a single
Finite State Machine (FSM) that uses the input and output
signals provided by the ALU, the I/O CONTROLLER, and
I/O BUFFER, to implement fetch, decode, execute and
write back on the single-port RAM. Although an FSM is

definitely not an optimized solution to implement a CPU
control unit, it permits ease of debugging and verification,
and moreover permits to flexibly add additional instructions
or remove the unnecessary ones as will be shown later.

Fig. 3 shows a simplified scheme of the mOISC internal
FSM. Execution mode is stored in an internal variable u that
can have the value 0 or 1 in OISC or CISC mode, respec-
tively. The CPU cycle starts assuming u is zero. First, mOISC
reads the value of the IOR provided by the I/O port and stores
it in the corresponding internal register. Machine registers are
named MR[] in this diagram (for instance MR[0] is MCR,
MR[1] is CHR, MR[2] is CHR, and so on). To compactly
express the use of IDR, i.e. MR[6], every time IOR is
written, a bitwise AND operation is assumed to be executed
(the IDR bits at logic ’1’ identify an output direction). After
updating IOR, fetch is implemented in 6 clock cycles, that
is, reading a, b, c, mem[a], mem[b] and mem[mem[b]].
After fetch, the FSM jumps to different states according to
the value of the program counter. If pc<8, the bootstrap
sequence is executed, and the value of mem[a] is first stored
in internal registers MR. If the program counter is zero (i.e.,
the current pc is pointing to the initialization of the MCR),
the value of u is updated to save machine execution mode
and the program counter is increased by 1 to scan all the
machine register region. The bootstrap sequence continues
until pc reaches the value of 8, i.e. when the machine can
execute instructions normally. In CISC mode, during normal
execution and even during bootstrap whereafter u has been
set, the fetch phase considers the read and the storage of the
MCR in the internal register MR[0], preceding the reading of
a.
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FIGURE 3. mOISC proof-of-concept microarchitecture FSM with detailed state transitions.

For pc≥ 8, two possible executions are possible, one for
b<8, and another otherwise. b< 8 indicates that the current
instruction will write its output to a machine register, in
the diagram indicated as TTA. The corresponding internal
register MR[b] is then updated with the value mem[a].
At this point, the CPU needs to handle three special cases,
that are i) a CPU stop, issued when b is 1 and mem[a] is
255, ii) wait for interrupt instruction occurring for b= 2, and
otherwise iii) write back mem[b] in the machine register. In
the first case, the FSM jumps to a state where the STOP is
issued (CPU_HALT in Fig. 2). In the second case, (see INT
arrow in the diagram), the CPU writes back in the mem-
ory the value of MR[2] (using a memory address 0x02),
sets the INTERRUPT signal, and waits indefinitely until the
CONTINUE signal is asserted by the I/O CONTROLLER.
At the same time, it stores the current ISR value provided by
the controller in a temporary register reg. When CONTINUE
is asserted the content of reg is written back in memory at
the address 0x05, and in the internal register of the CPU
MR[5]. Next, the value of the IWR (i.e, MR[2]) is reset to
zero, the program counter is set to c, and the CPU is ready
to start a new cycle. In the third case, the machine simply
needs to implement write back to the memory and need to set
the program counter to the address c before restarting a new
CPU cycle.

When b≥ 8, the machine needs to implement the normal
flow to handle operation (exec in the figure) and as the first
step, it decodes the instruction. The FSM next state depends
on the instruction type, and here four cases are possible,
i.e., PCS, MEMR, MEM, and all the remainder instructions. In
the case of PCS, that is MR[0]= 0, the program counter is
updated with the output DATA of the ALU, which is mem[b].

Here two cases need to be handled according to the value of
DATA. The machine needs to check if DATA is not zero and
the PCS instruction is implemented only if DATA is not zero,
otherwise, the operation is skipped and the program counter
is updated with the value of c. In the case of MEMR and MEM,
that is MR[0]=0x11 and 0x22, the CPU needs to execute
the instruction by assuming that both a and mem[b] can fall
within the range of machine registers, and re-implement the
TTA control. Indeed, after write-back to memory (at address
a or mem[b], respectively) and program counter increment,
the system needs to consider again a and mem[b] in case
their value is lower than 8 and larger than 0 (i.e., MCR).
In such a case, the same condition of TTA applies again,
i.e., for CPU halt and wait for interrupt trigger. In case the
current instruction is other than the above, the LEQ states
are executed. Observe that the control flow associated with
the arithmetic and logic instructions is also valid for the
instruction PC because the program counter is simply made
available on DATA by the ALU. After program counter update
and write back, that vary based on the value of DATA, in
case of a SUBLEQ or ADDLEQ instruction is executed, the
machine needs to update the flags in CHR (i.e., MR[1]). CMP
and OVERFLOW, which are provided by the ALU, are used to
update MR[1] and to execute a write back on memory. After
these last operations, the CPU can execute another cycle.

IV. COMPILER AND SIMULATOR TOOLCHAIN

We have developed a complete simulation, RTL generation
and compilation toolchain with custom stages in Python to
increase portability across multiple operating systems. In
particular, we developed i) a bytecode simulator outputting
a VCD file that can be easily read using open-source viewers
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FIGURE 4. mOISC compilation and simulation toolchain implemented using Python 3.

such as GTK Wave, ii) a C compiler/translator that processes
LLVM IR from clang to automatically generate assem-
bly code or, alternatively, translates assembly from LLVM
targets (x86, mipsel, riscv32, and arm) to mOISC,
iii) an assembler program that generates binary files for
the simulator and a MIF file to be passed to the FPGA
synthesizer for hardware validation. The toolchain requires
at least LLVM 9.0 and GTK Wave to operate, which are
available both under Linux, MS Windows, or macOS. The
compiler/translator aims at supporting integers, integer vec-
tors and pointers, enough for a simple data transfer appli-
cation. It does not implement all opcodes from the targets
nor all IR instructions. Adding further supported types such
as char or struct declarations is possible and it does
not require extensions of instruction set of the machine. In
this work, we have used LLVM to compile source code and
generate both intermediate representation and commercial
architecture assembly [28]. In case of LLVM-IR compilation,
only the LLVM clang front-end is used. Compared to other
works where processors have been directly ported within an
internal LLVM target (see, e.g., [29]), here, we have re-used
the existing LLVM targets.

Fig. 4 shows a conceptual block scheme of the complete
mOISC compilation and simulation toolchain. For the sake
of brevity, we herein report a high-level description of the
tools without going into specific details.

A. MOISC COMPILER

Targeting low-complexity applications, we consider the com-
pilation of a single source file (<source>), in this example
called sensor.c, the associated header file, and a set of
include files that define machine intrinsics in a /lib/inc

subdirectory. The include and associated file mOISC.h and
mOISC.c define the address of machine registers and the
built-in function memcpy. The mOISC machine registers are
defined as volatile integer pointers. This way, reading and
writing such registers can be achieved using simple assign-
ment statements, without the need of any ad-hoc built-in in-
struction, as normally done in commercial microcontrollers.
The LLVM built-in function memcpy, normally referenced
for x86 architectures assembly, is explicitly defined to sim-
plify assembly translation. The C-to-assembly compilation is
achieved using mc.py that internally defines two flows, one
that implements LLVM-IR compilation and another that uses
LLVM assembler output to translate it into an mOISC assem-
bly. Both flows consider the clang front-end to generate IR
or bytecode, respectively, and an optional -spo argument
(otherwise at default value 31500) initializes the value of
the stack pointer implemented as a simple variable in the data
memory. All the C code is compiled by clang and llc
(for direct translation) without optimization (option -O0).
For simplicity, we assume that all variables are declared as
int. mOISC operates at 16 bit and for both compilation and
translation we simply represent data on 16 bit only. For a
basic compilation functionality, LLVM intermediate repre-
sentation is abstract enough to allow the non-consideration
of types in the translation: for MSP430 targets (intrinsically
at 16 bit) IR arguments are automatically outputted with i16
and *i16 types, while for ARM for example, arguments are
32 bit. Besides types, the intermediate representation does
not significantly change without optimization flags, hence
relaxing complexity for mOISC code generation. In direct
translation, for instance, in x86 architectures, we considered
only the least significant word of 32 bit registers such as
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FIGURE 5. mOISC compiler standard calling convention implementation based on an example mc.py compilation output in CISC mode.

EAX, EBX, ECX, and EDX, and we truncate negative signed
numbers accordingly.

Observe that thanks to the ultra-simplified addressing
mode of the machine and the absence of register file, the
compilation from LLVM-IR and the translation from com-
mercial CPU assembly is straightforward: each register in
the Static Single Assignment (SSA) graph, can be considered
at all effects as a data memory variable in mOISC. LLVM-
IR, indeed, is based on a register machine with an infinite
number of registers [30], that perfectly matches the memory
organization of our computer. A flat operand translation both
from assembly and LLVM-IR instructions is thus possible
without having to track and re-map the effective number of
registers in use in a register file, as needed for instance for
other ISAs.

1) Basic LLVM-IR Compiler

In the case of LLVM-IR compilation (argument -arch
ll passed to mc.py) the software reads a set of lexer
primitives that define the syntax of the commands in a
subfolder /lib/arch/ll. Internally, it implements two
different calling conventions, standard and fast (argument
-llcc std or -llcc fast, respectively). The standard
calling convention, which uses the stack to pass function
arguments from the caller to the callee and to save the
return value, is detailed next. The fast calling convention,
similar to the standard, not using the stack but simple
move instructions to copy caller variables to callee inner

variables, is not reported for the sake of brevity. To im-
plement a basic compilation for simple programs we have
considered the LLVM-IR instructions add, define, or,
alloca, getelementptr inbounds, and, global,
ret, ashr, icmp, sext_to, bitcast_to, shl, br,
inttoptr, load, store, call, sub, constant, labels
and memset intrinsic.

The LLVM-IR compiler outputs, for debug purposes,
an unlinked OISC mode code with extension .uasm in
which certain references to data memory cells (for instance
LLVM global definitions) are not yet substituted with
absolute memory values. The final OISC code generation
is completed by the linker internal module, that calcu-
lates absolute addresses and substitutes symbolic values with
the correct memory address to generate sensor.asm, the
OISC mode assembly that can be processed by the next
module. In CISC mode, the unlinked .uasm assembly is
post-processed by linking symbolics with a different con-
vention compared to OISC mode, because memory cells
have all different addresses compared to the OISC mode.
In CISC mode, moreover, the linker performs also a pro-
gram counter remapping by parsing and updating a reserved
_PCMCR_RETADDRBL variable used in the execution of call
returns. This has two different values in OISC mode and
CISC mode because instruction length is different. CISC
mode compilation, which generates a corresponding .fasm
file, is invoked using a -f flag at the command line.

Fig. 5 shows our implementation of the standard calling
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convention from the LLVM-IR code generated by clang.
The stack pointer (herein defined as memory pointer) is
identified by the variable m_ptr that saves the address of
the top of the stack. Let us assume that from a function
called setTxPower that accepts one i32 argument, an-
other function called spiWrite having two arguments is
called. The compiler needs to keep track of the current
number of alloca, compactly na, that is the number of
stack variables of the current function, in this case, na= 1.
To implement the function call the compiler needs to push
the current stack pointer not to overwrite the stack data of the
caller, at an offset exceeding 1 of the caller na. In our simple
implementation, we assume that the number of alloca can
be statically computed at compile time. This is reasonable
for the present application domain and simple micro-control
code. With this hypothesis, after lexer and parser execution
we scan the complete file and populate an array of structures,
one for each function, in which both na and the number of
function arguments are stored. In our implementation, the
alloca variables address is computed by adding an offset
to m_ptr, thus not defining separate variables for them. In
general, na needs to be computed by the program at run-
time because a function may directly allocate memory on the
stack. Under this hypothesis, the calling convention described
further on still operates but an additional variable na needs
to be defined by the compiler, per function, to update the
number of allocated bytes in the stack.

When a call instruction is generated by the compiler,
i) the value of m_ptr is increased by na+ 1 and the
current m_ptr value is pushed (in this example, using
imm.1= 2), and ii) the compiler pushes arguments in the
stack in reverse sequence, for an overall number of pushes
corresponding to the number of callee arguments (cl in
this example). In this example, two arguments need to
be pushed, a constant value 9 (imm.8 in this example)
and an inner caller variable %5, that is identified by the
compiler with suffix Var_ and postfix _setTxPower,
i.e., Var_5_setTxPower. Next, step iii), the compiler
saves the new link_register that stores the return ad-
dress from the callee. The link_register stores the
current program counter PC with an offset _OFF (that is
_PCMCR_RETADDRBL) that takes into account the length
of the next instructions to implement unconditional jump. In
this example _OFF is subtracted from link_register,
therefore it is a negative number. The unconditional jump,
step iv) of the caller, is simply implemented using a _NULL
variable, subtracted by itself through SUBLEQ that points to
the label of the callee, spiWrite.

At this point, the stack includes both arguments of
the callee, the m_ptr of the caller, and the variable
link_register includes the return program counter
value after the callee returns. Let us consider the callee
side, starting from step vii). Although wasting one CPU
cycle, for simplicity the function start is generated by issu-
ing a label and an equivalent SUBLEQ NOP on a _NULL
variable. At this point, the callee pops the values of the

arguments from the stack at step viii), by storing them in
the inner variables and by decreasing the value of m_ptr.
In this implementation, values are saved to its inner vari-
ables Var_0_spiWrite and Var_1_spiWrite, which
are the two first variables of spiWrite. In LLVM-IR,
the numbering of the inner variables in a function starts
from %1. In our implementation, because we assume to start
from %0, there is a one-element numbering gap between the
function arguments and alloca variables (in this example
alloca starts from %3). The callee function can, in general,
implement other function calls (or for example a call to itself
in case it is a recursive function), therefore it is fundamental
to push link_register onto the stack besides m_ptr,
step ix). By saving all the previous states in the stack the
callee can then allocate elements in the stack according to its
alloca variables, by using the offset address with respect
to new callee m_ptr not to change the caller stack pointer.
To address a stack element, the alloca implementation
indeed needs to refer to the current function stack pointer
and increment it with an offset calculated on the progressive
enumeration of the alloca variables.

After execution of the function, step x) at the callee
side, when returning, it is first necessary to pop the
link_register from the stack and restore it in the ded-
icated variable, so that the callee can update the program
counter as the last step. Depending on a void return or not,
the callee at step xi) needs to push the value to be returned
onto the stack, in this case, Var_9_spiWrite, and finally
set the program counter to the value of link_register
in step xii). At the caller side, it is just necessary to pop the
return value, step v), decrement m_ptr by the number of
alloca of the caller (in this case 1), and pop the old caller
m_ptr, step vi). Now, the stack pointer is restored to the
previous value before the function call and the caller stack
variables are preserved.

Fig. 6 shows the generated assembly output (in CISC mode
for the sake of brevity) for an example C code foo.c that
writes a progressive number from 0 to 10 (i.e., MAX) to IOR,
with all the I/O pins set as output. Observe that we have
compiled the code by removing the definition of function
memcpy normally present in mOISC.c. To show the usage
of the previously introduced standard calling convention, we
demand the writing of IOR to a minimal function foo that
has a single integer argument. On the top left of the figure, an
equivalent OISC mode code snippet for two instructions is
shown for completeness. The MCR values in the data memory
shown on the right are used to set the required machine
mode only in OISC mode. After the mandatory definition of
the machine registers, the compiler inserts an unconditional
jump to the main routine which is assumed not to exit and
to include an infinite while(1) cycle. Observe that MCR
is 0 because in this example the machine boots in CISC
mode. Thereafter, the compiler considers the LLVM-IR code
and generates the assembly code in sequence, first for the
function foo and later for the function main.

The function foo, whose entry point is defined by the
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#define MAX 10

{

      // IOR value is i

}

int main()

{

  int data;

  // 100MHz CPU, all IOR pins are output 

  while (1) {

    for (int i = 0; i <= MAX; i++)

    {

      foo(i);

    }

  }

}

#include <mOISC.h>

      *mOISC_ior = value;

  *mOISC_csr = mOISC_100MHz;

  *mOISC_idr = 0xFF;

MCR: 0

CHR: 0

CSR: 0

ISR: 0

IDR: 0

IOR: 0

subleq _NULL, _NULL −> main

foo: subleq _NULL, _NULL

memr Var_0_foo, m_ptr

subleq imm.0, m_ptr

movleq link_register, _TMP

addleq imm.0, m_ptr

mem _TMP, m_ptr

movleq imm.0, _TMP

addleq m_ptr, _TMP

mem Var_0_foo, _TMP

movleq imm.0, _TMP

addleq m_ptr, _TMP

memr Var_3_foo, _TMP

mem Var_3_foo, Var_4_foo

memr link_register, m_ptr

subleq imm.0, m_ptr

pcs _TMP, link_register

main: subleq _NULL, _NULL

movleq link_register, _TMP

addleq imm.0, m_ptr

mem _TMP, m_ptr

movleq imm.0, _TMP

addleq m_ptr, _TMP

mem imm.1, _TMP

mem imm.2, Var_4_main

mem imm.3, Var_5_main

subleq _NULL, _NULL −> Label_6_main

Label_6_main: subleq _NULL, _NULL

movleq imm.4, _TMP

addleq m_ptr, _TMP

mem imm.1, _TMP

andleq _icmp_sle, Var_9_main −> Label_15_main

subleq _NULL, _NULL −> Label_10_main

subleq _PCMCR_RETADDRBL, link_register

subleq _NULL, _NULL −> Label_12_main

movleq imm.4, _TMP

addleq m_ptr, _TMP

memr Var_8_main, _TMP

movleq Var_8_main, Var_9_main

subleq imm.5, Var_9_main

movleq CHR, Var_9_main

Label_10_main: subleq _NULL, _NULL

movleq imm.4, _TMP

addleq m_ptr, _TMP

memr Var_11_main, _TMP

movleq m_ptr, _TMP

addleq imm.6, m_ptr

mem _TMP, m_ptr

movleq Var_11_main, _TMP

addleq imm.0, m_ptr

mem _TMP, m_ptr

pc _TMP, link_register

subleq _NULL, _NULL −> foo

memr _TMP, m_ptr

movleq _TMP, m_ptr

Label_12_main: subleq _NULL, _NULL

movleq imm.4, _TMP

addleq m_ptr, _TMP

memr Var_13_main, _TMP

movleq imm.0, Var_14_main

addleq Var_13_main, Var_14_main

movleq imm.4, _TMP

addleq m_ptr, _TMP

mem Var_14_main, _TMP

subleq _NULL, _NULL −> Label_7_main

Label_15_main: subleq _NULL, _NULL

subleq _NULL, _NULL −> Label_6_main

memr Var_4_foo, %ma−Global_mOISC_ior

memr Var_4_main, %ma−Global_mOISC_csr

memr Var_5_main, %ma−Global_mOISC_idr

IWR: 0

ICR: 0

subleq _NULL, _NULL −> Label_7_main

Label_7_main: subleq _NULL, _NULL

_SUBLMCR:255

_MOVMCR:238

_ADDMCR:204

_SHLMCR:153

_SHRMCR:136

_ORMCR:119

_ANDMCR:102

_XORMCR:85

_XNORMCR:68

_PCMCR:51

_MEMMCR:34

_PCSMCR:0

_NULL:0

m_ptr:31500

link_register:0

_TMP:0

%ma−Global_mOISC_ior:314

Global_mOISC_ior:7

%ma−Global_mOISC_idr:316

Global_mOISC_idr:6

%ma−Global_mOISC_isr:318
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imm.2:192
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FIGURE 6. Example mOISC assembly with corresponding C code, generated using the basic LLVM-IR compiler (standard calling convention).

label foo:, first implements the steps vii) to xi) shown in
Fig. 5. After the function start, the argument value is stored
in a local function variable Var_0_foo that corresponds
to a pop of the single argument from the stack. Next, fol-
lowing the calling convention steps, the link_register
is pushed on the stack (m_ptr is incremented by 1, i.e.,
imm.0). These operations conclude the callee function defi-
nition in the scheme depicted in Fig. 5. Following the LLVM-
IR code, the argument of the function is put on top of
the stack, i.e., loaded and stored on a local variable whose
address is defined using an alloca instruction, the first
and only one of foo. Hence, the value of Var_0_foo
is stored in the stack in position m_ptr + 1. Next, still
following the LLVM-IR code generated by clang, the same
value is taken from the stack and saved on a local variable
Var_3_foo. Then, the address of IOR is accessed using
a memr instruction that considers the indirect address of
Global_mOISC_ior (prefix %ma-). This indirect variable
stores the address of the memory cell whose value is the ad-
dress of IOR. This redirection, which is applied for the map-
ping of LLVM-IR global variables, is necessary for mOISC,
as no direct address extraction instruction is available, while
memory addressing can be achieved only using double-
depth addressing. In our toolchain the mOISC.h header file
includes the definition of all machine registers as volatile
integer pointers, therefore in the code, this redirection is
applied to all machine registers. Next, the content of the local
variable Var_3_foo is written on the address pointed by
Var_4_foo, i.e., IOR (step 1© in the figure). At this point

the function can return to the caller, therefore implementing,
the steps x), xi) and xii) defined in Fig. 5. In this specific
case, no return value needs to be provided to the caller (the
function is declared as void), therefore the code generator
considers only step x) and xii).

After function start (label main:), function main pushes
link_register onto the stack to implement the same
steps of foo. Next, since this function never returns any
value and implements an infinite loop, the compiler pushes
a constant zero in the position m_ptr + 1, correspond-
ing, in LLVM-IR, to the local variable %1, assumed to be
in the stack. This stack variable and also the next one,
i.e. %2 (accessed in the stack at offset 1 and 2) are pro-
vided by LLVM in the intermediate representation but they
are never used because the routine never returns. Next,
step 2©, the two assignment instructions in the C code
referred to the setting of CSR and IDR, are implemented
using the indirect addresses %ma-Global_mOISC_csr
and %ma-Global_mOISC_idr, by exploiting a double-
depth mem instruction with immediates imm.2 and imm.3
whose value is indeed 192 and 255, respectively.

At this point, the code implements an unconditional
jump to the next basic block number 6, which encodes
the infinite loop that has its entry point identified as label
Label_6_main, step 3©. The presence of such uncondi-
tional jump at this point of the code originates from the
presence of a br label %6 instruction in LLVM-IR im-
mediately preceding label 6: that our compiler translates
without further optimization. Following the LLVM-IR out-
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put, the integer variable i of the C code has been mapped to
be on the stack, in particular at position m_ptr + 3 (offsets
1 and 2 have been previously discussed). The value of i is
initialized at the value of imm.1, i.e., 0 as per initialization
of the for cycle in the C code, step 5©. As the next step
(hierarchically identified as 4© in the code because referring
to a higher abstraction level), the compiler defines a further
basic block labeled as 7 (labeled Label_7_main) which
identifies the body of the for cycle. At this point of the
code, the value of i needs to be checked to implement the
termination condition of the for cycle. The value of i is
indeed popped from the stack (offset 3, i.e., imm.4), saved
in Var_8_main, and in turn copied to Var_9_main using
movleq, to provide a temporary variable to implement the
for condition.

In step 6©, Var_9_main is compared to imm.5 to im-
plement i <= MAX. In our implementation, the selection
scheme is the same used for direct ARM code translation (see
Sec. IV-A2 for further details) that exploits the control flow
of ANDLEQ and the comparison flags provided by the CPU in
CHR. In this particular case, a constant icmp_sle is used to
store the comparison flags that occur in the case of lower-
or-equal conditions. First, Var_9_main is compared to
imm.5 using a SUBLEQ instruction. Then, Var_9_main,
which will not be used anymore by definition of SSA, is
overwritten with the value of CHR. If i <= MAX the system
can continue to Label_10_main to implement the func-
tion call to foo. Otherwise, the CPU jumps to the basic block
15 (Label_15_main) to reiterate on Label_6_main,
therefore on the while(1) loop, step 11©.

The foo function call within Label_10_main, that
follows the steps i)-iv) shown in Fig. 5, considers the lo-
cal variable Var_11_main as temporary storage of the
value of i that is extracted from the stack (offset imm.4).
Var_11_main is then pushed onto the stack as argument
value, step 8©. The last step of the calling convention
procedure implements the unconditional jump (step 9©). Be-
cause foo returns void, the code that follows only pops
m_ptr from the stack to restore the caller stack pointer
according to steps v) and vi) of the calling convention. The
last block 12 (labeled Label_12_main) implements the
increment on i. As usual, the current value is first extracted
from the stack and saved locally to Var_13_main. Next,
a value of 1 is loaded in Var_14_main that is in turn
added to Var_13_main, step 7©. Finally, the new value of
Var_13_main is written back onto the stack in the position
corresponding to i. As increment is necessary only in case
the for cycle needs to be iterated, the block concludes with
an unconditional jump to Label_7_main, step 10©.

2) Target Direct Translation
In case of direct translation from LLVM targets, in this imple-
mentation x86, arm, mipsel or riscv, invoked using the
-arch argument, the complete LLVM front-end and back-
end toolchain is utilized with both clang and llc. The
mOISC compilation utility in this case reads and parses the

assembly generated by LLVM, saved with the same extension
of the target machine, to generate both OISC and CISC code.
Translation is achieved using a set of primitives included in
subfolders /lib/arch, a collection of files for each LLVM
target. These primitives are a one-to-one direct translation
from target instructions to mOISC assembly. For instance,
given an ARM target, the simple instruction sub %1, %2,
%3, where %1 is the register that stores the result and %2 and
%3 are the operand registers or immediates, is mapped as,

1 exec _MOVMCR, MCR
2 exec %2, _TMP
3 exec _SUBLMCR, MCR
4 exec %3, _TMP
5 exec _MOVMCR, MCR
6 exec _TMP, %1
7 _MOVMCR: 238
8 _SUBLMCR: 255
9 _TMP: 0

where lines 1–6 are the corresponding instructions in pro-
gram memory and lines 7–9 are the required values that
need to be appended (if not already present) in the data
memory. Observe that thanks to the simplicity of mOISC,
there is no difference when translating instructions in case
of register-register, register-immediate, memory-register, or
register-memory addressing because the mOISC memory
organization is flat. This ARM instruction is implemented
by first moving %2 to a temporary register _TMP using a
MOVLEQ machine mode, _TMP is updated in SUBLEQ mode
with the difference _TMP - %3, i.e., %2 - %3, and the
result is moved back to %1 using MOVLEQ. To implement
branches, multiple options are possible because the ISA
implements control flow for all arithmetic and logic instruc-
tions. In this implementation, we have exploited the CHR
flags and ANDLEQ. For instance, the ARM ble instruction
is implemented as,

1 exec _ANDMCR, MCR
2 exec _LE_FLAG, _RESULT -> isNotLowerEq.%4
3 exec _SUBLMCR, MCR
4 exec _NULL, _NULL -> %1
5 isNotLowerEq.%4: exec _SUBLMCR, MCR
6 exec _NULL, _NULL
7 _ANDMCR: 102
8 _SUBLMCR: 255
9 _LE_FLAG: 12

10 _NULL: 0

where _RESULT is the content of CHR in the preceeding
cmp instruction which implements a SUBLEQ between two
comparison operands. Here, the code checks if _RESULT
has equal and lower flags unset (i.e., on position 0x04
and 0x08 of CHR, overall _LE_FLAG= 12) by exploiting
the control flow of ANDLEQ. If unset, the routine jumps to
isNotLowerEq.%4, where %4 is the current target assem-
bly line, thus continuing execution. Otherwise, a SUBLEQ
unconditional jump to %1 is implemented using a _NULL
variable. Observe that mc.py needs to generate unique
names for each internal label that may be present in instruc-
tion translation, and here we have chosen to declare labels by
embedding the current target assembly line number %4 in our
implementation.
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mc.py, by reading all the primitives at start-up time and
by parsing the target architecture assembly, is then able to
generate mOISC code although not globally optimized and
providing lower performance compared to the target ISA.
In a similar way with respect to the LLVM-IR compiler,
translation ends up with an unlinked assembly that is linked
with the internal linker module. To generate CISC mode
assembly, the same flow of the LLVM-IR compilation case
is applied by re-using the same internal functions, i.e., CISC
remapper and Linker with PC remapper.

B. MOISC HARDWARE AUTOGENERATOR
We designed a mautogen.py utility that considers Quar-
tus project VHDL files templates (software version at least
19.1) and auto-generates in a specific folder the com-
plete processor with embedded binary and by consider-
ing only the effectively used subset of instructions of
the mOISC ISA in the compiled software. The templates
are organized in static and dynamic source files. The
lib/autogen/static subdirectory comprises files that
do not change, while /lib/autogen/rules includes
files that need to be parsed and modified to generate the
final code. mautogen.py, which accepts a specific IOR pin
mapping with the argument -pincfg, first reads the OISC
mode assembly with an ASM Reader module, it parses
the dynamic files using a Template Parser, and fi-
nally, the File Processing module generates the Quar-
tus project files for a Cyclone 10LP evaluation board. The
ASM Reader module detects the data memory variables
ending with MCR (therefore, those that define a valid machine
mode) to understand the number of utilized modes used in
the program. This information is passed to the Template
Parser that reads the dynamic files, parses specific com-
ments in the VHDL code and selects only the specific de-
scription parts that define the effectively used instructions
in the hardware. Finally, the File Processing module
copies the static files and the dynamic files with re-arranged
code and pin configuration in a specific folder.

C. MOISC ASSEMBLER AND SIMULATOR
m.py includes both the mOISC assembler and a text-based
interface simulator with the capability of generating VCD
files for graphical simulations, normally supported by EDA
graphical viewers. m.py considers the assembly code in both
OISC and CISC modes to generate i) a corresponding mem-
ory initialization file fpga.mif to be used in the Quartus
project to initialize internal RAM with FPGA firmware, ii)
a binary file of the assembled program (sensor.bin in
this example), iii) a text-based symbol file that identifies the
address of each program variable or label (with syntax name
@ value, where name is the symbol name and value is
the address). For ease of implementation, we designed two
separate assembler modules (both multi-pass) OISC mode
assembler and CISC mode assembler to generate
binary files because memory address differs in the two cases
as well as the content of the text strings that need to be parsed.

The program enables two types of simulations, one that
is text-based in which at every CPU cycle important vari-
ables specified by the argument -syms are printed on the
screen, and another that simply aims at generating a VCD
file to be processed for instance by gtkwave, an open-
source software that enables graphical representation for both
digital and mixed-signal simulations [31]. In this last case,
it is mandatory to specify also the simulation time (-time
argument) and optionally the storage of debug information,
-debug. These, include the function names that are called
while running the code in a text-based format. The simulator
implements a behavioral Python description of the mOISC,
with a back-annotated number of clock cycles per mode from
the VHDL description. The program is read directly in the
binary format generated by m.py. The IOR read events and
the consequent ISR values following an IWR write event,
detected during execution, are acquired from the standard
input.

Fig. 7 shows a graphical output of gtkwave while run-
ning an example program sensor.c (see Sec. V for further
details). m.py generates VCD data for both CPU machine
registers, and based on the symbol file after compilation, it
can provide debug information to check the operation of the
CPU. In this example the cursor is placed corresponding to
the function SPIWRITE (called by RH_RF95_INIT), and
shows some of the internal data memory variables such as
M_PTR and some internal variables of the MAIN function.
IOR shows the four SPI signals involved in the communi-
cation with the RFM9x module. The VCD output feature
provided by the simulator combined with gtkwave form a
powerful verification tool, even for the design and the debug
of the compiler.

V. PROOF-OF-CONCEPT MICROARCHITECTURE
VALIDATION
Fig. 8(a) shows the test setup used to verify the correct
operation of mOISC assuming a simple wireless telemetry
application in which environmental temperature is read using
a MAX3025 temperature sensor [32], and transmitted with an
RFM9x LoRA chip [33]. To implement the set-up we took
advantage of the Arduino connector available on the Cyclone
10LP development board to provide the necessary 3.3 V
supply for both sensors and wireless transceiver. The IOR
pins (0 to 7) in the VHDL description has been synthesized
on pins B1, C2, F3, D1, G2, L14, G1, J2, the 50 MHz input
clock is assigned to E1 and the reset signal RST is assigned
to D9. The I2C pins SCL and SDA of the MAX30205
are connected to IOR[7] and IOR[6], respectively, the
SPI pins CS, MISO, CLK, and MOSI are connected to
IOR[3-0], the RESET pin of the RFM9x is connected to
IOR[4] and a LED indicator on the development board is
connected to IOR[5]. To enable data reception from the
RFM9x transceiver an Adafruit Feather 32u4 RFM9x board
[34], programmed with the Arduino Integrated Development
Environment (IDE), including the same transceiver, has been
used as LoRA RX. The board outputs the received data in
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FIGURE 7. Example mOISC simulation output of the compiled bytecode from sensor.c (see Sec. V) viewed used gtkwave. The simulation includes also debug
information.

(a)

(b)

FIGURE 8. (a) mOISC proof-of-concept microarchitecture validation setup
using a Cyclone 10LP development board and two commercial chipsets, a
RFM9x SPI transceiver and a MAX30205 body I2C temperature sensor. To
wirelessly receive temperature data, a separate system comprising a LoRA
receiver (LoRA RX) with USB virtual communication port has been prototyped.
(b) received data from mOISC read through the LoRA RX USB virtual COM
port on /dev/ttyACM0 using out custom Python script.

a two bytes binary format (integer and fractional part) on a
virtual USB COM port, so that they can be processed and
printed on the screen according to the MAX30205 speci-
fications by a custom Python script. A typical temperature

data output transmitted by mOSIC and received through the
LoRA RX virtual COM port is given in Fig. 8(b). The IWR
mechanism has been verified using the pushbuttons included
in the Cyclone 10LP evaluation board with another custom
program not shown here for the sake of brevity.

Lst. 2 shows the C code of the main function in
the example program sensor.c used to verify system
operation. Machine registers pointers are defined in the
lib/inc sub-directory file mOISC.c, and are identified
with suffix mOISC (for instance CSR address is given by
mOISC_csr).

1 int main()
2 {
3 // I2C buffer
4 int i2cbuf[2] = {0, 0}; int length = 2;
5 // sets CPU speed at 100MHz
6 *mOISC_csr = mOISC_100MHz
7 // initializes SPI, LED and I2C ports
8 spi_led_init();
9 i2c_init();

10 // RFM9x RESET pulse, set
11 *mOISC_ior = 0xEF & *mOISC_ior;
12 // waits for 10 idle cycles
13 delay(10);
14 // unset
15 *mOISC_ior = 0x10 | *mOISC_ior;
16 // RFM9x initialization, returns 1 if done
17 if (RH_RF95_init() == 0) {
18 // if not initialized, wait forever
19 while(1);
20 }
21 // main loop
22 while(1)
23 {
24 // reads MAX30205
25 MAX30205_read(i2cbuf);
26 // sends data to RFM9x
27 RH_RF95_send(i2cbuf, length);
28 // sets CPU speed to 10kHz
29 *mOISC_csr = mOISC_10kHz;
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FIGURE 9. Measured current consumption of the USB port of the complete Cyclone 10LP evaluation board while running sensor.c. The LoRA transceiver and
the temperature sensor take the supply voltage from the evaluation board.

30 // blinks LED on IOR[5]
31 *mOISC_ior = 0x20 | *mOISC_ior;
32 delay(1);
33 *mOISC_ior = 0xDF & *mOISC_ior;
34 delay(1);
35 // sets CPU speed to 100MHz
36 *mOISC_csr = mOISC_100MHz;
37 }
38 }

Listing 2. sensor.c main function code snippet.

The program, after initialization of both SPI and I2C (that
are implemented using a shared global variable to determine
the I/O direction of the IOR port), runs the following opera-
tions: it initializes the LoRA transceiver and enters an infinite
loop, in which, i) at high clock speed (100 MHz), it reads
the current temperature through I2C from the MAX30205,
ii) sends this data as through SPI to the RFM9x transceiver
in broadcast mode, iii) slows down the CPU to 10 kHz to
blink a LED on IOR[5], and iv) resets the CPU speed to
100 MHz and repeats. The function delay implements an
empty for cycle. This very simple program demonstrates a
very basic solution to a wireless telemetry problem of remote
temperature sensing, and through the infinite loop, makes
it possible to measure the performance of the CPU while
running code obtained from LLVM-IR or the assembly of
different target machines.

A. MICROARCHITECTURE POWER CONSUMPTION
Fig. 9 shows the current consumption of the complete Cy-
clone 10LP evaluation board with synthesized mOISC while
running sensor.c. To measure power consumption we
have built a custom USB cable with exposed 5 V supply wires
to enable current measurements using a Tektronix TCP0030
current probe and an MSO4104 oscilloscope. As it is not
possible to measure the leakage power of the FPGA and
thus understanding the contribution that goes directly to the
processor, the only measurement possible in these conditions
regards dynamic power. Measurements show a IUSB = 12 mA

absorption from the 5 V USB port supply, for a 60 mW
power consumption, while running at 100 MHz. At 10 kHz
the dynamic power consumption of the CPU is reduced by a
factor of 104 (estimated on the order of 60 mW/104=6µW)
and it is not possible, using our current probes, to appreciate
a variation with respect to the board static power. Observe the
peak current consumption increases after the activation of the
LoRA transceiver, which is designed to consume duty-cycled
current, i.e., only during packet transmission. Due to the lack
of available ports in the oscilloscope, we have shown only
one out of four SPI signals (SPI CLK). The digital signals
waveform sampling rate is dictated by the current probe,
hence, the I2C SCL and SDA signals are downsampled.

B. TRANSLATED/COMPILED CODE PERFORMANCE

Fig. 10 and Fig. 11 show the compiled code size and the
duration of the main loop shown in Lst. 2 of our sample
program sensor.c, translated from all the supported target
ISA and compiled using clang LLVM-IR. The execution
time is measured using a DSO9404A oscilloscope, by read-
ing the SPI clock cycle time. The worst results both in terms
of code size and execution are obtained with MIPS and RISC-
V intermediate microcode. This is due, in general, to the
higher number of assembly instructions emitted within the
same LLVM basic block. A basic block is a container of
instructions that execute sequentially [30], [35]. For MIPS
and RISC-V each operand in any assembly line is conceived
to save data at address c based on address a and b notwith-
standing mOISC naturally overwrites data at address b as a
function of data in a and b. Observe that direct translation
from commercial targets is typically implemented line by line
in a flat manner by mc.py. By running translation with these
assumptions, it is clear that the emitted code is larger and has
lower performance compared to the other targets.

When code is compiled from LLVM-IR, occupation is
still high, due to a lack of optimization and direct LLVM-IR
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FIGURE 10. mOISC proof-of-concept compiled code size assuming different
assembly ISA obtained using LLVM assuming same program sensor.c, in
both CISC and OISC mode.
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FIGURE 11. mOISC proof-of-concept execution time of the sensor.c main
loop of the programs whose binary size in reported in Fig. 10.

register translation. However, LLVM-IR compilation leads to
the best performance in terms of execution time thanks to the
possibility to handle code generation from a higher abstrac-
tion level language. For ARM and x86 target translation, the
obtained speed is higher, because in both cases the number
of assembly instructions within each LLVM basic block is
lower compared to MIPS and RISC-V, notwithstanding the
large number of operands per instruction. ARM and x86,
indeed, enable to compactly combine multiple registers in
single instructions and calculate addresses more easily with
embedded offsets (see for instance movl in x86 or ldr/str
in ARM ISA). Therefore, the translator, that runs a flat
line-by-line translation, is capable of implementing a more
optimized code generation.

The CISC mode increases the memory occupation per
instruction (4 addresses versus 3 per instruction) but in terms
of efficiency and overall code size, it is advantageous. In
our simple software translator indeed, the generated OISC
code keeps alternating an MCR write and the execution of
the selected instruction, thus duplicating program memory
occupation and execution time because one instruction is
always wasted for setting MCR. The CISC mode code size
is scaled by an approximate factor of 2/3 w.r.t. those in OISC

mode.

C. RESOURCE OCCUPATION
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FIGURE 12. mOISC proof-of-concept synthesis results (full featured processor
with all instructions) against other open-source cores for 32 bit and 16 bit ISA
assuming the same Cyclone 10LP FPGA target and the same 50 MHz clock.

Fig. 12 shows the area occupation of mOISC compared to
open-source CPU for similar application domains [24], [36],
[37]. We have synthesized all cores on the same Cyclone
10LP FPGA with the same 50 MHz clock in order to maintain
a fair comparison, and by excluding the external memory
and the fabric FPGA JTAG interface from the count for all
processors. For mOISC we have included in the count the
logic required by the PLL. For the PicoRV core and RV32I,
we obtained non-zero memory bit elements (1024 and 2048
bit of M9K blocks) because register files are synthesized
using the FPGA RAM memory, hence it is fair to include
them as part of the core. We have synthesized mOISC with
all possible instructions. Notwithstanding that our proof-of-
concept disregards area and performance optimization and
implements a simple and underperforming FSM, it remains
the lower area count processor. Resource occupation re-
mains significantly lower compared to other pipelined non-
bus based 32 bit microarchitectures not listed here, based
on RV32I instruction sets. For instance, the RISC processor
in [38], although implemented on Spartan FPGA occupies
5578 LUTs and 1073 flip flops. mOISC resource occupation
is lower compared to an open-source implementation of
the 16 bit MSP430 (Neo430). Further resource occupation
reduction is possible, especially by utilizing a bus for in-
terconnecting the core with the memory and registers. With
an LLVM-IR compilation, the resulting assembly uses all
instructions besides XORLEQ and XNORLEQ. By running
synthesis with mautogen.py, therefore excluding these
two unused instructions from the ALU, the number of com-
binational ALUTs becomes 1393 with the same amount of
logic registers, thus saving 4 ALUTs compared to the full-
featured processor. Better results may be possible with ASIC
implementation. The amount of logic utilized, indeed, can be
more finely tuned compared to using the fixed logic fabric
of the FPGA. However, the synthesized silicon area severely
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depends on available digital cells and this aspect deserves
separate investigation [39].

VI. ISA PERFORMANCE AND DISCUSSION
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FIGURE 13. Number of executed instructions to run the same Bubble Sort
algorithm on an integer vector V for different length n (5, 10, 15 and 20), for an
mOISC, a subleq OISC, and for known MIPS, RISC-V, and ARM
architectures, with corresponding compilers. The mOISC assembly is
generated using our basic LLVM-IR compiler.

To compare the performance of the mOISC ISA com-
bined with our compilation toolchain to other known archi-
tectures, we have run benchmark simulations assuming a
simple Bubble Sort algorithm applied on an integer vector
of n elements, that needs to be fully re-ordered in ascend-
ing order (worst case, initialized as ordered in descending
order). We have decided not to consider the number of
clock cycles required to complete an instruction so that
the performance of the ISA (compiler included) can be
compared independently from the corresponding microarchi-
tecture. We have patched the open-source implementation
of Higher Subleq (see [1], [9], downloadable at [10]) to
print out the number of execution cycles once the execu-
tion finishes (i.e., defining an int cycle, incremented in
the simulation loop and printed for ip < 0, namespace
emulator, routine sqemulatei). Observe that Higher
Subleq implements stack with self-modifying code, and in-
cludes specific optimizations for subleq. For the evaluation
of commercial ISA, we have used Open Virtual Platform
sim (OVPsim) which provides several open-source models
and application programming interfaces for simulation of
known architectures [40]. For mOISC, we have compiled
the code using the LLVM-IR compiler with standard calling
convention. For MIPS, RISC-V, and ARM the compilation
toolchain provided with OVPsim have been used, in partic-
ular, mips-mti-elf-gcc, riscv-none-embed-gcc
and arm-none-eabi-gcc, respectively. The compiled
code includes also specific calls to intercept program comple-
tion, and to set machine registers for mOISC. Their impact is
included in our results but it is not significant in the overall
executed instructions count.

Fig. 13 shows the number of instructions required by
each specific ISA to complete the bubble sort algorithm as
a function of the number of elements to be re-ordered n.

Results confirm that the worst-case Bubble Sort complexity,
as expected, goes as O(n2), for all cases, irrespective of
the ISA. Compared to a pure subleq model, mOISC in
OISC mode runs 1.6× faster, and 3.3× in CISC mode. Other
more complex and more performing ISA complete the exe-
cution with a significantly lower number of instructions, i.e.,
∼2.3×, ∼2.6×, and ∼2.6× for MIPS, RISC-V, and ARM,
respectively. The results in terms of performance for CISC
mode are promising: even with such a limited instruction
set and using a simple compilation toolchain the obtained
performance in terms of coded instructions is roughly a factor
two larger compared to MIPS. Observe that the ARM, RISC-
V, and MIPS ISA instructions compactly encode also arith-
metics with offset calculations required for fast accessing of
the stack, while mOISC includes only generic double-depth
addressing and offsets need to be explicitly calculated using
other arithmetic instructions.

Assuming another sample program that runs the bubble
sort algorithm on a 32 element integer vector, compared to an
ARM ATSAMD21, mOISC runs 57× slower, assuming the
same 50 MHz clock (OISC mode), here accounting for the
real execution time and not only the number of instructions.
This is undoubtedly due, as previously introduced, to the lim-
ited instruction set, and, most importantly, to the slow fetch
and execute phases of our proof-of-concept implementation.
In OISC mode, indeed, the current prototype cycle time lasts
10 clock cycles for PCS and machine register writes (except
for IWR), 11 clock cycles for any LEQ or PC instruction,
12 clock cycles to write IWR, and 3 clock cycles to exit
from interrupt. MEMR and MEM require 11 clock cycles to
be completed. In CISC mode two additional clock cycles
are required to complete an instruction except when exiting
an interrupt block. This performance is aligned with the old
but still used Intel MCS8051 CPU, which requires 12 clock
cycles to run an instruction [41]. By synthesizing the 8 bit
8051 core in [42] on the same Cyclone 10LP FPGA (CPU
only), we obtain 982 ALUTs, 346 dedicated logic registers,
4096 memory bits, and a 9x9 DSP element. Adding up all
the contributions, mOISC, notwithstanding working at 16 bit,
provides lower resource occupation.

The slow execution speed of mOISC is intrinsic in the ar-
chitecture of the machine that assumes a pure von Neumann
scheme with flat absolute addressing, unpacked instructions,
and no register file. The presence of very fast access storage,
such as a register file, would speed up execution speed, thus
leaving more time-consuming memory access instructions,
executed less frequently. By using an aggressive pipelin-
ing (which results in an increased number of registers at
implementation-level) we can ideally reduce the average
number of clock cycles to 4 per instruction. The other bot-
tleneck refers to the single-port RAM that is used for the
implementation of the central memory. By using a dual-port
RAM as suggested in [1], we can then speed up instruction
fetch, thus reducing by an additional factor 2 the number
of clock cycles. Moreover, another possible improvement
regards the use of a Harvard architecture in conjunction to
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pipeline. However, increasing performance may impact our
research objective of reducing silicon area and number of re-
sources for environmental purposes. Moreover, the presence
of a pipeline impacts on real-time execution. As a matter
of fact, slow-speed CPUs can still find relevancy in some
applications in which physical quantities to be observed are
somehow not too fast, e.g., in smart agriculture applications,
provided that circuits can operate at reduced energy and ag-
gressive duty cycling. Our development could go in favor of
such application domain in which normally electrical energy
can be extracted from solar cells, thus making our blocking
interrupt mechanism a potentially useful functionality.

To fully take advantage of our mOISC architecture (espe-
cially the various control flow options made available by the
ISA), therefore minimizing the number of MCR writes, it is
necessary to elaborate on a more sophisticated compiler or
alternatively integrate the mOISC ISA into LLVM targets.
Given the flexibility of mOISC, another possible improve-
ment point regards instruction parametrization. In the current
implementation, the MCR value is used as an index that se-
lects the instruction to be executed among a fixed instruction
set; we could, instead, interpret the MCR value, extended
e.g. to the full 2 byte memory width, to compactly define
machine mode details. We can consider the synthesis of ad-
hoc modes by combining the already available arithmetic
and logic resources and outputs of the ALU, thus flexibly
re-using them to synthesize both control and data flow. For
instance, given a hardware comparator we can re-use it to
implement also jump if bigger or equal, or given arithmetic
and logic hardware blocks, we can route them and combine
their output to implement more complex math. This, inter
alia, goes in favor of a re-engineering of the control unit for
a more efficient implementation compared to a trivial FSM.

Cross-sectional approaches in the design of computing
systems are highly demanded because, so far, processor
design has been focused on the minimization of operational
energy consumption, while carbon emission continues to
grow due to hardware manufacturing and infrastructure [11].
In this respect, the referenced work states that low footprint
circuit design is a potential opportunity for the reduction of
carbon emissions. In terms of architecture design, judicious
provisioning of the resources, hardware down-scaling, and
the incorporation of ad-hoc hardware modules can make a
difference in CO2 emissions. The reduced resource occupa-
tion of mOISC and the possibility to synthesize the hardware
based on the minimal set of actually used arithmetic and logic
operations goes in favor of the aforementioned directions.
These potential environmental impact advantages need to be
demonstrated through silicon implementation.

VII. CONCLUSION
We have presented an ISA, with associated proof-of-concept
microarchitecture, based on the extension of the minimalistic
OISC approach towards a practical implementation for use in
microcontroller applications. The proof-of-concept microar-
chitecture, even without encompassing specific area con-

straints, on a Cyclone 10LP FPGA achieves lower resource
occupation compared to area efficient implementations of
open-source 16 and 32 bit microprocessors. Although its per-
formance is limited due to its intrinsic minimalism, this CPU
has been proven to sustain low complexity wireless telemetry
applications. The ISA can be easily extended to 32 bit to
support a large memory capacity and thus larger programs.
We have implemented a simple assembly translator from
known ISA and a basic compiler from LLVM-IR that has
been demonstrated to work effectively for basic programs.
This work poses the basis for the devising of other ISA by
considering the co-design of compiler and hardware towards
more aggressive area minimization and lower complexity to
favor, possibly, sustainability in silicon implementation.
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