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Fusion excitation functions and barrier distributions: A semiclassical approach
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Fusion cross sections and barrier distributions are discussed and calculated in the framework of a semiclas-
sical approximation for a variety of systems. An overall good description of the data is achieved.
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I. INTRODUCTION

In a collision between two ions the process that brin
them to form a single composite system is called fusion. T
simplest description of this process considers the two ion
rigid spherical objects that interact via a repulsive, Coulom
plus an attractive, nuclear, potentials depending only on
relative center-of-mass distance. Fusion is, in this model,
scribed as the ability of the system to penetrate the pote
energy barrier. A systematic study of fusion data with t
model can be found in Ref.@1#.

However, many experiments have shown that the bar
penetration model is inadequate for the description of
observed cross sections, at energies below the Coulomb
rier the model underpredicts, of several orders of magnitu
the observed values@2#. These discrepancies have be
readily attributed to the effect of coupling of the relativ
motion to the internal degrees of freedom of the two coll
ing ions. The factors that have been identified as playin
major role in the enhancement of the sub-barrier fusion
permanent nuclear deformation, coupling to the low-lyi
nuclear excited states, and, possibly, particle transfer~in par-
ticular neutrons!. In a simple approximation, where one n
glects the excitation energy of the reaction channels, one
interpret the effect of the couplings as giving rise to a dis
bution of barriers which drastically alters the fusion pro
ability from its value calculated with a single barrier@3#.

Following this idea a method was proposed@4# for ex-
tracting the barrier distribution from accurate measureme
of the fusion excitation functions(E) by taking the second
derivative with respect to the center-of-mass energy~E! of
the quantityEs(E). While the fusion excitation function is
almost featureless, the barrier distributions display a v
sensitive pattern as a function of the different colliding pa
ners so that the effects of the couplings are shown explic

From a theoretical point of view, the standard way
address the influence of the coupling between the rela
motion and the intrinsic degrees of freedom is through
use of the coupled-channels formalism. This implies t
very large numerical calculations should be done in orde
describe the low-energy fusion data. These calculations,
the years, have been done with several degrees of sop
cation including couplings to static deformation, to vibr
tional states and, to some degree, also to transfer chan
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@5–10#. All these calculations have been able to descr
quite well the excitation function while they had sever
problems in the description of the barrier distributions.

In this contribution we will describe fusion excitatio
functions and barrier distributions using the semiclass
model developed in Refs.@11,12# where the coupling to the
low-lying surface modes and the transfer of nucleons~neu-
trons and protons! are taken explicitly into account in a sem
classical approximation. The same model has been succ
fully applied to the study of multinucleon transfer reactio
and to the description of the transition between the quasie
tic reactions and the more complicated deep-inelastic co
sions. The paper after a detailed summary of the theore
concepts~Sec. II! applies the obtained results to calcula
fusion excitation functions and barrier distributions for se
eral combinations of targets and projectiles~Sec. III!.

II. THE THEORY

From the study of heavy-ion reactions we have learn
that the transition from the grazing regime to the more co
plicated deep-inelastic regime may be described quite we
the semiclassical approximation in term of the well know
form factors for single-nucleon transfer and the excitation
the low-lying surface vibrations. In term of these buildin
blocks the Hamiltonian is written in the form

Ĥ5Ĥa1ĤA1V̂int~ t !, ~1!

where for the projectile~a! we can write

Ĥa5(
i

e iai
†ai1(

lm
\vlalm

† alm . ~2!

The first sum defines the single particle Hamiltonian, t
operatorsa†(a) are the fermion operators that create~anni-
hilate! a particle on the single-particle level with energye i
and quantum numberi[(nl jm), while the second sum de
fines the Hamiltonian for the excitation of the surface mo
alm

† (alm) are the boson operators for the creation~annihila-
tion! of a phonon of multipolaritylm and energy\vl . A
similar expression holds for the Hamiltonian of the targ
system (A).

The interactionV̂int(t) has three terms
©2000 The American Physical Society11-1
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V̂int~ t !5V̂tr~ t !1V̂in~ t !1DUaA~ t !. ~3!

The first, responsible for transfer, is written in the form

V̂tr5 (
(np) j ,k

f akaj8„r ~ t !…a†~ak!a~aj8!

1 (
(np) j ,k

f ak8aj
„r ~ t !…a†~ak8!a~aj !, ~4!

where f akaj8 and f ak8aj are the single particle stripping an
pick-up form factors. The sum has to be extended over
single particle levels (ak ,aj8) of neutrons (n) and protons
(p) of target and projectile. For the inelastic processes~ex-
citation of surface vibrations! we write

V̂in5(
lm

f lm
A ~r !@alm

† ~A!1alm~A!#

1(
lm

f lm
a ~r !@alm

† ~a!1alm~a!#, ~5!

where f lm
A and f lm

a are the nuclear plus Coulomb form fa
tors for the excitation of the surface modes in the target
in the projectile. The last term of the interactionDUaA takes
into account the modification of the effective potential f
the radial motion. The most important modifications are d
to proton transfer, that alters the Coulomb potential, and
transfer of angular momentum due to the surface vibratio
that alters the centrifugal term~see below!.

The time dependence of the interaction is obtained, in
semiclassical approximation, by solving the classical eq
tion of motion in a nuclear plus Coulomb field. For th
nuclear potentialUaA we use the simple parametrization@13#

UaA5216pga
RaRA

Ra1RA

1

11exp@~r 2Ra2RA!/a#
~6!

whose parameters come from the knowledge of the nuc
densities and have been slightly adjusted through a sys
atic comparison of elastic scattering data. They are given

1

a
51.17@110.53~Aa

21/31AA
21/3!# fm21, ~7!

Ri51.2Ai
1/320.09 fm, ~8!

g50.95S 121.8
~Na2Za!~NA2ZA!

AaAA
D MeV fm22, ~9!

where Ai , Zi , and Ni are the mass, charge, and neutr
numbers of nucleusi. The Coulomb potential is taken to b
of the usual point charge form.

Neglecting the coupling terms, at a given center-of-m
energyE, the fusion cross section is written as

s~E!5(
l

p\2

2maAE
~2l 11!Tl~E!, ~10!
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whereTl(E) is the transmission probability through the p
tential barrier of partial wavel. At energies above the Cou
lomb barrier it is convenient to rewrite Eq.~10! in the sharp
cutoff model where one assumes thatTl51 for all partial
waves leading to a distance of closest approach smaller
a certain valuer c beyond which the two ions fuse. In thi
approximation one obtains

s~E!5pr c
2S 12

UaA~r c!

E D . ~11!

At energies close to or below the Coulomb barrier, the ab
approximation has to be modified by including the penet
tion probability through the barrier. Using the inverse pa
bolic approximation the transmission coefficient becomes

Tl~E!5
1

11exp@2p~Eb2E!/\vb#
, ~12!

whereEb is the barrier of the effective potential andvb the
frequency in the relative motion

vb5A 1

maA

]2Ueff

]r 2
. ~13!

The fusion cross section calculated with this transmiss
coefficient constitutes the no-coupling limit and, as me
tioned in the Introduction, underestimates considerably
actual fusion cross section data.

For the capture distancer c one usually uses the Coulom
barrier radiusr B , but simple classical calculations demo
strate~see Refs.@14,15#! that at short distances the reaction
strongly influenced by considering the deformation degr
of freedoma. These surface degrees of freedom may inde
give rise to instabilities~i.e., capture! for trajectories well
outside the Coulomb barrier, i.e., for trajectories with anl
value greater than thel grazing. In order to give an estima
tion of the capture angular momentuml c and the capture
distancer c we have to study the problem of the merging
the two nuclear surfaces, in other words we must know i
the turning point the surface distances5r 2Ra2RA will in-
crease or decrease. From the classical equations of motio
the turning point we can write

maAs̈5
l 2

maAr 3
1

ZaZAe2

r 2
2~11d!

]UaA

]r
~14!

with

d5(
ln

2ln11

4p F ~Ra
0!2

maA

Dl
a~n!

1~RA
0 !2

maA

Dl
A~n!

G , ~15!

Dl
i (n) being the mass parameters of the surface mode

target and projectile.
If s̈,0, large deformation will occur and the system w

merge to form a compound. The boundary of grazing re
tions may thus be calculated from the condition thats̈50.
This leads to the equations
1-2
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l c
2

maAr c
3

1
ZaZAe2

r c
2

2~11d!
]UaA

]r U
r c

50, ~16!

l c
2

2maAr c
2

1
ZaZAe2

r c
1UaA~r c!5E ~17!

that allow the determination ofl c and r c . In actual cases
these quantities are not calculated from the above sim
estimation but by solving explicitly the classical equations
motion as in Ref.@15#.

In the presence of couplings, the energy of relative mot
is not well defined, an exchange of energy from the relat
motion to the intrinsic degrees of freedom takes place,
thus the above formulas for the fusion cross section hav
be modified to incorporate this effect. To illustrate the
modifications we will follow the work of Refs.@11,12#. Here
we will only outline the main results referring to the abo
papers for details. To this purpose it is convenient to simp
the above Hamiltonian and consider only head-on collisi
and a single surface mode in the target. The Hamilton
becomes

Ĥ5\va†a1 f ~ t !~a†1a! ~18!

with

f ~ t !52A\v

2C
RA

]UaA

]r
. ~19!

It is convenient to express the solution of the problem
term of the characteristic function defined by the matrix
ement

Z~b!5^C~ t !ueiĤbuC~ t !& , ~20!

uC(t)& being the state vector of the system. The probabi
to have, at timet, an energy lossE may be calculated via the
Fourier transform of this function

P~E!5
1

2p E
2`

1`

e2 ibEZ~b!db. ~21!

As is well known the system represented by Eq.~18! can be
solved exactly; its characteristic function has the form

ln Z~b!5uh~ t !u2~ei\vb21!2 i
u f ~ t !u2

\v
b ~22!

with

h~ t !5
1

i\E2`

t

f ~ t8!eivt8dt81
f ~ t !

\v
eivt. ~23!

The function of Eq.~22! is the characteristic function of
Poisson distribution, thus the probability that the energy d
sipated from the relative motion has a given valueE(t) is
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P~E!5(
N

uhu2N

N!
e2uhu2dS E1

f ~ t !2

\v
2N\v D , ~24!

whereN is an integer defining the number of phonons. T
distribution has an average energy

^E~ t !&5
1

i

d

db
ln Z~b!U

b50

5\vuh~ t !u22
f ~ t !2

\v
~25!

and a standard deviation

sE
25

1

i 2

d2

db2
ln Z~b!U

b50

5~\v!2uh~ t !u2. ~26!

It is interesting to notice that the energy distribution given
Eq. ~24! does not start from zero but is shifted by an amou
DE

DE52
f ~ t !2

\v
~27!

which corresponds to the adiabatic polarization term.
The results obtained from the simple model indicate t

the effect of the coupling may be taken into account by i
plying that the two ions move along a trajectory in the fie

UN~r !5UaA~r !1^E& , ~28!

with ^E& the average energy loss given by Eq.~25!. This
means that at distance of closest approach the proje
meets a distribution of barriers with probabilities given
Eq. ~24!, the actual transmission coefficient is thus calcula
by folding the transmission coefficient of Eq.~12! with the
barrier distribution probability of Eq.~24!. This result is very
similar to the one obtained in Refs.@5,6,8,9#; for more details
see Ref.@12#.

The role played by the angular momentum may be ea
included in this semiclassical formalism, since for the pe
etrability of the barrier it is important to estimate the sh
and the fluctuations of the radial component of the relat
motion energy. In presence of angular momentum the Ham
tonian of Eq.~18! becomes

Ĥ~ t !5(
m

$\vlam
† am1 f lm~ t !a†1 f lm* ~ t !a%, ~29!

where the sum runs over all them components of the angula
momentuml and the form factors are expressed in the fo

f lm~ t !52A\vl

2Cl

]UaA~r !

]r
RAYlm* S 1

2
p,F~ t ! D , ~30!

Cl being the restoring force parameter. Indicating withI and
L the intrinsic angular momentum and the orbital angu
momentum, respectively, we may write the radial energy
the form

Er5Ĥ~ t !2
~L2I !22L2

2maAr 2
. ~31!
1-3
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This, in good approximation, may be rewritten as

Er5Ĥ~ t !2(
m

\mḞ~ t !am
† am , ~32!

whereḞ(t) is the angular velocity. From the above expre
sion one can immediately deduce that the effect of the an
lar momentum can be included by using the old results
with the substitution

v→@v2mḞ~ t !#. ~33!

It is clear that the transfer of angular momentum starts to
important at energy very close or above the Coulomb bar
where it will strongly influence the shape of the barrier d
tribution.

In order to include the transfer channels in the barr
penetration problem we will follow Ref.@11# where a con-
sistent description of particle transfer and dissipation of
ergy in heavy ion reactions has been obtained by treating
transfer channels as mutually independent and also inde
dent on the excitation of the collective surface modes. H
we will use the result that the transfer probability is qu
small and that the large dissipated energy and large mass
charge drift are due to the very large number of trans
channels. From the hypothesis of independence we can
mediately conclude that the characteristic function desc
ing the properties of these reactions may be written as

Ztr~b!5)
g

Ztr
g ~b!; ~34!

here the product has to be taken over all neutron stripp
(nS), neutron pick-up (nP), proton stripping (pS), and pro-
ton pick-up (pP) channels. For the case of neutron strippi
one gets@12#

ln Ztr
nS~b!5(

i 8k
U tn

2\jki8

f ki8~r 0!U2F us~jki8!u
2

3~ei (2\jki8 /tn)b21!2 i
2\jki8

tn
b G , ~35!

where the sum has to be extended over all the single par
states of projectile (i 8) and target (k). This expression has
been obtained by using for the single-particle transfer fo
factor an exponential shapef ki8(r ).ekn(r 2R0) wherekn de-
fines the range of the form factor that is almost twice the o
for inelastic processes. The functions(jki8) weights the con-
tribution of the different transfer channels~see Ref.@12#!.
The collision time and the adiabaticity parameters are h
defined by

tn5
1

Akn r̈ 0

, ~36!

jki85
tn

2\
@~e i 82ek!2\~mi 82mk!Ḟ01Q0#, ~37!
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where e and m are the energy and the magnetic quantu
number identifying the single-particle state. WithQ0 we
have indicated the optimumQ value for the transition. For
the case of neutron transfer it may be assumed to be
while for the case of proton stripping has the expression

Q05
~Za2ZA!e2

r 0
. ~38!

In the above expressions withr̈ 0 andḞ0 we have indicated
the radial acceleration and the angular velocity at the d
tance of closest approachr 0 for the given trajectory.

In the estimation of the barrier penetration we will n
include the contribution of particle transfer channels to
average energy loss but only their contribution to the ene
spread. This is because the estimation of^E&, through the
sum over all single particle states, is diverging and its va
will strongly depend on the assumed energy cutoff for
single particle form factor to vanish. We remind that t
nuclear potential of Eq.~6! has been obtained via a best-
procedure over elastic scattering data and part of the po
ization is automatically included. We observe also that t
polarization term is proportional to the square of the sing
particle form factors and thus has a shape that is very sim
to the potential itself.

For the spread in energy we obtain

~sEr

nS!25
1

i 2

d2

db2
ln Ztr

nS~b!U
b50

5(
i 8k

u f ki8~r 0!u2us~jki8!u
2.

~39!

In the evaluation of the above expression we replace the
over the discrete levels of projectile and target with an in
gral over a continuous distribution and we replace the sin

FIG. 1. Theoretical barrier distributions for the40Ca1 90Zr sys-
tem for the indicated center-of-mass bombarding energies. No
that the shape of the barrier distribution changes very little for
ergies below the Coulomb barrier.
1-4
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FIG. 2. In the bottom row, for the indicated systems, are shown the calculated excitation functions in comparison with the expe
data. For the case of36S1 90Zr we show also~dotted line! the uncoupled results. In the top row the calculated barrier distributions
compared with the experimental ones. The theoretical curves have been obtained for an energy below the Coulomb barrier.
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particle form factors with the average as discussed in R
@16#. For the single particle neutron level density we use
expression

gn~e,m!5g0
nA 1

2pbn

eF2VA0

e2VA0
expF2

m2

2bn

eF2VA0

e2VA0
G ,
~40!

where witheF we have indicated the Fermi energy, withVA0
the depth of the shell model potential and withm the mag-
netic quantum number. The parameterbn is related to the
mean values ofm2 and may be expressed as a function of
rigid moment of inertia andg0

n is the neutron level density a
the Fermi surface. For more details see Ref.@12#.

Since the different transfer modes are considered to
independent the total width of the distribution due to parti
transfer is given by

s tr
2 ~Er !5(

g
@s tr

g ~Er !#
2 ~41!

where the indexg has been defined above. In conclusion t
probability to have a given valueEr of energy loss in radia
energy may be written in the form

P~Er !5 (
$Nn%

S )
n

uhnu2Nn

Nn!
e2uhnu2DG~Er2E$Nn%!, ~42!
05461
f.
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e

e
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whereG is a Gaussian distribution with standard deviati
given by Eq.~41! and

E$Nn%5(
n

F(
m

Nn~\vn2mḞ0!2
f ln

2 ~r 0!

\vn2mḞ0
G . ~43!

In the above expressions the indexn runs over all the surface
modes included in the calculation and we have indica
with $Nn% the set of integers defining the occupation nu
bers of the surface modes. The fusion cross section ma
thus calculated from Eq.~10! where the transmission coeffi
cient is defined by

Tl~E!5E
2`

1`

P~Er !Tl~E2Er !dEr . ~44!

Before proceeding to the applications of the above formal
to the calculation of fusion data a last consideration about
definition in Eq.~12! of the transmission coefficient. The fac
that the surfaces are not static but can vibrate will influen
the penetrability of the barrier. As discussed in Ref.@12# this
effect may be incorporated by modifying the mass param
by substituting 1/maA with (11d)/maA whered is given by
Eq. ~15!.
1-5
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III. COMPARISON WITH THE DATA

In this section we will apply the above formalism, b
using the programGRAZING @17#, to the calculation of fusion
excitation functions for a variety of target and project
combinations focusing on systems where together with
excitation function also the barrier distribution could be o
tained. Let us remind that the fusion cross section is ca
lated from Eqs.~10! and ~44!. It is thus clear that in our
model, contrary to all other approaches where the bar
distributions are inferred from the excitation functions,
order to calculated the fusion cross sections we must
calculate the barrier distributions. They are energy depen
and their shapes are determined by the dynamics of the
lision and by the properties of the intrinsic degrees of fr
dom of the colliding nuclei. Therefore, before going into t
detail of the comparison with the experimental data, we w
start by discussing the properties of the barrier distributio

For the 36S1 90Zr system we show in Fig. 1, for the in
dicated center-of-mass energies, the calculated barrier d
butions as a function of the parameterDE that measures the
uncertainty in the energy of radial motion due to the exc
tion of the intrinsic states~the zero of this scale correspond
to the center-of-mass energyE). At energies below the Cou
lomb barrier~for this system it is at.101 MeV) the barrier
distribution maintains the same shape while at energ
above it becomes smoother and wider. This behavior, as
cussed in the theory section, is governed by the partial w
distribution of the fusion cross section, in fact at energ
below the Coulomb barrier the averagel value of the com-
pound nucleus is essentially constant while it increase
larger energies thus contributing to smooth out the bar
distribution @see Eq.~33!#. The particle transfer degrees o

TABLE I. Energy and strength of the low lying 21 and 32

states included in the calculations. The values are taken from R
@18,19#.

E21 BE2 E32 BE3
Nucleus ~MeV! (e2 b2) ~MeV! (e2 b3)

12C 4.439 4.1031023 9.641 6.1031024

16O 6.917 4.0131023 6.130 1.5031023

32S 2.230 3.0031022 5.006 1.0531022

36S 3.291 9.6031023 4.200 7.0031023

40Ca 3.904 9.6031023 3.737 2.0431022

48Ca 3.832 8.4031023 4.507 8.3031023

58Ni 1.454 6.9531022 4.475 1.7031022

60Ni 1.332 9.3331022 4.040 2.0831022

90Zr 2.186 6.3031022 2.750 1.0831021

96Zr 1.750 5.5031022 1.897 1.8631021

110Pd 0.374 8.7031021 2.038 9.8031022

124Sn 1.132 1.6631021 2.614 7.3031022

140Ce 1.596 2.9531021 2.470 2.1031021

144Sm 1.660 2.6631021 1.810 2.7031021

154Sm 0.082 4.36 1.013 1.0031021

194Pt 0.328 1.66 1.433 1.3131021

198Pt 0.407 1.06
208Pb 4.085 2.9031021 2.615 6.1131021
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freedom play a minor role and contribute, also, to smoo
out the barrier distribution at higher energies.

In the following in comparing our barrier distribution
with the experimental ones, extracted from the excitat
functions, we will shift and scale the ‘‘experimental data’’
superimpose on our calculated curves and we will show
barrier distribution calculated at an energy below the C
lomb barrier. The relative motion and the nuclear form fa
tors for the excitation of the surface modes are determin
in our model, by the nuclear potential of Eq.~6! that has
been determined by a best fit procedure of elastic scatte
data on several target and projectile combinations. In or
to have a better fit to the experimental data we introduce
our formalism, two parameters. The first oneDR is a shift in
the nuclear potential radius@see Eq.~6!#, while the second
one sd is a scaling of the correctiond to the reduced mas
that enters in the calculation of the transmission coeffici
@see Eq.~15!#. We thus make the following substitutions:

Ra1RA→Ra1RA1DR ~45!

and

d→sdd. ~46!

We remember that Eq.~15! gives an estimation ofd only for
the nuclear interaction, in actual cases one should also

fs.

TABLE II. The values of the parametersDR and sd , for the
indicated reactions, used in the calculations.

Reaction DR(fm) sd Ref.

40Ca1 90Zr 20.15 0.1 @29#
40Ca1 96Zr 20.02 0.8 @29#
36S1 90Zr 0.0 0.0 @25#
36S1 96Zr 0.1 0.0 @25#
12C1 194Pt 20.15 0.0 @20#
12C1 198Pt 20.2 0.0 @20#

16O1 144Sm 20.2 0.0 @21#
16O1 154Sm 20.33 0.0 @21#
32S1 110Pd 0.0 0.6 @24#
36S1 110Pd 0.2 0.2 @24#
16O1 208Pb 20.05 0.0 @22,23#

40Ca1 124Sn 0.05 0.9 @31#
36S1 140Ce 20.05 0.2 @26#
40Ca1 194Pt 20.2 0.5 @30#
40Ca1 46Ti 0.0 0.2 @28#
40Ca1 48Ti 20.1 0.3 @28#
40Ca1 50Ti 20.2 0.8 @28#
46Ti1 64Ni 0.15 0.5 @32#
48Ti1 64Ni 0.05 0.5 @33#
40Ca1 40Ca 20.2 0.25 @27#
40Ca1 48Ca 20.1 0.8 @27#
58Ni1 58Ni 20.1 0.8 @34#
58Ni1 64Ni 0.0 0.8 @34#
64Ni1 64Ni 0.03 0.5 @35#
1-6
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FIG. 3. Theoretical barrier distributions for the40Ca1 90,96Zr
systems as a function of the states of the target included in
calculations. The full curve indicates the results when both the1

and 32 states have been included, the dashed one when only th1

state is included and the dotted one when only the 32 state is
included in the calculation. Notice that all distributions are norm
ized to one.
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sider the Coulomb one that has a counter effect. With th
two parameters we are able to achieve a reasonable ov
description of the data.

In Fig. 2 we display the calculated excitation functio
~bottom! and the corresponding barrier distributions~top! for
the 40Ca1 90,96Zr and 36S1 90,96Zr systems in comparison
with the experimental data. In the calculations we have
cluded the low-lying 21 and 32 states of target and projec
tile as reported in Table I and the potentials have been m
fied according to the parameters of Table II. For the syst
36S1 90Zr we report also the uncoupled excitation functio
For these reactions it is interesting to understand the rem
able difference between the excitation functions of the t
Zirconium isotopes since they have quite similar spectra
Ref. @29# this difference has been tentatively ascribed to p
ticle transfer channels, particularly to neutron transfer.
Fig. 3 we display for the40Ca1 90,96Zr systems the evolution
of the barrier distributions as a function of the target sta
included in the calculation. It is clear that the difference
the barrier distribution has to be ascribed to the strength
the 32 state that is stronger in the case of96Zr.

In Figs. 4, 5, and 6 we show a systematic comparison
our calculations with the experimental data both for exci
tion functions and barrier distributions when they are ava
able. When the same projectile or target is used for differ
targets or projectiles, the corresponding data are displaye
the same frame to facilitate the comparison. All the calcu
tions have been performed by including the low-lying 21

and 32 states of projectile and target and including all t
transfer channels as discussed in the previous section~see
Table I for the energy and strength of the inelastic states
Table II for the parametersDR andsd used!. The high-lying

e

2

-

ion
FIG. 4. Excitation functions~bottom row! and barrier distributions~top row! for the indicated systems. Notice that the excitation funct
for the 36S1 110Pd system has been scaled by an order of magnitude.
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FIG. 5. Excitation functions~bottom row! and barrier distributions~top row! for the indicated systems. For the32S1 140Ce a barrier
distribution calculated at an energy above the Coulomb barrier~dashed line! is also shown. For the16O1 208Pb are shown the two sets o
experimental data of Refs.@22,23#.
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states have not been included in our calculations since t
effect on the barrier distribution is negligible and they a
count for an overall normalization of the fusion excitatio
functions of a few percent. The overall agreement betw
data and theory is quite good especially for the cases of F
4 and 5 where together with the fusion excitation functio
also the corresponding barrier distributions were availa
As a general remark we mention that our theory does
predict any bumps at high energy as indeed it is shown
05461
ir
-

n
s.
s
e.
ot
y

the data of 12C1 196Pt, 16O1 144Sm,36S1 140Ce, and 40Ca
1 194Pt. For some systems, for instance36S1 140Ce, we
overestimate the fusion cross section in the high-energy
but, in this region, one should keep in mind that for tho
systems, at high energy, the fission channel starts to pla
important role and this channel can account for part of
missing fusion cross section. For the cases displayed in
last figure ~Fig. 6! discrepancies are clearly seen for t
nickel on nickel and calcium on calcium reactions but o
e

FIG. 6. Excitation functions

for the indicated systems. For th
40Ca1 XTi also the uncoupled ex-
citation functions are shown
~dashed line!.
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curves are of the same quality as the one of previous an
ses, see, for instance, Ref.@36#, where the influence of highe
order couplings has been investigated.

IV. CONCLUSIONS

In this paper we have used the semiclassical mode
Refs.@11,12#, that incorporates on the same footing trans
. B

om

s.

r,

A

n-
ce

te

R.

05461
ly-

of
r

channels and the inelastic excitation to the low-lying state
the calculation of excitation functions and barrier distrib
tions. The systematics over several combinations of ta
and projectile demonstrates that the model gives an adeq
description of the processes and stresses the importance
proper treatment of the inelastic collective degrees of fr
dom in order to have a correct description of the dynami
evolution of the nuclear surfaces that dominates the proc
in question.
m-

.
ys.

O.

-
Rev.

.
ys.

ig-
en,

J.

e,
w-

o-

D.
.

.
ria,

.
ria,

r-
. C

nd
@1# L. C. Vaz, J. M. Alexander, and G. R. Satchler, Phys. Rep.69,
373 ~1981!.

@2# M. Beckerman, Phys. Rep.129, 145 ~1985!.
@3# H. Esbensen, Nucl. Phys.A352, 147 ~1981!.
@4# H. Rowley, G. R. Satchler, and P. H. Stelson, Phys. Lett

254, 25 ~1991!.
@5# C. H. Dasso, S. Landowne, and A. Winther, Nucl. Phys.A405,

381 ~1983!.
@6# C. H. Dasso, S. Landowne, and A. Winther, Nucl. Phys.A407,

221 ~1983!.
@7# C. H. Dasso, S. Landowne, and A. Winther, Nucl. Phys.A432,

495 ~1985!.
@8# C. H. Dasso and S. Landowne, Comput. Phys. Commun.46,

187 ~1987!.
@9# J. O. Fernandez-Niello, C. H. Dasso, and S. Landowne, C

put. Phys. Commun.54, 409 ~1989!.
@10# K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phy

Commun.123, 143 ~1999!.
@11# A. Winther, Nucl. Phys.A572, 191 ~1994!.
@12# A. Winther, Nucl. Phys.A594, 203 ~1995!.
@13# R. Broglia and A. Winther,Heavy Ion Reactions~Addison-

Wesley, Redwood City, CA, 1991!.
@14# R. A. Broglia, C. H. Dasso, and A. Winther, inProceedings of

Enrico Fermi International School of Physics, 1979, edited by
R. A. Broglia, C. H. Dasso, and R. Ricci~North-Holland, Am-
sterdam, 1981!.

@15# C. H. Dasso and G. Pollarolo, Comput. Phys. Commun.50,
341 ~1988!.

@16# J. M. Quesada, G. Pollarolo, R. A. Broglia, and A. Winthe
Nucl. Phys.A442, 381 ~1985!.

@17# A. Winther, GRAZING, computer program~unpublished!.
@18# S. Raman, C. W. Nestor, Jr., S. Kahane, and K. H. Bhatt,

Data Nucl. Data Tables42, 1 ~1989!.
@19# R. H. Spear, At. Data Nucl. Data Tables42, 55 ~1989!.
@20# A. Shrivastava, Ph.D. thesis, Mumbai University, Mumbai, I

dia, 1999; inProceedings of the 9th International Conferen
on Nuclear Reaction Mechanisms, Varenna, Italy, 2000, edited
by E. Gadioli ~Ricerca Scientifica ed Educazione Permane
Milano, 2000!.

@21# J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C.
-

t.

,

Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Ti
mers, and J. X. Wei, Phys. Rev. C52, 3151~1995!.

@22# C. R. Morton, D. J. Hinde, J. R. Leigh, J. P. Lestone, M
Dasgupta, J. C. Mein, J. O. Newton, and H. Timmers, Ph
Rev. C52, 243 ~1995!.

@23# C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde, J.
Newton, K. Hagino, and I. J. Thompson, Phys. Rev. C60,
044608~1999!.

@24# A. M. Stefanini, D. Ackermann, L. Corradi, J. H. He, G. Mon
tagnoli, S. Beghini, F. Scharlassara, and G. Segato, Phys.
C 52, R1727~1995!.

@25# A. M. Stefanini, L. Corradi, A. M. Vinodkumar, Yang Feng, F
Scarlassara, G. Montagnoli, S. Beghini, and M. Bisogno, Ph
Rev. C62, 014601~2000!.

@26# A. Stefanini~private communication!.
@27# H. Aljuwair, R. J. Ledoux, M. Beckerman, S. Gazes, J. W

gins, E. R. Cosman, R. R. Betts, S. Saini, and Ole Hans
Phys. Rev. C30, 1223~1984!.

@28# A. A. Sonzogni, J. D. Bierman, M. P. Kelly, L. P. Lestone,
F. Liang, and R. Vandenbosch, Phys. Rev. C57, 722 ~1998!.

@29# H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. H
G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Ro
ley, Nucl. Phys.A633, 421 ~1998!.

@30# J. D. Bierman, P. Chan, J. F. Liang, M. P. Kelly, A. A. Sonz
gni, and R. Vandenboch, Phys. Rev. Lett.76, 1587~1996!.

@31# F. Scarlassara, S. Beghini, G. Montagnoli, G. F. Segato,
Ackermann, L. Corradi, C. J. Lin1, A. M. Stefanini, and L. F
Zheng, Nucl. Phys.A672, 99 ~2000!.

@32# N. V. S. V. Prasad, A. M. Vinodkumar, A. K. Sinha, K. M
Varier, D. L. Sastry, N. Madhavan, P. Sugathan, D. O. Kata
and J. J. Das, Nucl. Phys.A603, 176 ~1996!.

@33# A. M. Vinodkumar, K. M. Varier, N. V. S. V. Prasad, D. L
Sastry, A. K. Sinha, N. Madhavan, P. Sugathan, D. O. Kata
and J. J. Das, Phys. Rev. C53, 803 ~1996!.

@34# M. Beckerman, J. Ball, H. A. Henge, M. Salomaa, A. Spe
duto, S. Gazes, A. DiRienzo, and J. D. Molitoris, Phys. Rev
23, 1581~1981!.

@35# M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, a
A. DiRienzo, Phys. Rev. C25, 837 ~1982!.

@36# H. Esbensen and S. Landowne, Phys. Rev. C35, 2090~1987!.
1-9


