
SoftwareX 15 (2021) 100793

P
N
U

a
u
I
c
g
t
t
p
B
r
a
w
t

r

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

vkpolybench: A crossplatformVulkan Compute port of the
olyBench/GPU benchmark suite
icola Capodieci ∗, Roberto Cavicchioli

niversity of Modena and Reggio Emilia, Department of Physics, Informatics and Mathematics, Via Giuseppe Campi, 213/a, 41125 Modena, Italy

a r t i c l e i n f o

Article history:
Received 9 March 2020
Received in revised form 22 July 2021
Accepted 6 August 2021

Keywords:
GP-GPU computing
Heterogeneous architectures
High performance computing

a b s t r a c t

PolyBench is a well-known set of benchmarks characterized by embarrassingly parallel kernels able
to run on Graphic Processing Units (GPUs). While Polybench GPU kernels leverage well-established
GP-GPU APIs such as CUDA and OpenCL, in this paper we present vkpolybench, a crossplatform
PolyBench/GPU port built on top of Vulkan. Vulkan is the recently released Khronos standard for
heterogeneous CPU–GPU computing that is gaining significant traction lately. Compared to CUDA and
OpenCL, the Vulkan API improves GPU utilization while reducing CPU overheads.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_86
Legal Code Licence BSD-3-Clause
Code versioning system used git
Software code languages, tools, and services used C++, Vulkan, GLSL
Compilation requirements, operating environments & dependencies Linux x86_64 and ARM v8, Windows 10 x86_64, Android 9 ARM v8.
If available Link to developer documentation/manual See README.md in the repo.
Support email for questions nicola.capodieci@unimore.it

1. Motivation and significance

The original version of PolyBench [1] was released 10 years
go and since then it is becoming one of the most commonly
sed reference set of benchmarks for compiler optimizations.
ts benchmarks are characterized by highly memory intensive
omputations aimed at tackling common problems in linear al-
ebra, statistics and numeric solvers, hence becoming appetizing
o a wide variety of applications and research domains. In addi-
ion to compiler optimizations [2], other research domains are
erformance [3] and power consumption modelling [4]. Poly-
ench was later renamed PolyBench/C and due to the embar-
assingly parallel nature of all of its constituent benchmarks,
GPU-accelerated version of PolyBench (PolyBench/GPU) [5,6]
as released in 2012, providing GPU benchmark implementa-
ions that leverages well-established General Purpose computing

∗ Corresponding author.
E-mail addresses: nicola.capodieci@unimore.it (Nicola Capodieci),

oberto.cavicchioli@unimore.it (Roberto Cavicchioli).

for Graphic Processing Unit (GP-GPU) Application Programming
Interfaces (APIs). GP-GPU APIs in PolyBench/GPU 1.0 are: CUDA
(Compute Unified Device Architecture) [7] and OpenCL (Open
Computing Language) [8]. CUDA is a widely adopted NVIDIA
proprietary standard for heterogeneous GP-GPU programming,
while OpenCL is an open standard for heterogeneous comput-
ing for massively parallel architectures, which is maintained by
the Khronos Group.1 Exploiting GP-GPU acceleration in mobile
and embedded devices is sometimes hindered by the limited
or absent support for CUDA and OpenCL. CUDA’s proprietary
and closed nature implies that a CUDA application can only run
on NVIDIA GPU devices. On the contrary, OpenCL’s open nature
allows application developers to target generic accelerators other
than NVIDIA GPUs. However, a recent market analysis [9] shows
that the actual support of OpenCL in mobile systems is limited to
a significantly low percentage of commercially available devices.
In order to improve the portability of the PolyBench benchmark
suite, we therefore present vkpolybench, a port of PolyBench/GPU

1 https://www.khronos.org/.
ttps://doi.org/10.1016/j.softx.2021.100793
352-7110/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100793
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100793&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_86
mailto:nicola.capodieci@unimore.it
mailto:nicola.capodieci@unimore.it
mailto:roberto.cavicchioli@unimore.it
https://www.khronos.org/
https://doi.org/10.1016/j.softx.2021.100793
http://creativecommons.org/licenses/by/4.0/

Nicola Capodieci and Roberto Cavicchioli SoftwareX 15 (2021) 100793

b
l
i
A
p
w
t
c
i
d
c
t
a

i
p
d
t
t
m
t
b
p
n
t
P
t
m
e
n

2

p
c
a
m
f
c
k
a
t
c

(
V
k
c
d
c

s
a
i
f
i

o
a
b

uilt on top of the Vulkan Compute pipeline. Vulkan [10] is the
ast recently released open standard for GPU programming. Even
f Vulkan has been proposed as both a graphics and a compute
PI, the Vulkan model is mostly agnostic to which of these two
ipelines will be used in an application. Vulkan promises to be
idely supported across different hardware and operating sys-
ems and, compared to OpenCL and CUDA, it enables a much finer
ontrol of CPU–GPU interactions. Vulkan achieves this by expos-
ng a thinner layer of abstraction between the application and the
evice driver aiming at dramatically reducing CPU activity during
ommands submission. Other advantages of Vulkan with respect
o OpenCL is the support for device-side advanced features such
s tensor operations for applications in neural network inference.
Due to its recent release, only one Vulkan Compute benchmark

s currently available as an open-source contribution: VCom-
uteBench [11]. VComputeBench focuses on mobile and embed-
ed devices by providing a Vulkan port of a small subset of
he Rodinia [12] benchmark suite. Rather than being a competi-
or of VComputeBench, vkpolybench extends and it is comple-
entary to VComputeBench: we provide a Vulkan port of all

he 15 benchmarks of the original version of PolyBench/GPU to
e exploited in a wider variety of mobile, embedded and HPC
latforms. Moreover, Rodinia and PolyBench suites feature sig-
ificantly different compute workloads, as the former is known
o be characterized by compute intensive operations, whereas
olyBench kernels are known to feature a much higher memory-
o-compute ratio [13,14]. We also highlight that the vkpolybench
ain module (vkcomp) significantly simplifies access to the oth-
rwise extremely complex Vulkan API, so to minimize the effort
eeded for porting or extending additional compute benchmarks.

. Software description

Compared to CUDA and OpenCL, implementing a Vulkan ap-
lication is a significantly harder task [11,15–17]: the additional
ontrol over the thin driver layer exploited by the Vulkan API has
considerable cost in implementation complexity due to a much
ore involved coding style. Nevertheless, vkpolybench closely

ollows the typical blueprint of a heterogeneous CPU–GPU appli-
ation which usually consists of the CPU (host) compiling a GPU
ernel, orchestrate data movements from host to GPU (device)
nd dispatching compute kernels. In a Vulkan enabled applica-
ion additional steps are needed: namely, pipelines’ creation and
ommand buffer recording.
A pipeline is a pre-compiled description for compute kernels

also known in Vulkan terminology as compute shaders). Within a
ulkan pipeline the application developer is able to bind to each
ernel its input and output data buffers as well as the launch
onfiguration. In GP-GPU programming a launch configuration
escribes the degree of parallelism in which the work must be
omputed over a grid of parallel threads in the GPU.
Recording a command buffer means specifying in advance the

equence of commands (pipeline selection, kernel invocations
nd data buffer movements) to be submitted to the GPU. Prepar-
ng in advance pipelines and command buffers are the Vulkan
eatures responsible for the minimization of the CPU–GPU driver
nteractions during the runtime execution of the application.

In this context, vkpolybench dramatically simplifies the usage
f all of these Vulkan-specific artefacts so to be able to provide
clean, extensible and faithful port of all the 15 constituent
enchmarks of the PolyBench/GPU 1.0 suite.

2.1. Software architecture

The software blueprint that characterizes vkpolybench is de-
picted in Fig. 1.

vkcomp is the core module within vkpolybench. It is divided
into three sub-modules: (1) Vulkan Compute Interface, (2) debug
and validation layers and (3) Shader Compiler interface.

The Vulkan Compute Interface is responsible for the creation of
the Vulkan context, which itself manages the allocations for data,
command buffers and pipeline state objects. It acts as a library
to the compute pipeline of the Vulkan API that facilitates setting
up all the necessary constructs able to transparently handling
all the complex software artefacts we briefly summarized in the
previous sections. A more in depth explanation can be found
in [16] and [17].

The sub-module for the Debug and Validation layers exploits
Vulkan’s layer-based mechanism for intercepting all or any sub-
set of the API entry points, so to provide a custom level of
debugging and validation for the benchmarks. The shader mod-
ule compiler interface enables the compilation of binary Vulkan
shader modules starting from compute shaders in SPIR-V [18]
(Standard Portable Intermediate Representation) binary format to
GLSL [19] compute shaders. The former is natively understood by
the Vulkan API, but it is more of an intermediate format rather
than a development language. On the other hand, being similar
to both CUDA and OpenCL kernel language, GLSL is the language
of choice for the developers of device code. In order to translate
a GLSL kernel (.comp file) into a SPIR-V binary file (.spv file) the
glslc2 executable is used.

This executable and the Debug & Validation layers definitions
are installed as part of the only vkpolybench external dependency,
the LunarG Vulkan SDK.3

The benchmarks macro-module contains the Vulkan imple-
mentation of the 15 constituent benchmarks of the PolyBench
suite and the functions for timing measurements. For each bench-
mark, this sub-module provides for the single core CPU reference
implementation, the Vulkan Host Code and the Vulkan device code.

The single core CPU reference is the baseline implementation
of the compute operations of each benchmark. It is identical to
the PolyBench/C original version and it is used to provide both a
timing baseline comparison with respect to the GPU accelerated
version and a sanity check.

The Vulkan Host Code sub-module exploits the vkcomp inter-
face to implement the steps needed to compile a GLSL shader
for the specific benchmark, orchestrate data movements between
host and device and launch the GPU kernels.

The Vulkan Device Code sub-module contains, for each bench-
mark, the GLSL code for the device compute kernel(s). Kernels’
parameters, such as data types, and problem size are shared in a
host and device common header file. The GLSL code implemen-
tation is a line-by-line translation from the CUDA kernels taken
from PolyBench/GPU 1.0.

2.2. Software functionalities

Cross-compatibility: starting from the original GNU/Linux-
only PolyBench/GPU 1.0 implementation, vkpolybench runs on
every major combination of operating system and hardware plat-
form, provided that a functioning Vulkan driver is made available
by the device vendor. This includes most, if not all the recent
x86 and ARM-based processors coupled with both discrete and
integrated GPU devices for three most commonly installed Op-
erating Systems (Microsoft Windows, Linux and Android based

2 Described in https://github.com/google/shaderc/tree/master/glslc.
3 Available at https://www.lunarg.com/vulkan-sdk/.
2

https://github.com/google/shaderc/tree/master/glslc
https://www.lunarg.com/vulkan-sdk/

Nicola Capodieci and Roberto Cavicchioli SoftwareX 15 (2021) 100793

c
b
c
b
b
t

b
e
a
w
o
i

3

t
A
w
v
t
p
L
v
t
e
s
t
k
f
b
b
i

Fig. 1. Software architecture and constituent modules in vkpolybench.

Table 1
vkpolybench list of parameters.
Parameter Defined in Description

GLSL_TO_SPV_UPDATE_COMPILATION_CHECK vkcomp/VulkanCompute.h If .spv files are already present and updated to
the last .comp modification, comp to spv
binary
compilation phase is skipped

REMOVE_SPV_AFTER_COMPILATION vkcomp/VulkanCompute.h Will erase generated .spv from disc

DEBUG_VK_ENABLED vkcomp/VulkanCompute.h Enables Vulkan Debug and Validation layers

WARM_UP_RUN Benchmark src file (.cpp) A warmup run for GPU kernels is executed

PERCENT_DIFF_ERROR_THRESHOLD Benchmark src file (.cpp) Defines the error threshold for non-matching
CPU–GPU results during sanity checks.

DIM_THREAD_BLOCK_X or _Y Benchmark src file (.cpp) The GPU kernel thread count over the X and Y
dimension on the launch configuration

distributions). A list of all the tested systems is presented in the
vkpolybench documentation.

Benchmarking: vkpolybench implements all the 15
onstituent benchmarks of the PolyBench/GPU 1.0. For all the
enchmarks, tuning the test parameters for host and device
ode (e.g. problem size, constants and data types) can be done
y modifying the macros defined in the header files for each
enchmark. Benchmarks’ parameter can be tuned by modifying
he macros listed in Table 1.

Extensibility: vkpolybench’s wrapper module (vkcomp) has
een engineered to drastically simplify access to an otherwise
xtremely complex API (Vulkan). As a consequence of that, cre-
ting a new benchmark to be added to the suite is as practical as
riting a CUDA or OpenCL benchmark implementation from the
riginal PolyBench. In the next section an example for this feature
s provided.

. Illustrative examples: adding a benchmark

Let us suppose to add a xAXPY kernel as an added benchmark
o vkpolybench. As taken from the list of BLAS [20] (Basic Linear
lgebra Subprograms), xAXPY stands for x-precision A · X + Y ,
ith A being a scalar constant, and X and Y being N dimensional
ectors. In a header file, we define the constants A and N and
he data type (i.e. float, so to benchmark a SAXPY as in single-
recision AXPY). Then, we write the GLSL kernel as shown in
isting 1. According to Listing 1, xAXPY kernel’s entry point is a
oid main() procedure. Line 20 shows how GPU threads obtain
heir ID within the X dimension on the compute grid. Its CUDA
quivalent is threadIdx.x+blockDim.x*blockIdx.x; in OpenCL one
hould write get_global_id(0). Actual computations (lines from 22
o 25) follow the same rules and semantics of a CUDA or OpenCL
ernel, with the way in which GLSL defines its input buffers (lines
rom 11 to 15) being the only difference: input buffers must
e embedded within a layout struct and each buffer must
e bound to an integer. In Listing 2 the host code for xAXPY
s presented; do note that error checking, timing measurements

and necessary safe type casting are omitted for brevity. Host-
side, the previously written GLSL kernel can be compiled with
the loadAndCompileShader method of a VulkanCompute instance
which is the core part of the vkcomp module (lines 2, 3 and
4). Input buffers X and Y are then allocated for both host and
device (lines 5 to 7). Then a pipeline bound to the xAXPY shader
must be created within the two methods named startCreate/-
finalizePipeline: within these methods, we indicate the launch
configuration and the kernel argument binding points (lines from
13 to 17). The launch configuration is described through a data
structure characterized by two tuples of three integer values each
(lines 10 and 11). The kernel’s arguments are bound with the
setArg method, which takes as input the buffer layout binding
integers (values 4 and 5 in lines 14 and 15). Then, delimited
by the startCreate/finalizeCommandList we record in advance the
sequences of commands to be later submitted to the GPU: specif-
ically, we orchestrate the movements between host and device of
the X and Y buffers (lines 21, 22 and 24), we select the previously
constructed pipeline (line 20) and we launch the xAXPY kernel
(line 23). Actual GPU command submission is triggered by the
submitWork method.
1 #version 450
2
3 #include " HDcommon.h "
4
5 layout(local_size_x_id = 1) in;
6 layout(local_size_y_id = 2) in;
7 layout(local_size_z_id = 3) in;
8
9 layout(std430) buffer;

10
11 layout(set=0,binding=4) buffer d_X
12 {DATA_TYPE v[];} X;
13
14 layout(set=0,binding=5) buffer d_Y
15 {DATA_TYPE v[];} Y;
16
17 void main()
18 {
19
20 uint i = gl_GlobalInvocationID.x;
3

Nicola Capodieci and Roberto Cavicchioli SoftwareX 15 (2021) 100793

4

w
i
i
u
v
a
o
e
R
h
c

a
s
v
a
a
1
a
F
r

D

c
t

21
22 if(i<N)
23 Y.v[i] =
24 DATA_TYPE(A) * X.v[i]
25 + Y.v[i];
26
27 }

Listing 1: Device code (xaxpyKernel.comp)

1 //[...] from host code xaxpy.cpp
2 VulkanCompute vk(/*args*/);
3 vk.createContext();
4 vk.loadAndCompileShader(" xaxpyKernel.comp ");
5 size_t dsz = sizeof(DATA_TYPE)*N;
6 DATA_TYPE *X = vk.deviceSideAllocation(dsz);
7 DATA_TYPE *Y = vk.deviceSideAllocation(dsz);
8 //init buffers X and Y from host [...]
9

10 ComputeWorkDistribution_t block(128,1,1);
11 ComputeWorkDistribution_t grid(N/block.x,1,1);
12
13 vk.startCreatePipeline(" xaxpyKernel ");
14 vk.setArg(X, " xaxpyKernel " ,4);
15 vk.setArg(Y, " xaxpyKernel " ,5);
16 vk.setLaunchConfiguration(grid,block);
17 PIPELINE_HANDLE p = vk.finalizePipeline();
18
19 vk.startCreateCommandList();
20 vk.selectPipeline(p);
21 vk.synchBuffer(X,HOST_TO_DEVICE);
22 vk.synchBuffer(Y,HOST_TO_DEVICE);
23 vk.launchComputation(" xaxpyKernel ");
24 vk.synchBuffer(Y,DEVICE_TO_HOST);
25 vk.finalizeCommandList();
26
27 vk.submitWork();

Listing 2: Host code (xaxpy.cpp)

. Impact and conclusions

We believe that vkpolybench has the potential to become a
elcomed addition to the commonly used set of benchmarks

n heterogeneous computing. The reasons for this can be found
n the improved support that the Vulkan API offers to the end
sers in terms of supported platforms, the easiness in which
kpolybench can be extended despite Vulkan intrinsic complexity
nd the overall ever-increasing adoption of Vulkan as a more
pen GP-GPU solution compared to CUDA. Examples of Vulkan
arly adopters can be found in HPC literature [15], predictable
eal-Time systems [16] and power consumption modelling in
eterogeneous platforms [21]. In all these works, improvements
ompared to the current state-of-the-art have been observed.
Commercial exploitation is also a possibility for vkpolybench:

s the interest in Vulkan grows, the well-known Geekbench4
uite has recently seen its fifth major release with Vulkan support.
kpolybench maintains the same level of cross-compatibility, but
s opposed to Geekbench, our contribution is free, open-source
nd features a higher number of compute benchmarks (15 vs
1). We compared vkpolybench with the PolyBench/GPU OpenCL
nd CUDA implementations in a variety of different platforms.
or space constraints, we refer the reader to the vkpolybench git
epository in which several test results are shown.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

4 https://www.geekbench.com/blog/2019/09/geekbench-5/.

Acknowledgement

The research leading to these results has received funding
from the European Union’s Horizon 2020 Programme under the
CLASS Project (https://class-project.eu/), grant agreement
780622.

References

[1] Pouchet L-N, Grauer-Gray S. Polybench: The polyhedral benchmark suite.
2010, https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

[2] Ashouri AH, Killian W, Cavazos J, Palermo G, Silvano C. A survey
on compiler autotuning using machine learning. ACM Comput Surv
2018;51(5):1–42.

[3] Porter L, Laurenzano MA, Tiwari A, Jundt A, Ward Jr WA, Campbell R,
et al. Making the most of SMT in HPC: System-and application-level
perspectives. ACM Trans Archit Code Optim (TACO) 2015;11(4):1–26.

[4] Lopes A, Pratas F, Sousa L, Ilic A. Exploring GPU performance, power and
energy-efficiency bounds with cache-aware roofline modeling. In: 2017
IEEE international symposium on performance analysis of systems and
software. IEEE; 2017, p. 259–68.

[5] Grauer-Gray L-NPS. Polybench/GPU: implementation of PolyBench codes
for GPU processing. 2012, https://web.cse.ohio-state.edu/~pouchet.2/
software/polybench/GPU/index.html.

[6] Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J. Auto-tuning
a high-level language targeted to GPU codes. In: 2012 Innovative parallel
computing (inpar). IEEE; 2012, p. 1–10.

[7] NVIDIA. Compute unified device architecture (CUDA) programming guide
v. 10.0. 2019, http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[8] Khronos. The opencl specification v. 2.0. 2015, https://www.khronos.org/
registry/OpenCL/specs/opencl-2.0.pdf.

[9] Acosta A, Merino C, Totz J. Analysis of opencl support for mobile GPUs on
android. In: Proceedings of the international workshop on openCL. ACM;
2018, p. 27.

[10] Khronos. Vulkan 1.1.105 a specification. 2019, https://www.khronos.org/
registry/vulkan/specs/1.1-extensions/html/vkspec.html.

[11] Mammeri N, Juurlink B. Vcomputebench: A vulkan benchmark suite for
GPGPU on mobile and embedded GPUs. In: 2018 IEEE international
symposium on workload characterization. IEEE; 2018, p. 25–35.

[12] Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H, et al. Rodinia: A
benchmark suite for heterogeneous computing. In: 2009 IEEE international
symposium on workload characterization. IEEE; 2009, p. 44–54.

[13] Jia W, Shaw KA, Martonosi M. MRPB: Memory request prioritization for
massively parallel processors. In: 2014 IEEE 20th international symposium
on high performance computer architecture. IEEE; 2014, p. 272–83.

[14] Nugteren C, van den Braak G-J, Corporaal H. Future of GPGPU micro-
architectural parameters. In: 2013 Design, automation & test in europe
conference & exhibition. IEEE; 2013, p. 392–5.

[15] Mazaheri A, Schulte J, Moskewicz MW, Wolf F, Jannesari A. Enhancing the
programmability and performance portability of GPU tensor operations. In:
European conference on parallel processing. Springer; 2019, p. 213–26.

[16] Cavicchioli R, Capodieci N, Solieri M, Bertogna M. Novel methodolo-
gies for predictable CPU-to-GPU command offloading. In: 31st euromicro
conference on real-time systems. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik; 2019, p. 22:1–22.

[17] Capodieci N, Cavicchioli R, Marongiu A. A taxonomy of modern GPGPU
programming methods: On the benefits of a unified specification. IEEE
Trans Comput-Aided Des Integr Circuits Syst 2021.

[18] Khronos. Khronos SPIR-V registry. 2016, https://www.khronos.org/registry/
spir-v/#spec.

[19] Khronos. The OpenGL shading language, version 4.60.7. 2019, https://www.
khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf.

[20] Lawson CL, Hanson RJ, Kincaid DR, Krogh FT. Basic linear algebra
subprograms for fortran usage. ACM Trans Math Softw 1979;5(3):308–23.

[21] Juurlink B, Lucas J, Mammeri N, Bliss M, Keramidas G, Kokkala C, et
al. The LPGPU2 project: Low-power parallel computing on GPUs. In:
Proceedings of the 20th international workshop on software and compilers
for embedded systems, 2017, p. 76–80.
4

https://www.geekbench.com/blog/2019/09/geekbench-5/
https://class-project.eu/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb2
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb3
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb3
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb3
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb3
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb3
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb4
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/GPU/index.html
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/GPU/index.html
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/GPU/index.html
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb6
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb9
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb9
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb9
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb9
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb9
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb11
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb11
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb11
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb11
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb11
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb12
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb12
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb12
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb12
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb12
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb13
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb13
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb13
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb13
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb13
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb14
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb14
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb14
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb14
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb14
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb15
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb15
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb15
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb15
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb15
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb17
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb17
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb17
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb17
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb17
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb20
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb20
http://refhub.elsevier.com/S2352-7110(21)00099-6/sb20

	vkpolybench: A crossplatform Vulkan Compute port of the PolyBench/GPU benchmark suite
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples: adding a benchmark
	Impact and conclusions
	Declaration of competing interest
	Acknowledgement
	References

