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Monotonicity of the pruning front is proved for the Lozi map. A general expression for its 
Hausdorff dimension is also derived which takes into account multi fractal fluctuations as well. 

§ 1. Introduction 

Generating partitions play a relevant role in the understanding of chaotic prop­
erties of strange attractors. In fact, by transforming trajectories in phase space into 
sequences of symbols, the problem of characterizing a chaotic dynamics is reduced to 
that of studying the grammatical rules of the associated language, or the statistical 
mechanics of a suitable spin system. I) In the case of horseshoe-type 2-d maps, the 
generating partition is made of two elements, so that the transformation is particular­
ly appealing as each trajectory is encoded as a doubly infinite sequence of bits (Sn). 
Starting from any time position, all the future and past bits can be read as the 
expansion of two real numbers (Xf, xp) in the unit interval, so that all empty sets in 
the unit square {Xf, XpIO::;;Xf, xp::;;l} correspond to forbidden sequences. A more 
informative representation of trajectories is obtained by introducing the rand 8 
sequences defined as 

rk = (rk-I + sk)mod 2 , 

(I-I) 

for k>l, with ro=O and 80 =1. Again, such two sequences can be seen as the binary 
expansion of two numbers (r, 8) confined to the unit interval. Analogously to the (Xf, 
xp) square, holes in the (r,8) unit square correspond to forbidden sequences. 
However, at variance with the previous coding, now there is an ordering of trajec­
tories which greatly simplifies the search of forbidden words. To be more precis'e, let 
us consider a two-dimensional Henon-type map, i.e., a map which simulates the 
stretching and folding-over property that naturally appears in strongly chaotic sys­
tems like, for instance, the Duffing attractor. In particular, throughout the paper, we 
shall consider the Lozi map T(xn, Yn)=(Xn+l, Yn+l),2) where 

(1- 2) 

and a, b are positive parameters. The map (1- 2) has been shown to have strong 
statistical properties, being essentially equivalent to an Axiom-A system3

) and is 
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perhaps the simplest known example which exhibits the aforementioned Henon-type 
dynamics. We point out, however, that the difficulty of constructing a generating 
partition increases sharply when passing from the Lozi map (1· 2), where it is simply 
obtained by dividing the plane according to the y-axis, to the actual Henon map,4) 
where homoclinic tangencies have to be determined.5

),6) Anyhow, once the partition 
has been constructed, the grammar of the map can be extracted from the pruning 
jrone) To each intersection P of the unstable manifold with the line defining the 
partition (from now on such points will be referred to as 'tangencies', although for the 
Lozi map they are not such) are attributed two different vertical coordinates O+(P) 
and cL(P)=l-o+(P) (since So is undetermined), with the same horizontal coordinate 
r(P). Then, the pruning front is obtained by cutting out the rectangles {r, olr> r(P), 
oE[o-(P), o+(P)]} for all P. It has been conjectured in Ref. 7) that the union of these 
rectangles (i.e., the whole region 50 to the right of the pruning front) gives the whole 
set of forbidden sequences. In other words, if 5 i denotes the image of 50 under the 
map T i, no other empty regions besides Ui=-=5i can exist in the (r, 0) plane. This 
conjecture is the natural extension of a rigorous result holding for unimodal one­
dimensional maps (see, for instance, Ref. 8», where the past plays no role and 50 
reduces to the vertical strip {t, 01 r( C) < r< I} where r( C) is obtained from the 
kneading sequence. 

Notice that this picture can be correct only if the pruning front is monotonous in 
the half plane 0<1/2 (and so also for 0>1/2 by symmetry reasons). In the next 
section we show that this is true for the Lozi map. Monotonodty allows for a 
one-to-one correspondence between the points of the pruning front and their projec­
tion onto the r-axis. The Hausdorff dimension D(O) of this last set is estimated in § 3, 
by deriving an expression which relates D(O) to the multifractal spectrum of 
Lyapunovexponents. Such a quantity, being essentially a measure of the roughness 
of the front, is related to the growth rate of the number of new fqrbidden words for 
increasing length.9

) 

§ 2. Monotonicity of the pruning front 

In this section we show that the pruning front of the Lozi map (1· 2) is monoto­
nous. Actually we will be able to say more, namely, that the ordering of the tangen­
des along the y-axis is preserved when passing to the space of symbols (r and 0 
coordinates). 

First, let us introduce in the (x, y)-plane the ordering 

(x,y»(x',y') ifandonlyif y>y' (2·1) 

and recall that in this plane the points of the pruning front correspond to the intersec­
tions of the unstable manifold with the line defining the generating partition (the 
y-axis for the Lozi map), i.e., those points that we have called "tangendes". We shall 
prove the 

THEOREM 

Let P=(O, yp) and Q=(O, yp) be any two intersections between the unstable 
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manifold of map (1·2) and the y-axis. Then P>Q implies r(P»r(Q) and 8(P) 
>8(Q). 

Proof 

To prove that the ordering is preserved under coding we simply need to show that 

riP)=l, riQ)=O, (2·2) 

where j is the first integer such that riP)=!=- rj( Q). A similar property shall then be 
proved for the 8 -sequences. 

As long as the symbol sequences arising from the iteration of the points P and Q 
are equal, the images of the initial segment PQ are still segments of the form 
Tn(p) Tn( Q). In order to describe the evolution of these segments it is therefore 
convenient to introduce the linearization of (1' 2), 

Vn+l = (1-2sn+1)avn + bUn, Un+! = Vn , (2·3) 

where Sn+l is defined as 

2Sn+l -1 =signYn . (2'4) 

By further introducing the slope 

R =.!!..!!...-~ n- - , 
Un Vn-l 

(2'5) 

we obtain the recursion relation 

(2·6) 

Besides the information on the slope, we need to trace the evolution of the ordering 
along the segment. This can be done by introducing the variable en which is equal 
to 0 whenever Tn(p) > Tn( Q) and 1 otherwise. From the definition of Rn, it is 
immediately seen that en satisfies the recursive equation 

e =(e + 1-signRn+l) d 2 n+l n 2 mo. (2'7) 

Accordingly, the study of the ordering problem is reduced to that of the sign of the 
slope Rn. 

Equation (2·6) is invariant under the simultaneous exchange of the symbol Sn with 
its complement and of the sign of R. Therefore, we can limit the analysis of the 
evolution of the R-variable to its positive values'-~nly, and this can be done by taking 
the absolute value of the hyperbolae defined in (2'6), as shown in Fig. 1. 

Lemma If a?:.2!b, then for all n?:.l, 

jRnjE[C, D]=[ a-j ~2-4b , 3a-j ~2-4b J. (2'8) 

We point out that the hypotesis is always satisfied for those values of a and b for 
which a strange attractor exists. 
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Fig. 1. Absolute values of the hyperbolae (2·6). 
Points C and D define an interval which is 
mapped into itself both by /0 and /1. 

Proof From Eq. (2·6) we have that if 
Rn>C, then 

Both are monotonous functions in the 
interval (2-8), so that we can limit our­
selves to considering the evolution of the 
extrema. It is easily seen that lo( C) = D 
and 10(D»C, so that 10([C,D])c[C, 
D]. Moreover, since C is a fixed point 
of II and II(D)<D, then also II([C, D]) 
c[ C, D]. Thus, the two functions 10 
and II map the interval [C, D] into itself. 
As a consequence, since (2 -8) is satisfied 
for n=l (as iRIi=a, and C< a<D), the 
same condition also holds for n ~ 1, and 
the lemma follows. 

Note that from this lemma we have immediately that the ambiguous case of a 
horizontal segment does not occur. Now, taking again the sign of Rn into account, 
we see that the two hyperbolae obtained from (2 -6) have strictly opposite sign inside 
both [C, D] and its symmetric [-D, - C]. Therefore, from the above lemma we 
have that Sn=O and sn=l imply Rn>O and Rn<O respectively, independently of the 
past R-values. Thus (2-7) becomes 

(2-10) 

for all symbol sequences (and hence for all trajectories of the Lozi map). This is 
nothing but the definition of rn+I. If j -1 represents the largest integer such that 
Tj-I(P) and Tj-I(Q) are on the same side of the generating partition, then the 
segment TH(P)Tj-!(Q) crosses the x-axis. In principle, two distinct cases may 
occur: i) 8j -I=0 and ii) 8j -I=1. In the first case Tj-I(P) > Tj-I(Q) and r/P)=s/P) 
=1, whereas r/Q)=s/Q)=O. In the second case Tj-I(P) < Tj-!(Q) and rj(P)=l 
-s/P)=l, whereas r/Q)=l-s/Q)=O. In both cases (2-2) is satisfied and the first 
part of the theorem is proved. 

To prove that an analogous ordering holds for the a-sequence, it is sufficient to 
recall that the inverse of map (1·2) reads as 

Yn-I=l-a'iYni+b' Xn, Xn-I= Yn, (2·11) 

where 

(2 ·12) 

and a' = alb, b' = lib. Equation (2 -11) is formally identical to Eq. (1· 2) apart from the 
sign of time. Moreover, the preimage of the y-axis under map (1-2) is the x-axis, so 
that the dividing line defining the generating partition for map (2 -12) is the y-axis. 
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This allows us to apply the same procedure as before. The assumption of the above 
lemma becomes a' > 2!l7 which is fully equivalent to the previous inequality a> 2!b, 
so that the result can be straightforwardly rephrased. Instead of en we now define a 
variable r;n which satisfies the recursion 

(2·13) 

where 

2 S n-l-1=sign Yn. (2·14) 

From (2·4) and (2·12) we then find 

S n=l-Sn+l (2·15) 

so that 

r;n-l = (r;n + 1 - sn)mod 2 . (2·16) 

This means that r;n coincides with an, thus proving the second part of the theorem. 
In view of a generalization of the above proof to other cases, let us comment 

about the relevant facts which guarantee the monotonicity of the pruning front. First 
of all, the piecewise linearity of the map is not a necessary condition. It just 
simplifies some technical point. More in general, let us express by r the dividing line 
which defines the generating partition. Roughly spea1.dng, suppose that any forward 
iterate of each short piece of r, not crossing r, has everywhere a negative slope when 
it lies to the right of r and positive in the opposite case, then (2·2) holds. Unfortu­
nately, this cannot be used to extend the proof to the Henon map because in this case 
it is possible to find pieces of the unstable manifold which are hook-shaped but 
nevertheless characterized by a unique symbol sequence. On the other hand, this is 
not sufficient to prove the contrary, i.e., that the pruning front is not monotonous. 
Indeed, condition (2·2) simply requires that the extrema of the j-th iterate of a 
segment PQ have to lie in different elements of the partition. Therefore, also on the 
basis of numerical evidence,5) it seems very plausible that the pruning front is 
monotonous for the Henon map as well. Be as it may, to obtain a rigorous proof one 
should be first able to make a precise statement on the position of the homoclinic 
tangencies, which does not seem an easy task at all. 

§ 3. The fractal dimension of the pruning front 

In this section we derive an expression for the fractal dimension of the pruning 
front, including multifractal corrections as well. The formula improves the result 
obtained in 5), which is first rederived to introduce the notations and clarify the 
problem. The reasoning applies to a general strange attractor. 

Let us start by covering the (2-d) phase space with the cylinders Si, defined as the 
set of points displaying the same sequence of n symbols S-n+l···S-lSO in the past. Such 
regions are, essentially, narrow strips, characterized by a width E of the order of 

E~exp(/Ln) , (3·1) 
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where ,.1.- is the negative Lyapunov exponent computed in the past. The upper 
extremum of each region Si contains either primary homo clinic tangencies, or for­
ward iterates of them. Tangencies belonging to the same cylinder Si are at most E 

apart. Therefore, they exhibit the same symbol sequence in the future for k iterates, 
where k is implicitly given by 

(3·2) 

where ,.1.+ is the positive Lyapunov exponent computed in the future. From Eqs. (3 ·1) 
and (3·2), we find the relation between the numbers of common bits in the past and in 
the future, 

n=-~: k. (3·3) 

If we now look at the representation in the symbol plane, the fractal dimension of the 
projection of the pruning front on the r-axis can be formally estimated by means of 
a box-counting procedure. A resolution 0'=2- k allows us to discriminate among 
tangencies lying in different cylinders Si. Accordingly, the number of boxes N(O') 
needed to cover such a projection is of the order of the number of sets Si, that is, 

(3'4) 

where h is the topological entropy. Thus, from Eqs. (3·3) and (3'4) we obtain 

D=-'---_h_~ 
. log2 A- (3·5) 

which is the expression obtained in Ref. 5). However, in general, the Lyapunov 
exponents depend on the initial condition, so that not all the strips characterized by 
the same n do exhibit the same thickness, or the same k. In order to include such 
.fluctuations, it is necessary to introduce the number N(n, ,.1.-, ,.1.+) of cylinders char­
acterized by the same Lyapunov exponents, with the convention that the positive and 
negative exponents are evaluated in the future and in the past, respectively. This 
number can be formally written as the global number of cylinders, times the probabil­
ity to find any such pair of values, 

(3·6) 

Moreover, we assume that, in the limit n -->eX) (and thus k -HX), the above probability 
factorizes as follows: 

(3'7) 

It is worth mentioning that the probability Q(n, ,.1.-, ,.1.+) does not refer to a specific 
point (around which two well-defined and perfectly correlated ,.1.- and ,.1.+ values are 
detected) but globally to the ensemble of all points. In this sense, it is a perfectly 
plausible statistical assumption, justified by the presence of a chaotic dynamics (one 
has indeed to remember that Eq. (3'7) is conjectured to hold in the limit n->=). 
Finally, we assume that the "homoclinic tangencies" are typical points of the 
attractor, so that the probability distribution of the Lyapunov exponents coincides 
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with the standard distribution on the attractor. This assumption should be reason­
ably true for generic parameter values, although it possibly fails in special cases, 
when the tangencies are eventually mapped onto periodic orbits. As the covering 
defined at the beginning of this section is made according to the Lebsegue measure, the 
probability to find a negative exponent for maps with constant Jacobian ], is given 
byl) 

(3·8) 

where 

(3·9) 

On the other hand, the probability to find a positive exponent A+ is 

(3·10) 

where ken) is determined using Eq. (3·3). From Eqs. (3·6)~(3·8) and (3·10) we then 
find 

(3·11) 

In order to estimate the fractal dimension of the pruning front, it is more convenient 
to express the number of cylinders in terms of k: 

(3 ·12) 

so that the total number of boxes needed to cover the pruning front is obtained by 
integrating (3·12) over all A-values. Finally, the scaling behaviour of the number of 
boxes is given by the maximum value of the exponent in (3·12). By equating to zero 
the derivatives of the exponent in (3·12) with respect to A+ and tl-, we find that the 
solutions A+ *, A-* (X+ *=log] -A-*) are given by 

f'(X+ *)A-*+ f(X+ *)=0, 

f'(A+ *)+ f'(X+ *)=0. (3·13) 

The fractal dimension is then obtained by dividing the corresponding value of the 
exponent in (3·12) by 10g2, as for Eq. (3·5), 

1 ( A+ *<_(A*-+ *)). D(O)= log2 f(A+ *)- h /\ (3·14) 

This formula can be written in a more compact form by introducing the Legendre 
transform L(q) (i.e., the generalized Lyapunov exponents10

}) of f(A+), 

so that 

D(O) 
(1 - q*)L(q*) - h 

10g2 

(3·15) 

(3 ·16) 
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where q*= f'()\+ *). 
In order to better discuss the role of multifractal fluctuations and to find a relation 

with the simple equation (3'5), we derive an explicit expression for D(O), by approx­
imating the f(A)-curve with the parabola 

(3 '17) 

where A+o is such that f(A+O)=h. The substitution of Eq. (3·17) in the first of Eq. 
(3 '13) yields a second degree equation for X + * and the first order approximation in lla 
(taken as a smallness parameter) gives 

1 *_)' + h 
/\+ -/\+ 2aA~' (3 ·18) 

where A~= log IJI- A~. A further substitution of (3'18) and the subsequent use of 
(3 ·13) and (3 '14) finally leads to 

D(0)=-lo~2 ~~~ [1+ 4!~ (I-A~A~)J. (3'19) 

We recognize that the leading term has exactly the structure obtained in Eq. (3'5), so 
that now we can give a more precise interpretation to the positive and negative 
exponents in that equation, which was derived in the absence of fluctuations. We see 
that the best approximation of the analytic result by means of the simple formula 
(3'5) is obtained by interpreting the Lyapunov exponents as the most probable ones, 
when the partition implicitly used to cover the attractor is constructed according to 
the Lebsegue measure. 

Finally, we have tested numerically Eq. (3 '16) for the Lo~i map. The homoclinic 
tangencies have been computed by constructing the unstable manifold of the positive 
fixed point and determining successive intersections with the y-axis. By further 

iterating such points, we have deter-
-18 r-r-..--.-,...--,---.--.-...--.---,--..-...--.---r-,--,.-,,..,--,---, mined their r-coordinates. The most 

-20 

-22 

-24 

-26 

-28 

o 2 4 6 

Fig. 2. log2S(n) (see Eq. (3·20» versus the loga­
rithm . of the number of neighbours, for the 
pruning front of the Lozi map. Upper and 
lower curves refer to a=1.7, b=0.6, resp. a 
=1.6, b=0.3. The dashed straight lines with 
slope 1 are drawn for comparison. . 

efficient way of computing the Hausdorff 
dimension with a few thousand of points 
available is by means of the nearest­
neighbour algorithm. By calling Llj(n) 
the distance of the j-th point from its 
n-th neighbour, it is well known thatll) 

S(n, y)=~Ll/n)7c::::n(l-q), 
j 

(3·20) 

where y=(I-q)D(q) and D(q) are the 
8 generalized Renyi dimensions. As we 

are interested in q=O, from Eq. (3'20) it 
turns out that D(O) corresponds to the 
y-value such that the scaling behaviour 
of S(n, y) is linear with n. We report in 
Fig. 2 the results of simulations per-
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formed for i) a=1.6, b=O.3 and ii) a=1.7, b=O.6. Lower and upper curves refer to 
cases i) and ii), respectively. They have been estimated for y=O.18 resp. y=O.36. The 
slope is in bothcases very close to one, indicating that y coincides with the Hausdorff 
dimension. Such results have to be compared with the "theoretical" estimates, 
obtained through Eq. (3·16), D(O)=O.186±.004 and D(O)=O.38±.02. The spectrum 
/(it) of the Lozi map has been obtained by using the cycle-expansion12

) and going up 
to orbits of period 14 in i) and period 18 in ii). Notice that in this last case the 
convergence is still rather poor even for such a long period. In both cases, the 
agreement between direct and indirect estimations of the fractal dimensions is rather 
good, thus implicitly confirming the crucial assumptions made in deriving Eq. (3 ·16) 
on the factorization of probabilities and on the "generic nature" of the points of the 
pruning front. 
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