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Abstract: Large-scale, ordered magnetic fields in several astrophysical sources are supposed to be
originated, and maintained against dissipation, by the combined amplifying action of rotation and
small-scale turbulence. For instance, in the solar interior, the so-called α−Ω mean-field dynamo
is known to be responsible for the observed 22-years magnetic cycle. Similar mechanisms could
operate in more extreme environments, like proto neutron stars and accretion disks around black
holes, for which the physical modelling needs to be translated from the regime of magnetohydrody-
namics (MHD) and Newtonian gravity to that of a plasma in a general relativistic curved spacetime
(GRMHD). Here we review the theory behind the mean field dynamo in GRMHD, the strategies
for the implementation of the relevant equations in numerical conservative schemes, and we show
the most important applications to the mentioned astrophysical compact objects obtained by our
group in Florence. We also present novel results, such as three-dimensional GRMHD simulations of
accretion disks with dynamo and the application of our dynamo model to a super massive neutron
star, remnant of a binary neutron star merger as obtained from full numerical relativity simulations.

Keywords: magnetic fields; magnetohydrodynamics (MHD); dynamo; neutron stars; accretion disks;
relativistic processes; numerical methods

1. Introduction

The baryonic matter in the universe is mainly found in the form of ionized gas, mostly
protons and electrons forming an electrically conducting fluid capable of interacting with
magnetic fields, either external or self-generated by the currents of the streaming particles.
This state is that of a plasma, and the physical modeling on the large, fluid scales is named
magnetohydrodynamics (MHD), the simplest but usually still a perfectly adequate one
when dealing with astrophysical sources. When the conditions of the plasma are extreme,
like bulk, kinetic, or Alfvén velocities close to the speed of light, and when dealing with
compact objects where the Newtonian gravity must be replaced by Einstein’s theory, the
appropriate regime is rather that of general relativistic magnetohydrodynamics (GRMHD).

A long-standing problem in astrophysics has always been the origin of large-scale
ordered magnetic fields, as required to explain for instance jet launching from young stellar
objects (YSOs), microquasars, active galactic nuclei (AGNs), or the large coronal flares from
the Sun, stars, and even magnetars (where B ∼ 1015 G). Given that the origin of initial seed
fields cannot be explained within the MHD regime, kinetic effects have been proposed
for primordial cosmic fields, in particular battery-like mechanisms where separation of
charges induce the presence of electric fields produced by spatial derivatives of the electron
pressure in the generalized Ohm’s law [1], or plasma instabilities driven by anisotropies
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in velocity space or differentially streaming species [2,3]. Once a seed magnetic field is
created, MHD-like mechanisms are needed to amplify the field up to the high values often
observed, even to equipartition or more, and to sustain the field in time against dissipation.
These mechanisms are known as dynamo [4,5]. The first application to astrophysics was
the prediction of the presence of oscillatory magnetic modes in the Sun (resembling the
solar cycle) induced by differential rotation and small-scale cyclonic motions [6], following
previous results about Earth’s magnetism in the liquid core [7]. This approach overcomes
the difficulties posed by the so-called Cowling’s anti-dynamo theorem [8], according to
which an MHD dynamo cannot operate in axisymmetric plasma configurations.

The breakthrough in dynamo theory occurred in the 1960s, when the mean-field
dynamo statistical approach was proposed [9–11], based on the decomposition of MHD
quantities into large-scale mean values and stochastic turbulent fluctuations, given that
turbulence is ubiquitously present in the astrophysical plasmas, characterized by extremely
high Reynolds numbers [12]. The key assumption in turbulent dynamo theory is that the
mean of the quadratic term of velocity and magnetic field fluctuations in the generalized
Ohm’s law, which is essentially an electromotive force, is proportional to the mean magnetic
field B (and to its derivatives J ∝ ∇× B), thus reaching a mean-field closure of the MHD
equations. In its simplest form, the electric field E′ measured in the fluid’s rest frame, or
comoving frame, can be written as

< δv× δB >= αtB− βt J ⇒ E′ ≡ E + v× B = −αtB + ηJ, (1)

where the αt and βt terms depend on the turbulent properties (namely fluid helicity, energy,
and correlation time) and η comprises both Ohmic and turbulent resistivity coefficients.
Assuming uniform resistivity, the induction equation for the magnetic field thus becomes

∂tB = ∇× (v× B + αtB) + η∇2B. (2)

In the simplest case of a static plasma and uniform dynamo coefficient, a magnetic field
B ∼ exp (ikx + γt) can grow exponentially provided γ = αtk− ηk2 > 0, where k is the typ-
ical spatial wave number (the so-called α-effect). In non-static axisymmetric configurations,
the mutual excitation of toroidal and poloidal modes may occur in differentially rotating
systems like stellar interiors or accretion disks. This is the α−Ω dynamo mechanism, a
cycle in which a toroidal mean flow creates a toroidal magnetic field out of a poloidal one
(the Ω-effect), and small-scale helical motions convert a toroidal field back into a poloidal
one (the α-effect), as first suggested by Parker [6]. For static configurations or uniform
rotators, α2 dynamos are also possible. The main problem of mean-field dynamo theory
is how to close the system, that is how to derive the coefficients αt and βt in terms of the
turbulent properties [13], and how to generate turbulence itself.

A promising (ideal MHD) mechanism to amplify directly the magnetic field and to
induce the turbulence required for the mean-field dynamo to operate, hence amplifying
the field even further, is the magneto-rotational instability (MRI) [14–16], also invoked to
explain outward angular momentum transport in accretion disks [17]. Dynamo effects
based on MRI-driven turbulence have been studied intensively by means of both local
and global direct 3D MHD simulations, without the need to resort to a mean-field closure.
This has been done mainly in the context of accretion disks, for which it is shown that
indeed the shearing due to differential rotation induces a turbulent dynamo capable of
amplifying and sustaining magnetic fields against dissipation [18–24]. However, direct
3D simulations are computationally expensive and there is no hope to adequately resolve
both large scales (the whole disk) and the turbulent cascade down to realistic dissipation
scales. This is why the mean-field dynamo approach, working even in 2D axisymmetric
configurations, is often preferred, especially for global simulations in classical MHD, but is
also more computationally demanding in the relativistic case.

Mean-field dynamo models for relativistic plasmas in strong gravity fields, where
GRMHD applies, have been proposed to explain the origin of large-scale magnetic fields
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in accretion thick disks around black holes [25–28], see also [29,30] for the contribution of
dynamo action to jet launching in thin disks systems, and in (proto) neutron stars, where
dynamo could explain the formation of magnetar-like magnetic fields [31]. The theoretical
framework is based on the extension of the classical mean-field assumption in Ohm’s law,
now written in four-dimensional covariant form and in the comoving frame of the plasma,
namely [32,33]

eµ = ξbµ + η jµ. (3)

Here eµ, bµ, and jµ are the electric field, magnetic field, and electric conduction current
density as measured in the comoving frame, and the two coefficients ξ = −αt and η are
again assumed to be scalars and not tensors for simplicity, as in the classical case. The
ideal MHD limit is obtained for a vanishing resistivity or infinite electric conductivity,
correctly implying eµ = 0 in the comoving frame and extending the classical condition
E′ ≡ E + v× B = 0. Thanks to the above closure, to be rewritten in terms of the fields
in the laboratory frame, the system of resistive-dynamo GRMHD equations is complete
and can be solved (numerically) either in its fully nonlinear version or in the so-called
kinematic approximation in which the fluid configuration is fixed, and only the (linear)
Maxwell equations for the electromagnetic fields are evolved in time.

In the present paper, we illustrate the general framework for the numerical imple-
mentation of the full set of resistive-dynamo GRMHD equations in the 3 + 1 formalism,
needed for evolution with conservative schemes, and we discuss the latest developments
of applications of mean-field dynamo to the amplification of initial seed magnetic fields in
accretion disks around black holes and proto neutron stars. As far as notation is concerned,
we let c→ 1 (and 4π → 1 in the Maxwell equations), we use Greek indices for 4-vectors,
and Latin indices, or boldface notation, for spatial 3D vectors.

2. Resistive-Dynamo GRMHD Equations in 3 + 1 Form

The evolution of the hyperbolic set of GRMHD equations in time, invariably achieved
by means of numerical methods, requires replacing the covariant form by the so-called
3 + 1 splitting of space and time coordinates [34–36]. The metric of a generic spacetime
curved by gravity is usually expressed in terms of a scalar lapse function α, a spatial vector
shift vector βi, and the three-metric γij, that is

ds2 =−α2dt2 + γij (dxi+ βidt)(dxj+ βjdt), (4)

where spatial 3-D vectors and tensors are those measured by the so-called Eulerian observer,
with unit time-like vector nµ = (−α, 0) and nµ = (1/α,−βi/α), with α = 1 and βi = 0
for a flat Minkowski’s spacetime. For the description of the Eulerian formalism for ideal
GRMHD, numerical implementation, and validation in Minkowski, Schwarzschild, and
Kerr metrics, the reader is referred to the paper describing the Eulerian Conservative
High-Order (ECHO) code [37], and to its extended version (X-ECHO) [38] where the spacetime
metric terms are also evolved in time by solving Einstein equations (under the extended
conformally flat condition).

Using the above splitting for the metric, the resistive-dynamo GRMHD equations in
3 + 1 form for the evolution of the fluid and electromagnetic fields are

∂t(
√

γD) + ∂k[
√

γ(αDvk − βkD)] = 0,

∂t(
√

γSi) + ∂k[
√

γ(αSk
i − βkSi)] =

√
γ[ 1

2 αSlm∂iγlm + Sk∂iβ
k − (E + D)∂iα],

∂t(
√

γE) + ∂k[
√

γ(αSk − αDvk − βkE)] = √γ(αSlmKlm − Sk∂kα), (5)

∂t(
√

γEi)− [ijk]∂j(αBk − [klm]
√

γβlEm) = −√γ(αJi − βiq),

∂t(
√

γBi) + [ijk]∂j(αEk + [klm]
√

γβl Bm) = 0.

The above GRMHD set is then a system of 11 evolution equations for the 11 con-
servative variables

√
γ[D, Si, E , Ei, Bi], as measured by the Eulerian observer. The [ijk]
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term is the 3D Levi-Civita alternating symbol. Here D = ρΓ is the mass density (Γ is
the Lorentz factor of the fluid velocity v), S = (ε + p)Γ2v + E × B the total momen-
tum density, E + D = (ε + p)Γ2 − p + uem is the total energy density and uem = 1

2 (E2 +
B2) is the electromagnetic energy density, E and B are the electric and magnetic fields,
Sij = (ε + p)Γ2vivj − EiEj − BiBj + (p + uem)γij is the total stress tensor. Moreover, ρ, ε,
and p are the proper mass density, energy density, and pressure, respectively, for which an
equation of state (EoS) of the form p = P(ρ, ε) must hold, for instance the ideal gas law
p = (γad − 1)(ε− ρ), with γad the adiabatic index. The term with the extrinsic curvature
Kij can be rewritten as

αSlmKlm = 1
2 Slm(βk∂kγlm − ∂tγlm) + Sl

m∂l β
m, (6)

with ∂tγlm = 0 for a stationary spacetime, or directly provided by the solution of Einstein
equations. Notice that the first three hydrodynamics equations contain fluxes in the
standard divergence form, while Maxwell equations are in curl form. This fact is related to
the presence of the two non-evolutionary constraints

∂k(
√

γEk) =
√

γq, ∂k(
√

γBk) = 0, (7)

and while the solenoidal constraint for B is analytically (but not numerically, especially for
shock-capturing schemes) preserved during evolution, the first relation (Gauss’s law) is
used to define the charge density q in the equation for E. For an infinitely conducting fluid
with η → 0, the relation E = −v× B holds in the relativistic case also, so that the evolution
equation for E is redundant. For a non-vanishing resistivity coefficient, the system is closed
by the 3 + 1 version of the generalized Ohm’s law Equation (3), providing the spatial
current density in the form

J = qv + η−1{Γ[E + v× B− (v · E)v]− ξ Γ[B− v× E− (v · B)v]} . (8)

Notice that the resistivity η is usually a very small (positive) number, requiring a spe-
cial numerical treatment because it leads to a stiff source term [39], whereas the coefficient
ξ responsible for the dynamo α-effect may have both signs (recall that we have defined
ξ = −αt, in order to avoid confusion with the lapse function, where we have also swapped
the sign). For the implementation of the resistive-dynamo GRMHD equations within the
numerical code ECHO, see [26,33].

3. Dynamo in Thick Disks around Kerr Black Holes

The most promising mechanism for powering the luminosity of AGNs and launch-
ing the associated powerful kiloparsec-scale jets often observed in radio is probably the
Blandford–Znajek model [40,41], requiring a substantial magnetic field continuously ac-
creted by the surrounding disk and twisted by the ergosphere of the central rotating
supermassive black hole. See [42] for a recent review on MHD modeling of AGN accretion
from the disk and jet launching. The recent radio interferometric imaging of the magnetized
plasma around the black hole of M87 by the Event Horizon Telescope (EHT) and of the
polarization properties of the emission [43,44] seem to confirm the scenario arising from
theoretical models and GRMHD simulations of accretion from thick disks in Kerr metric,
either in the so-called SANE (Standard And Normal Evolution) or MAD (Magnetically
Arrested Disk) accretion regimes [45,46]. In these models, an initial field made of poloidal
loops with a magnetization of σ ∼ 1% and pressure perturbations are able to trigger MRI
and thus to induce accretion onto the rotating black hole. This typically occurs from the
inner cusp of the disk. At the same time, a conical region of evacuated plasma is realized in
the polar regions, where magnetically dominated outflows are present, likely to drive jets
further out.

However, we can think to a more agnostic situation in which the disk is initially
threaded by a negligible magnetic field with a simpler morphology, even purely toroidal,
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and no perturbations. In the presence of (unresolved) small-scale turbulence and differential
rotation, the mechanism of α−Ω mean-field dynamo could operate and create the necessary
level of magnetization in the disk in order to trigger MRI and accretion. An important
aspect is also that the mean-field mechanism operates even in axisymmetric configurations,
so there is no need to resort to expensive 3D GRMHD simulations in order to produce a
turbulent dynamo action that amplifies the field further. For instance, global simulations
have been recently performed by [47] with an extremely high resolution in order to capture
MRI and the turbulent dynamo actions, though the initial magnetization is still assumed
rather high. On the contrary, our mean-field approach requires modest computational
resources and allows an initialization of the disk with extremely low magnetization levels.

This kind of model has been first applied to thick disks in the kinematic regime (that
is by evolving in time only the electromagnetic field, maintaining the background fluid
structure of the initial equilibrium) by Bugli et al. [25], where it is shown that depending on
the combination of the ξ and η parameters, axisymmetric simulations show an exponential
growth of both the toroidal and magnetic field components, with magnetic islands that
grow periodically and migrate towards the pole or the equator, similarly to the solar case,
according to the sign of the α-dynamo parameter ξ.

The fully nonlinear case has been investigated by Tomei et al. [26,27], in particular in
the latter paper where the same disk setup and diagnostic tools employed for EHT-like
simulations [45] are used, with a Kerr spin parameter of the black hole of a = 0.9375 and
the same structure of the disk (that appropriate for a SANE-type evolution), the main
difference being that the initial magnetic field is not a substantial poloidal field as in the
simulations for EHT but rather a simpler toroidal seed field with σ ∼ 10−6. In spite of this,
the dynamo term is able to grow all field components exponentially inside the disk and to
trigger accretion onto the black hole, basically mimicking or even replacing the role of MRI.

The creation of a poloidal component within the disk begins from the earliest times,
as shown in Figure 1, where the temporal evolution of the disk-averaged radial magnetic
field (that measured in the frame comoving with the fluid) is plotted. Notice a saturation
effect for tKS > 3000 M (time in geometrized units, adopting the 3 + 1 Kerr–Schild horizon-
penetrating coordinates for the spacetime metric). When the field is too high, MRI drives
the accretion very efficiently and the process of dynamo apparently is quenched, while for
lower ξ values the dynamo operates for a longer time and drives a smoother accretion.

Figure 1. Time evolution of disk-averaged |br| for each model. The maximum values of resistivity η

and dynamo term ξ are indicated in the label (reprinted from [27]).

While all quantities show a turbulent behavior in the disk, to better appreciate the
spatial dependance we plot in Figure 2 time averages in the interval [5000 M, 10,000 M],
when an almost steady state is achieved for the lower resistivity case (stronger α and
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especially Ω dynamo action). Notice the denser and less magnetized disk equatorial
region with accretion from a cusp, the low-density Poynting-dominated plasma in the
polar funnel, and the the jet sheath separating these regions where the material outflow
is more important. The same color scales used in the EHT code-comparison project [45]
are adopted for ease of comparison. Notice that basically our axisymmetric simulations
with dynamo action are able to reproduce most of the physics of the 3D runs starting with
a much higher magnetic field. A nearly equipartition field is found in both cases, also
providing a comparable synchrotron emission from the disk (further details in [27]).

Figure 2. Time-averaged data for rest-mass density, inverse plasma β, and magnetization σ for the
three runs with maximum resistivity η of 10−4 (reprinted from [27]).

In spite of the promising axisymmetric results concerning the dynamo action, it
is known that 3D simulations are able to capture additional physics like azimuthally-
dependent fluid instabilities [48]. A novel set of 3D runs with a similar setup has been
recently performed, and here we report some preliminary results. Differently from [27]
where ξ0 > 0, leading to a migration of the dynamo-created magnetic fields towards the
poles (we name this as the outgoing case), we also test here the opposite case (incoming,
ξ0 < 0), with an expected solar-like behavior of migration towards the equator. Moreover,



Fluids 2022, 7, 87 7 of 15

studies of 3D MHD turbulence in stratified shearing-box models [49] indicate that the
turbulent resistivity coefficient may be higher at the disk’s boundaries rather than at the
center, where density peaks at ρc, of a factor of a few, so here we test the two possible
dependences η ∼ (ρ/ρc)±1/2. For all the four simulations we chose to have a maximum
value of the dynamo of 10−2 (in absolute value) and of 10−3 for the resistivity.

In Figure 3, the quantity b2 = bµbµ = B2 − E2 averaged on the disk is plotted for the
four possible combinations of the parameters as discussed above. The outgoing cases are
very similar, while the incoming case towards the equatorial region where the resistivity is
higher (the green curve) provides a very low field, basically even preventing the develop-
ment of MRI and accretion itself. Notice that the combination providing the strongest field
is rather that of an incoming α-dynamo towards the equator, where the resistivity is at its
minimum (the cyan curve). The corresponding precise prescription is

ξ = ξ0(ρ/ρc) cos θ, η = η0(ρ/ρc)
−1/2 (9)

with ξ0 = −10−2 and η0 = 10−4, where a threshold value of ηmax = 10−3 is applied at the
disk’s boundary and in the atmosphere. Given that the power of the dynamo action is
mainly determined by the non-dimensional numbers defined in [25,27], both proportional
to 1/η, it is clear why this combination is the best one in terms of amplifying the dynamo
against dissipation. As far as resolution is concerned, the number of grid points is 100
for the three coordinates of KS metric r, θ, and φ, and radial logarithmic stretching is
enforced to better resolve the inner region, as is also done in the axisymmetric simulations
discussed above.

Figure 3. Time evolution of the disk-averaged quantity b2 for the new 3D simulations with four
different combinations of ξ and η.

With reference to the simulation with the best parameters as discussed above, in
Figure 4 we show the equatorial and meridional cuts of the rest mass density ρ and of the
toroidal magnetic field Bφ for tKS ' 7000 M. Notice the presence in the disk of a sort of
spiral arms, anti-correlated for the two quantities, that is the field is stronger where density
and pressure are lower. These are clearly dynamo waves, as can be deduced by the change
of sign of the toroidal field of nearby arms. As it happens for sunsposts during the solar
cycle, magnetic islands are periodically created at high latitudes and then migrate towards
the equator where they appear with different polarity for each cycle (the butterfly diagram).
Very similar patterns are alsoobserved and attributed to the α−Ω mean field dynamo in
the disks of nearby galaxies [12,50,51], hence our findings have a solid background even if
for a different scenario.



Fluids 2022, 7, 87 8 of 15

Figure 4. Equatorial and meridional cuts for our new 3D reference run for tKS ' 7000 M, showing
the rest mass density ρ (above panels) and toroidal field Bφ component (lower panels).

It is interesting to measure the mass accretion rate Ṁ onto the central black hole and
the parameter φ = ΦB/

√
Ṁ, where ΦB is the advected magnetic flux, as defined in [27,45],

for our 3D reference run. In Figure 5, the two quantities are plotted as a function of time.
The behavior is typical of the SANE regime (we recall that the MAD regime is defined
when φ reaches values around 15), so we believe that in order to reach such a regime the
choice of the initial fluid structure of the disk may be important (even dimensions are very
different), and we leave the investigation of this aspect to future work.

Figure 5. Time evolution of the disk-averaged Ṁ and φ = ΦB/
√

Ṁ for our new 3D reference run.

In [26], the Shakura–Sunyaev α-disk parameter, due to fluid and magnetic fluctuations,
was calculated by averaging over the whole disk, obtaining reasonable values between 0.01
and 0.1, which is the desired number often invoked to reproduce turbulence in accretion
disks. Such simulations were axisymmetric. Here we repeat the calculation in 3D and
the results are reported in Figure 6 as a function of time. Again, in spite of a rather low
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resolution, results are encouraging, meaning that the full 3D dynamo behaves similarly to
the axisymmetric one, at least for this aspect.

Figure 6. Time evolution of the disk-averaged α-disk coefficient for our new 3D reference run.

The presence of spiral dynamo waves, characteristic of the 3D run presented here,
may have an impact on other crucial aspects such as the accretion regime, as discussed
above, and on the emission of Poynting-flux dominated jets in the funnel, but we leave the
investigation of these important aspects to future work.

4. Dynamo in Proto Neutron Stars and Proto Magnetars

The release of spin-down energy by a fast-rotating magnetar or by dissipation of
its huge coronal fields may explain several classes of transient high-energy events, like
gamma ray bursts (GRBs) [52] and soft gamma repeaters (SGRs) [53,54]. However, the
magnetic fields involved are so large that they must be created by some sort of internal
dynamo [55,56] in order to go beyond the standard pulsar values and to reach the required
values of at least B ∼ 1015−16 G.

The (kinematic) version of our model for the mean-field dynamo was recently applied
by Franceschetti et al. [31] on top of a (proto) NS equilibrium model, which is an axisymmet-
ric GRMHD configuration with differential rotation and polytropic equation of state built
with the XNS code. This is a freely downloadable numerical tool for magnetized relativistic
stars in a general relativistic metric under the conformally flat condition, including mixed
field components, uniform or differential rotation, analytical (polytropic), and more realistic
(tabulated) equations of state, and even extended theories of gravity, namely scalar ten-
sor theories [38,57–59]. The official website is at www.arcetri.inaf.it/science/ahead/XNS
(accessed on 15 February 2022).

The initial magnetic field is purely toroidal with a maximum value of B ' 1012 G,
appropriate for a standard NS, to be amplified by the dynamo action up to magnetar
values, say B ' 1015−16 G. While the kinematic dynamo is expected to work without upper
bounds, we prefer to limit the growth of the magnetic field to a threshold well below
equipartition, when back reaction of the fluid should be included (say B ' 1017−18 G). In
order to achieve this and to safely remain in the kinematic regime, a local quenching in
the dynamo coefficient that basically limits the field to values B ∼ 1015 G is applied. In
order to enhance the effect of rotation, a fast spinning star with maximum Ω ' 1 ms−1 is
chosen to mimic a newly born millisecond period proto-magnetar, known to be a possible
central engine for long-duration GRBs [52]. Obviously we are far from the rotation periods
of standard magnetars, which are known to be much longer, of a few seconds, as measured
by observations of the pulsating tail of giant flares from SGRs [60]).

www.arcetri.inaf.it/science/ahead/XNS
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Moreover, we limit the presence of dynamo in the region 0.4 < r/R < 1, if R is
the radius of the NS, since the turbulence responsible for the mean-field action may be
enhanced there due to the development of the neutron finger instability [61,62], but also
convection [63] or MRI [64]. For further details, the reader is referred to [31]. Even higher
magnetic fields could be reached in the stellar core if different prescriptions for the dynamo
coefficient were used. In that case, consistent equations of state dependent on the magnetic
field should be employed [65,66].

In Figure 7, the growth in time of the two magnetic field components (averaged values)
is shown in the left panel. Notice that the poloidal one is created from an initial vanishing
value and that in a few milliseconds the quenching values are reached, as expected. In
the plot on the right, the magnetic fields components for t = 4 ms are shown, where we
can notice a sort of wavy structure and a growth limited to the regions where the α−Ω
dynamo action is stronger.

Figure 7. GRMHD dynamo amplification of poloidal and toroidal field components in a differentially
rotating, polytropic neutron star (reprinted from [31]).

The type of model described above is relevant for isolated (proto) neutron stars and
magnetars, formed by core-collapse during supernova explosions and maybe long-duration
GRBs, as discussed above.

However, more interesting situations can be investigated. The first multimessenger
observation of a binary neutron star (BNS) merger in 2017 [67] has confirmed that these
systems can power both short GRBs [68,69] and kilonova emission. The 2017 event most
likely resulted in the formation of a meta-stable NS remnant that eventually collapsed into
a BH, and numerous groups are currently investigating whether such a meta-stable object
could have launched the short GRB jet or whether its mass ejection could have powered at
least the early part of the observed kilonova signal [70–76].

The lifetime of these objects may be short, but a meta-stable and approximately
axisymmetric configuration is often observed in numerical simulations of BNS mergers,
supported against direct collapse to a black hole by strong (differential) rotation and thermal
gradients, for at least 10 ms. The rotation profile Ω(r) of such remnants can be very different
from that of a standard neutron star [77–79], showing a shallow behavior with Ω(r) ' Ωc
near the center, a rapid increase towards Ωmax > Ωc, and then a Keplerian-like decay for
larger radii. Two families of analytical solutions [80] with the desired properties have been
recently implemented in our XNS code [81].

Here we use hydrodynamical data from a BNS 3D simulation (with evolving space-
times) by R. Ciolfi and J. Kalinani, of the type described in [78], where a meta-stable
super-massive neutron star (SMNS) remnant of Mtot ' 2.78M� has formed, with a central
rotation rate of Ωc = 0.72 kHz and a maximum rotation rate of Ωmax = 1.60 kHz, at a
distance from the center of about r ' 8 km. In Figure 8, the rotation frequency is plotted as
a function of the radius (left panel, after averaging in the azimuthal direction) and in the
x− y orbital plane, notice the particular shape of ν ≡ Ω, typical of this scenario.
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Figure 8. Rotation frequency ν ≡ Ω of the SMNS remnant obtained from BNS merger simulations.

After performing an azimuthal average of all 3-D quantities and mapping to spherical-
like coordinates, including the metric terms, an initial configuration for the GRMHD ECHO
code is found. In order to see whether the (kinematic) dynamo can also develop in this
SMNS configuration, a seed toroidal field is added and the following prescription for the
dynamo and resistivity coefficients is used

ξ = ξ0(ρ/ρc) sin 2θ, η = η0(ρ/ρc) (10)

with central values ξ0 = 10−2 and η0 = 10−3, where ρc is the central density. The depen-
dence on the polar angle θ has been chosen in order to have a vanishing α-dynamo near
the polar axis and near the equator, where the sign changes. As usual, in a few rotational
periods the magnetic field grows exponentially from the typical values of a standard NS
before merging (our initial toroidal field, dynamically negligible) up to magnetar values,
with an upper threshold artificially set by a quenching term. The time averaged field
components and the corresponding meridional maps at a time near the maximum can be
seen in Figure 9.

Figure 9. GRMHD dynamo amplification of poloidal and toroidal field components in a differentially
rotating SMNS remnant obtained from a simulation of a BNS merger.

Again, even higher fields could be reached by simply changing the quenching thresh-
old, but we prefer to remain safely in the appropriate kinematic regime. Fields beyond
B ' 1017 G are expected for millisecond rotators if the dynamo can operate for tens of
milliseconds [55], and even less would be necessary for the parameters chosen in our
models. Moreover, notice that the toroidal and poloidal field components grow together
with similar values, in both types of runs considered here. In stable equilibrium GRMHD
models of magnetars with mixed polarities (the so-called twisted torus configurations), the
poloidal component is instead expected to be dominant [82], though particular cases with
similar maximum values seem to be actually possible [83]. However, enhanced rotation in
the core could easily lead to a stronger winding (Ω effect) of the toroidal component, which
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may even become the dominant one. This is expected to have a strong influence in similar
contexts, like that of core-collapse supernovae [84] (see also [85,86] for recent simulations
with complex magnetic structures).

The growth rates obviously depend on the characteristic dynamo numbers [25,31],
and in any case these are related to the properties of the (unresolved) turbulence, like
the correlation time, and not on the period of rotation. Depending on the choice of the
parameters, the magnetic field growth can be the usual one due to both rotation and
dynamo effect (the α−Ω case), or just due to the nonlinear α2 effect. The case shown here
is at the threshold of the two mentioned regimes.

5. Summary and Conclusions

In the present paper we have reviewed the work by the group in Florence on GRMHD
dynamos. First, the appropriate formalism is discussed, from the covariant form of Ohm’s
law proposed by Bucciantini and Del Zanna [32] to the full 3+ 1 numerical implementation
in shock capturing schemes detailed in [26,33], and in the ECHO code in particular [37].

The application of the mean-field GRMHD dynamo to thick accretion disks around
rotating black holes in the context of EHT observations is then discussed, showing the main
results in axisymmetry by [27], here extended for the first time to 3D. We see that when the
α term is chosen such to lead to magnetic field migration converging towards the disk’s
equator, and resistivity is lower there, magnetized spiral arms of alternating polarity are
continuously created and advected, creating a situation resembling what was observed in
nearby galaxies. The regime found is that typical of the so-called SANE accretion. As in
the previous axisymmetric case, we leave the implementation of our dynamo model to the
fluid disk’s structure, typically leading to MAD accretion (when threaded by substantial
poloidal fields) for future investigation.

A mean-field dynamo model in GRMHD has been also invoked to enhance a standard
pulsar-type magnetic field up to magnetar values in proto neutron stars [31]. Here we
report the main results of axisymmetric kinematic simulations of the growth of the toroidal
and poloidal magnetic field components due to the (unresolved) turbulent motions in the
outer regions of a proto neutron star, modeled using a fluid equilibrium found with our
XNS code [38,57,81]. Moreover, we show here for the first time results of the application of
the dynamo action to a realistic super-massive neutron star obtained from a full numerical
relativity simulation of a binary neutron star merger event, kindly provided by R. Ciolfi
and J. Kalinani. The growth of the field occurs in a few millisecond in the regions where
the gradients of the differential rotation is stronger, as expected. We leave the investigation
of both a deeper parameter study and above all of the fully dynamical scenario, in which
dynamo action may interact with fluid an MHD instabilities, to future works.

Obviously, the coefficients providing dissipation and amplification of magnetic fields,
namely η and α (ξ in our notation), and all other tensorial components when the hypothesis
of isotropic response is relaxed, should be computed on top of extremely high resolution
3D simulations where MHD turbulence can fully develop. These are impossible to achieve
in global setups, while there are several studies in shearing box (stratified) MHD models,
e.g., [49]. Typical expected values are of the order of α ∼ 0.01HΩ, where H is the pressure
scale-height and Ω the mean rotation rate (for a Keplerian rotation law). Such scaling
should be approximately valid in GRMHD also, in both cases of thick accretion disks and
proton neutron stars (especially in the external layers where rotation is Keplerian-like, even
for BNS remnants).

Concluding, we believe that the GRMHD mean field dynamo is an essential ingredient
that should be considered whenever rotating configurations and turbulent plasmas are
present. The growth of the magnetic field may be efficient against dissipation, with rates
depending on (unresolved) turbulent properties rather than on rotation itself, and this
result may help to explain many unresolved important issues in high-energy astrophysics.
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