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The problem of numerical inversion of the Laplace transform is considered 
when the inverse function is of bounded, strictly positive support. The 
recent eigenvalue analysis of McWhirter and Pike for infinite support has 
been generalized by numerical calculations of singular values. A priori 
knowledge of the support is shown to lead to increased resolution in the 
inversion, and the number of exponentials that can be recovered in given 
levels of noise is calculated. 

1. INTRODUCTION 

In much of experimental science, data delivered by an instrumental system are 
related to the natural phenomenon under investigation by a 'resolution' limit, 
which may be expressed by a linear integral transformation K of the form 

g(p) = (Kf) (p) = f T(p, t)f(t) dt, pe. (1 .) 
This is a Fredholm equation of the first kind: T(p, t) is the kernel of the transforma- 
tion and defines the effect of the instrument on the 'natural' inputf(t) in producing 
the measured data g(p); F and C are the domains of support of the variable t explored 
and the variable p measured; they may be multidimensional. 

For band-limited imaging or communication systems, T(p,t) has a Bessel- 
function form, and the analysis of such systems has given rise to a well developed 
theory of 'resolution' or 'information' associated with the names, for example, of 
Nyquist, Shannon, Slepian and Pollak, Frieden, and Toraldo di Francia, but dating 
back to Abbe and Lord Rayleigh. One finds that, in the presence of noise, the 
' object'f(t) can only be recovered from the 'image' g(p) up to a limit of resolution 
(the Shannon or Nyquist number, or Rayleigh criterion), determined by the 
properties of the eigenvalue spectrum of the transformation f-* g, and that finer 
detail is irrecoverable owing to the 'ill-conditioned' nature of the inversion. This 
'classical' theory of information is concerned with the problem of recovering and 
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16 M. Bertero, P. Boccacci and E. R. Pike 

resolving natural spatial or temporal oscillatory components. An important alter- 
native situation in which the experimenter is concerned to recover and resolve 
exponential relaxation rates is described by the same equation with a different kernel. 
This Fredholm equation has the Laplace-transform kernel 

T(p, t) = e-Pt. (1.2) 

For the same basic reasons, which we shall take up later, this inversion is also ill 
conditioned (Bellmann et al. i966; Schoenberg I973; McWhirter & Pike I978) but, 
curiously, has not received the same detailed consideration from an 'information 
theory' point of view although there is no lack of ad hoc attempts in the literature 
on numerical inversion. 

A step towards generalization of the concepts of resolution and information for 
the recovery of exponentials was taken in a recent paper by McWhirter & Pike 
(I978) in which they calculated analytically the eigenfunctions and eigenvalues of 
the Laplace transform and, as a consequence, were able to identify resolution 
elements and an analogue of the Shannon number for this problem. In contrast to 
the Shannon number of the previous information theory this new 'Shannon' 
number is strongly dependent on the experimental noise present. It, nevertheless, 
determines the maximum number of exponential relaxation rates that may be 
successfully determined and, in fact, requires that these be spaced in a geometrical 
sequence in the independent variable. 

In a further recent contribution to the classical information-theory problem 
Bertero & Pike (i982) have shown that significantly improved resolution can be 
achieved by restriction of the object support with respect to that of the image. The 
eigenfunction analysis of the extant theory is not appropriate for this situation and 
a new 'singular-value' analysis of information and resolution was presented. This 
new theory gives the prospect of real gains in the performance of linear systems, for 
example the optical microscope, by suitable design. 

In a similar vein, the recovery and resolution of exponential object-components 
envisaged by McWhirter & Pike may be improved upon by using a priori knowledge 
of the support of the object. The present paper is concerned with proving and 
quantifying this proposition. 

The content of the paper is rather mathematical and we therefore explain here 
the results that will be easily assimilated by the interested reader. These are 
contained in figure 1. If one has knowledge of the lower and upper bounds {a, b} of 
the support off(t), then we show that exponential components may be recovered at 
values of to, t,,to, 41 3to, ... within this support where the 'resolution ratio', 4., 
is given in the figure as a function of the ratio, y, of b to a for various 'signal: noise 
ratios', E/e. 

In the next section we make some general remarks about the Laplace transform 
and demonstrate the nature of its ill conditioning. 

In ? 3 we discuss singular values and singular functions of the Laplace transform 
and we derive some properties of the singular values like non-degeneracy and 
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asymptotic distribution when the parameter y = b/a tends to infinity. We give also 
the results of some numerical computations. 

In ? 4 we consider a very simple noise model and a truncated singular-function 
expansion for the approximate solution to discuss the resolution limits achievable 
in the Laplace-transform inversion. Typically we find significant improvements in 
resolution as the parameter y = b/a approaches unity. The paper is completed by 
two mathematical Appendixes. 

2.0 - 

- 60(E/e= lo3) 

1.8 - Ks=2 

104 ~ /Ee=0 

1.6 -_ __ _ T _ _Z_ 

1 2 3 4 5 
7 

FIGURE 1. The resolution ratio 68 as a function of the parameter y and of the signal: noise 
ratio E/e (see equation (4.21)). The horizontal dashed lines are the values for infinite 
support. The dash-dot lines give the number of exponentials that may be recovered 
('Shannon' number). 

In a future publication we shall consider the effects of the necessarily finite 
support of the data and give optimum placings for the upper and lower observation 
limits for given fixed numbers of data points. We shall also publish separately a 
detailed application of the method to the analysis of macromolecular diffusion by 
light scattering. 

2. THE LAPLACE TRANSFORM 

Inserting the kernel (1.2) into equation (1.1) gives explicitly the Laplace trans- 
form: for (F, G) equal to (0, + oo) 

f+0p 
S(p) = I e-Plf(t) dt, 0 < p < + oo. (2.1) 
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We can define the direct problem as a linear mapping f-* g, which is continuous 
and injective in L2(0, +oo). The continuity of the mapping follows from the 
inequality 

{ I (p))I2dp < r lf(t)I2dt, (2.2) 

which can be derived by applying a Mellin transformation to equation (2.1). 
Indeed, with the Mellin transform f of a function fe L2(0, + X) as defined by 
Titchmarsh (I948), 

Y(j + iP) = !@a) = L f(t) t-i+' dt, (2.3) 

from equation (2.1) we get 
y(cws) F(21 +iw))f( - )); (2.4) 

then inequality (2.2) follows from the Parseval relation (Titchmarsh I948) 

If(t) 12dt - +f I A(c) 12dw) 

and from the inequality Ir(l + i(o) 12 = i/coshirw) < i. 
The inverse mapping g -f, however, is not, continuous. An elementary proof of 

this fact is as follows. Let {a}, {bn} (n = 1, 2, ... ) be sequences of positive numbers 
such that an, bn - + oo, when n -* + co; then let us consider the following sequence 
of functions: 

fn(t) = (2bn/it)i exp [-(1 + ian) t] (2.6) 
with the associated Laplace transforms 

gn(P) = (2bn/i) (p + 1 + ian)-l. (2.7) 

Very simple computations show that 

llfnll2 = f Ifn(t) 12 dt = (1/rt) bn, (2.8) 

IIgnhI2 l fo J|(p)J2dp = an~ [1 -(arctan (2.9) 

Therefore, if we choose an, bn in such a way that bn/an - 0 as n - + so (for instance 
= b2), we get lfnll - + o, while Jgn1 -* 0, as n-* + cx. 
The previous remark implies that, when we know only an approximation g of 

the exact Laplace transform q, the solution of the problem is completely indeter- 
minate: the set of functions whose Laplace transforms approximate g within a given 
error is not bounded with respect to the norm of L2(0, + so). 

To reduce the uncertainty in the solution one needs further constraints, as are 
required in regularization theory (Tikhonov & Arsenin I977; Miller I970; Bertero 
et al. I980). However, it must be pointed out that the problem of the numerical 
inversion of the Laplace transform is severely ill posed. This statement can be 
justified as follows. 
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Let f be the exact solution corresponding to the exact Laplace transform g and 
letf EL2(0, + so) be any function whose Laplace transform g approximates g in the 
sense that the L2-norm of v = g - g does not exceed a given positive number e. If we 
now write u = f-f (v is the Laplace transform of u), then from equation (2.4) and 
from the Parseval relation (2.5) we get 

V(p)2dp 
1 K+ cosir 

Or= I (cosh no )12dw 62. (2.10) 
Let us also assume a constraint on the first derivative of u: 

f tIu'(t)I2dt = 2f (t2+j) lu(w)j2dw .E2 (2.11) 

Now let S c L2(0, + so) be the subset of the functions u satisfying the constraints 
(2.10), (2.11) and let So be the subset of the functions u satisfying the constraint 

2j1 X[-coshn(o) (E)2+1)] [I2(w)I2dw 62. (2.12) 

Clearly So c S and therefore the diameter of So gives a lower bound for the un- 
certainty in the functions f, satisfying the constraint (2.11), whose Laplace trans- 
forms g approximate g within the error e. In Appendix A it is proved that, for 
small e/E, MO(e, E) = sup lull irE/2 j In (e/E) 1. (2.13) 

As a consequence the uncertainty in the solution tends to zero very slowly when the 
error in the data tends to zero. The uncertainty is considerably reduced, however, 
when much more restrictive smoothness conditions are satisfied. For instance, let 
f admit an analytic continuationf[texp (iqo)] in the angular sector I0q1 < oc and let 
f [t exp (ioc)] be square integrable. These conditions are satisfied, for instance, by 
f(t) = P(t) exp (-t), where P(t) is a polynomial, for any -a -= ( > 0, arbitrary). 
Now, it is quite easy to prove that the Mellin transform of a functionf satisfying the 
previous conditions has the following asymptotic behaviour: 

IlA(w)l | Cexp(-acIow), IJJ-? ++oo. 

As a consequence we can assume that the function u = f-f satisfies the constraint 

+ f 00cosh(2acc)) Ift(0)l2dw < E2. (2.14) 

We can combine again the two constraints (2.10) and (2.14) into the single one 

27f a) [cosh(n7() + (j) cosh (2ao)] ji2(o)j2do (62 (2.15) 

and denote by So the subset of the functions u satisfying (2.15). Then in Appendix A 
it is proved that, for small 6/E, 

MO(e, E) = sup IIujl const. x E ( - ' 2x (2.16) 
ueso \EJ2a 
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We see that, in this case, the uncertainty in the solution tends to zero rapidly and 
therefore accurate results can be obtained in the Laplace-transform inversion, by 
using either eigenfunction expansions (McWhirter & Pike I978) or any other method, 
for instance best-rational-function approximations (Longman I974). 

Unfortunately, the condition of analyticity of the solution is not satisfied in some 
important applications of the Laplace-transform inversion. An important example 
is the analysis of light scattering polydispersity (Ostrowski et al. I98I), where it is 
known that the functionf has a bounded support and therefore it cannot be analytic; 
on the other hand it is quite obvious that, if one takes into account the knowledge 
of the support off, one has to get a reduction of the uncertainty in the solution with 
respect to the situation described by equations (2.12), (2.13). 

3. SINGULAR VALUES AND SINGULAR FUNCTIONS 

OF THE LAPLACE TRANSFORM 

The starting point of our investigation is the following remark: if we consider 
functions f supported in the interval [a, b], a > 0, then the linear mapping f- g 
defines a compact, injective operator of L2(a, b) into L2(0, + oo). As a consequence, 
the well known singular-value method for the solution of Fredholm integral 
equations of the first kind (Miller I974) can be applied to the Laplace-transform 
inversion. 

Let us consider the restriction of (2.1) to the class of square integrable functions 
supported in the interval [a, b], a > 0; in such a case the Laplace transform g(p) 
is an entire analytic function and, for real p, g(p) tends to zero exponentially fast 
when p-? + oo. 

The mapping fo- g defines the following linear operator from L2(a, b) into 
L2(0, +00): 

b 
(Kf)(p) = e-Ptf(t)dt, O < p < +oo. (3.1) 

As follows from equation (2.2), K is a continuous operator; it is also quite easy to 
prove that K is compact. Indeed the image of a bounded set of L2(a, b) under the 
operator K is a set of equicontinuous functions, uniformly bounded by an expo- 
nential function. Also, from the well known properties of the Laplace transform it 
follows that the equation Kf = 0 has only the trivial solution f = 0 and therefore 
the operator K is injective. 

The adjoint operator K* is given by 

o+ 0 

(K*g)(t) = e-tPg(p)dp, a < t < b; (3.2) 

it is a linear, compact operator from L2(0, + oo) into L2(a, b). Since K is injective, 
the range of K* is dense in L2(a, b); K* is also injective and therefore the range of 
K is dense in L2(0, + 00). 
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From the previous properties it follows that the operator K admits a singular 
system {0ck; Uk, Vk} (k = 0, 1, ...), given by the solutions of the coupled equations 

KUk = akVk, K*Vk = ,kM,Uk. (3.3) 

Since the null spaces of K and K* contain only the null element (of L2(a, b) and 
L2(O, + oc) respectively) we reach the conclusion that all the singular values ?k are 
strictly positive, that the set {uk} (k = 0, 1, 2, ...) is a basis in L2(a, b) and that the 
set {Vk} (k = 0, 1, 2, ...) is a basis in L2(0, +oo). 

As is well known, the singular functions Uk are the eigenfunctions of the operator 
K*K associated with the eigenvalues 42: 

K*Kuk= cuk, k = O, 1, 2, ..., (3.4) 

as usual we assume that the eigenvalues aC are ordered in a non-increasing sequence 
ZXo , L 1 ', L2 * 

From equations (3.1), (3.2) it is easy to derive that 

(K*Kf ) (t) = fds, a < t b, (3.5) 

and therefore K*K is an operator of the trace class: 

tr(K*K)= zc= I 2-= Iny, (3.6) 
k=O a2t 

where y = b/a. (3.7) 

It is important to remark that, as suggested by equation (3.6), the singular values 
ak of the operator (3.1) depend only on the parameter y. Indeed, writing explicitly 
the eigenvalue equation (3.4), 

t ds = oakuk(t), (3.8) 

and introducing the new variables 

t=a+(b-a)x, s=a+(b-a)y (3.9) 
and the parameter 

f=2a/(b-a) = 2/(yy-1) (y= 1+2/f), (3.10) 

we obtain the following eigenvalue problem: 

lo z 1dy = ac fk(x)* (3.11) 

The eigenvalues 42 are the same in equations (3.8) and (3.11) and the normalized 
eigenfunctions are related by 

Uk(t) = (b a)2k t-a (3.12) 
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More precise properties of the eigenvalues of the operator (3.5) are derived in 
Appendix B, with the use of results concerning the spectrum of Toeplitz operators 
(Kac et at. I953; Landau I975; Gori & Palma I975). In this way we show that 

(i) each eigenvalue of K*K is non-degenerate, i.e. the corresponding eigenspace 
is one-dimensional; 

(ii) if NA(6, 61) is the number of eigenvalues of K*K satisfying the condition 
j% < a4 < 61(60 > 0) and if a+(60, el) is the measure of the o-interval, w > 0, where 

,0 < n/cosh7w < 61, (3.13) 

then lim Ny(60, 31) = Ic#+(&0 & ) (3.14) 
Y-O Iny it 

Property (ii) implies that the eigenvalues of K*K, when y -> + oo, approach the 
Mellin transform of the kernel K(t) = (1 + t)-1 in a well defined sense (remark that 
in the limit y = + oo, which corresponds either to a = 0 or to b = + oo, there is a 
change in the nature of the spectrum of K*K; the spectrum becomes continuous 
and coincides with the interval [0, it]). Indeed, when y is very large, equation (3.14) 
gives an approximate formula for NY( 1), which implies the following result: if 
only one eigenvalue falls in the interval (o, 1) then #+(o, 61) ir/ln y (this 
quantity is just one-half the Nyquist distance for the Mellin transform of a function 
supported in [a, b]). As a consequence we get the following approximate formula 
for the eigenvalues of K*K: 

?2 lr/cosh lro)k Sk- (ir/ln y) k. (3.15) 

In particular this equation implies that the greatest singular value ao of K tends 
to ni when y -e + oo. This result is in agreement with the following inequality: 

(o < min{7ti, 3i} (3.16) 

where , is the parameter defined in equation (3.9). Therefore xX0 is always smaller 
than ni and it tends to zi when y -> + oo (, - 0); on the other hand c0 tends to zero 
at least as f-1 when l-> + oo (y - 1). 

The inequality (3.16) can be proved as follows. From the inequality (2.2), applied 
to the case wheref is supported in [a, b], we derive 11 Kf 11 < C2 flf 11 Therefore, taking 
f = u0 and using equation (3.3) and the normalization property of u0, v0, we get 

(o < n. On the other hand, from equation (3.5) and the Schwarz inequality, we get 

K*Kf 
b b 

[I f+ ds 
2 
dt 

K (b-a)k af(s)j ds < Alf 1 (3.17) 

so that, by takingf = uo, we get 4 < 1/fl. 
We have computed numerically the eigenvalues of equation (3.11), approxi- 

mating the kernel by tensor products of splines (Hammerlin & Schumaker I980). 
In table 1 we report the singular values Xk for various values of the parameter ,. 
The corresponding values of y are 5, 3, 2, 3, 3 5, 4and 97. 
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TABLE 1 

/4= 0.5 I= 1 = 2 3 

a-0 8.751 x 10-1 7.323 x 10-1 5.858 x 10-1 5.040 x 10-' 
1.935 x 10-1 1.133 x 10-' 5.804 xlo-2 3.696x 10-2 

a2 3.827x 10-2 1.569x lo-2 5.142 x 10-3 2.424 x 10-3 
a3 7.434 x 10-3 2.134 x 10-3 4.475 x 10-4 1.562 x 10-4 
a4 1.435x 10-3 2.883x 10-4 3.869x 10-6 9.997 x 10-6 
aa- 2.765x 10-4 3.885 x 10-5 3.336 x 10-6 6.380x 10-7 

at6 5.325 x 10-$ 5.227 x lo-6 2.872 x 10-7 
a7 1.029x 10-6 7.029x 10-7 - 

as 2.006x 10-6 - 

X9 4.007x 10-> - 

4= 4 =5 4=6 /-7 

ao 4.495 x 10-1 4.097 x 10-1 3.789 x 10-' 3.542 x 10-1 
2.622x 10-2 1.985x 10-2 1.571x 10-2 1.283x 10-2 

a2 1.368 x 10-3 8.602 x 10-4 5.824 x 10-4 4.158 x 10-i 
a3 7.006 x 10-6 3.661 x 10-6 2.120 x 10-5 1.323 x 10-6 
a4 3.567 x 10-6 1.548 x 10-6 7.673x 10-7 4.183x 10-7 

a5 r, 1.811 x 10`1 6.537 x 10-8 

4. RESOLUTION LIMITS IN THE LAPLACE-TRANSFORM INVERSION 

According to general results on equations of the first kind with compact operators 
(Miller I974), the solution of the equation Kf-g, when it exists, is given by 

f(t) = U-uk(t) (4.1) 

where k= f (P) Vk(p) dP (4.2) 

and {ak; Uk, Vk) (k- = o, 1, 2, ...) is the singular system of the operator K, (equation 
(3.1)). The series (4.1) is convergent if and only if 

+ Io gkI1 
+E 19kl < + (DO (4.3) 

k=O ak 

i.e. g is the Laplace transform of a function supported in [a, b] if and only if it 
satisfies condition (4.3). In general this condition is not satisfied when g is corrupted 
by noise or experimental errors and the solution of the problem of Laplace-transform 
inversion does not then exist. One can look for approximate solutions taking into 
account properties both of the noise and of the unknown solution. 

Let us consider for simplicity the Laplace transform corrupted by additive, 
zero-mean, white noise, i.e. the experimental Laplace transform is given by 

g(p) = 9(p) + n(p) = (Kf) (p) + n(p), (4.4) 

where g is the exact Laplace transform associated withf and 

<n(p) n(p')>=-62(p-p'). (4.5) 
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Let us further assume that the unknown object f is also from a zero-mean, white- 
noise process with power spectrum E2, 

<f(t)f(t')> = E2&(t-t'), (4.6) 
and that the processes n, f are uncorrelated. Since {Vk} (k = 0, 1, 2, ...) is a basis in 
L2(0, + so) and {Uk} (k = 0, 1, 2, ...) is a basis in L2(a, b), we can write 

+ 00 0r 
n(p) = I bkVk(P), bk = I n(p) Vk(p) dp, (4.7) 

k=O JO 

f(t) = E akUk(t) 7k = f(t)Uk(t)dt; (4.8) 
k=O 

then from equations (4.5), (4.6) we get 

<bkbj> = 62&kj) (4.9) 

<dk i> = E26kj. (4.10) 

Since we have assumed the processes n, f to be uncorrelated, we have also 

<akbl> = 0. (4.11) 

Now the components of the reconstructed solution are given by 

1 r co bk (4.12) 
ak = a i (P)Vkk(P)dP = ik+ C 

and from equations (4.9)-(4.11) we have 

<akaj> = (E2+c2/c4) 4kj. (4.13) 
As a consequence, in the inversion procedure we can estimate only those com- 
ponents such that the variance E2 of the signal dk is greater than the variance 
62/(X2 of the noise contribution bk/xk i.e. those components such that 

?k> e/E. (4.14) 

Let us assume now that, for a given value of the parameter y - equation (3.7) - and 
for a given value of the signal: noise ratio E/e, equation (4.14) is satisfied for 
k = 0, 1, ..., K.. Since it can be shown by numerical computation that the number 
of zeros of uk(t) in the interval [a, b] is just equal to k (we believe that this is a general 
property of the eigenfunctions of Toeplitz and related operators - see Appendix B - 
when the Fourier or Mellin transform of the kernel is a non-increasing function for 
cl > 0), we can conclude that in the reconstruction procedure, founded on singular- 
function expansions, we can recover Mh = K, + 1 'resolution elements'. The 
criterion (4.14), however, implies an uncertainty of ca. 70% in the (K,,+ 1)th 
component; this, practically, reduces to ca. 10 % in the K5th component and we 
therefore, arbitrarily, define the number of resolvable exponentials by Ks. 

We assume now that the zeros of uk(t) are approximately equidistant in the 
variable x = ln [t/(ab)k], as suggested by the eigenvalue distribution derived in 
Appendix B and by the exponential sampling methods developed for the analysis 
of light scattering polydispersity (Ostrowski et at. I98I). In other words we assume 
that the relevant eigenfunctions Uk(t) of the operator (3.5) are approximately given 
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by trigonometric functions in the variable x = In [t/(ab)f]. As a consequence we 
take as separation points between adjacent resolution elements those given by 
tm = a6, , m = 0, 1, ..., K.. Taking the last point equal to b, we get for the resolution 
ratio e. the following formula: 

a = yl/Ks, (4.15) 
y being defined in equation (3.7). 

We have computed k. and e' from the singular values of the operator K, using 
equation (4.14) and a linear interpolation between adjacent singular values to get 
a smooth behaviour of the parameters K8, &s as functions of y and of E/e. Some 
results are shown in table 2 and a graphical representation is given in figure 1. 

Within these theoretically possible resolution limits the problem is well con- 
ditioned and inversion may be accomplished by linear least squares fitting. 

TABLE 2 
, = 0.5, y = 5 , = 1, y = 3 8 = 2, y= 2 =3, y= 3 

E/e K. e Ks A KB KB 
102 2.917 1.736 2.420 1.574 1.908 1.438 1.780 1.332 
103 4.375 1.445 3.614 1.355 2.882 1.272 2.628 1.214 
104 5.791 1.320 4.755 1.260 3.850 1.197 3.384 1.163 

6= 4,=y i ?= 5,=y 7 = 6,=y / = 7, =y 

E/e Ks B Ks AB Ks A Ks 
102 1.653 1.278 1.519 1.248 1.377 1.232 1.228 1.227 
103 2.283 1.194 1.993 1.184 1.972 1.157 1.953 1.137 
10 2.977 1.145 2.923 1.122 2.860 1.106 2.784 1.094 

We remark that we have a lowering in R - and therefore an improvement in 
resolution - when we have a lowering of y or an increase of the signal: noise ratio 
E/e. It is clear that these results give a quantitative answer to the question of the 
effect on resolution due to the knowledge of the support off. In particular in figure 1 
we have indicated values of 6s corresponding to fi = 0 (y = + oo). The values have 
been computed as follows (McWhirter & Pike 1978; McWhirter I980). 

If we have no knowledge of the support off, then we can use the Mellin transform 
for solving the problem of Laplace-transform inversion; see equation (2.4). In such 
a case, equation (4.14) is replaced by 

it/coshto) > (e/E)2, (4.16) 
i.e. we can restore only those Mellin components off such that IJwJ )O, where 0)O 
is the unique positive solution of the equation 

coshitwo = n(E/e)2. (4.17) 
Now the zeros of the real and the imaginary parts of exp (iwo ln t) satisfy the relation 
tm = t.ri exp (i/wlo) and therefore we must take 

60 = 4s(f = 0) = exp (l/oo). (4.18) 
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With E/e = 102, 103, t04, l05, 106 we get, from equation (4.17), w0 = 3.52, 4.98, 6.45, 
7.91, 9.38 and, from equation (4.18), 60 = 2.44, 1.88, 1.63, 1.49, 1.40, respectively. 

To relate the signal:noise ratio E/e used in this theory to sampled data, where 
a mean square error, y = [<(y(p,)2>]J, is known at a set of sample points, pi, of the 
data and the mean square value of the object or, equivalently, g(0) is normalized to 
unity, we use the following two relations derived from equations (4.5), (4.6): 

2 JP+d (p) dp (4.19) 

1 = K f f(t) dt) = (y- ) E2 (4.20) 

where d is the distance, assumed constant, between data points over which the 
noise is integrated. These may be combined to obtain 

E/e = 1/y[d(y -1)]i. (4.21) 

The optimum placing of data points, where these may be chosen for the problem, 
will be discussed in a future contribution. We find that if 100 linearly spaced data 
points are optimally placed for 1.5 < y < 10, then d 0.1. Geometric spacing of 
data points is also under investigation (Pike et al. I982). 

APPENDIx A 

In this Appendix we prove equations (2.13) and (2.16) of the text. We need the 
following lemma. 

LEMMA. If SO c L2(0, + co) is the set of the functions u whose Mellin transform 
u(w) satisfies the condition 

2-, (c) luc)ldc 6 S2 (A 1) 

where i/ is a continuous, positive function such that V/r(w) -+ + oo, I -+ + oo, then 

sup jjull = /2V4, (A 2) 
u E S0 

where fo0 is the minimum of V/r. 
Proof. Since V/ must have a minimum fo0 > 0, from condition (A 1) we get 

Vfr0jffuj2 = J,f_ lil(w)J2dw<1 | V(wO) l&(w) 12 d c2 (A 3) 

so that flull < efji. Therefore, to prove equation (A 2) it is enough to show that 
there exists a sequence {un} c SO such that jjun j tends to e0/Ii when n -+ + oo. Let 

cl0 be a point where the minimum Vf0 of V/ is reached and let I. be the interval 

In = [(o - 1/n, (wo + 1/n]; if we consider the functions un such that 

?2l(W) = |(2-n)l ( vf ((O)d(o , - oI < l/n, (A4) 

IN (0)-ol > 1/n, 
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then it is easy to verify that 

21 _ (O) 1'&n (O)I2dw = c2, nf (o 12 d,) m(In)c2 (AS) 
f #(cl) dwo 

where m(In) = 2/n is the measure of In. Then from the mean value theorem it 
follows that jju,1j U +. 11 when n -+ + oo, and the lemma is proved. 

To prove the validity of equation (2.13), remark that the constraint (2.12) is of 
the type (A 1) with 

*r(cl) = it/cosh itwo + (e/E)2 (w02 + 1). (A 6) 

Remark also that V/ is an even function of cl and that its minimum for cl > 0 is 
reached at the point wo0, which is the unique positive solution of the equation 

'(c)O) = 0, i.e. 
Tr2sinh-wo/cosh2it(O = 2(c/E)2w0 . (A 7) 

It is easy to derive from equation (A 7) that wo0-+ + oo when c/E-+ 0; as a con- 
sequence, for small values of e/E, equation (A 7) is approximately equivalent to 
the equation it/cosh -ntoo = (2/Xt) (e/E)2 w00, so that /#-(wo0) (e/E)2 w02. It follows that 

MO(e, E) = sup jjulj E/(o. (A 8) 
U e S0 

Finally, from equation (A 7), an elementary argument shows that 

c)0 (2/Xt) I|n (e/E) , 
and the validity of equation (2.13) is proved. 

As regards the estimate (2.16), remark that the constraint (2.15) is of the type 
(A 1) with 

#r(cl) = it/cosh itwo + (e/E)2 cosh 2acz. (A 9) 

Again V/ is an even function of cl and its minimum for cl > 0 is reached at the point 
cl0 such that 

TC2 sinh it(ow/cosh2 itO0 = 2a (e/E)2 sinh 2ax0. (A 10) 

We have again that wo0 -+ + oo when c/E -+0 and therefore for small values of c/E 
we get 

It 
2ac(_) 

2 sinh 2ac)0, (A ll) 
cosh itoo0 i E 

/r = vIr(w0) I(t+X) () e2 (A 12) 

00 it+2cl ln (E)I]n (A 13) 

Inserting equations (A 12) and (A 13) in equation (A 2) we get the estimate (2.16). 
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APPENDix B 
The results on the eigenvalues of the operator K*K, quoted in ? 3, can easily be 

derived from standard results on the eigenvalues of a self-adjoint Toeplitz operator 

(Tf )(x)=fT(x -y) f(y) dy, jx A, (Bi1) 

where T*(x) = T( - x). Indeed, the eigenvalue equation (3.8) can be written in the 

form f:K(t),~~~~~(S)d- ak2Uk(t)) a.< t <, b, (B 2) 

where K(t) =1/(1 +t). (B 3) 

With the introduction of the new variables 

x = In [t/(ab)i], y = In [s/(ab)k] (B 4) 
and the new funactions 

T(x) = eixK(ex), Ok(X) = eixUk((ab) ex), (B 5) 

equation (B 2) becomes 
f+ 

T(x-y)Ok(y) dy = a( lxi ( A, (B 6) 

where A = 1ln (b/a)-jIn y (B 7) 
Therefore the eigenvalue problem (B 2) is equivalent to an eigenvalue problem for 
a Toeplitz operator. Also, the Fourier transform of the kernel T(x) (equation (B 5)) 
coincides with the Mellin transform of the kernel K(t); indeed, usiing equation (B 5), 
we obtain 0 

lNw) = T(x) elw)x dx = )H1wdt=I o)(B 8) 

Here the relation between the variables t, x is x = In t. In particular, for the kernel 
(B 3), by means of an elementary computation we get 

T(w) = 1Z(wo) = it/cosh no). (B 9) 

We can now apply the following result on Toeplitz operators: 
THEOREm B 1. (Gori & Palma 1975). The eigenvclues of the operator (B 1) are non- 

degenerate if the kernel I+0 
H(x) = 2-n-Jw'(ow) e-iox do) (B 10) 

is definite. 
From equation (B 9) it follows that this condition is satisfied since 

wT'I(o) = -ir2wOsinh-no)/cosh2nrw < 0 (B 11) 
and therefore property (i) of ? 3 is proved. 

The following extension of a theorem of Szeg6 can also be used: 
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THEOREM B 2 (Miller '974; Kac et al. 1953). If NASA(o, ,1) is the number of eigen- 
values of (B 1) falling within (60, 41), if (&0, 81) does not contain 0 and if # (Q0, 8,) is the 
measure of the set where 40 < T(c) < 4,, then 

lrnm I NA(6O)61) = 1 061) (B 12) 

provided the sets where 1(o) = 80 or i(o) = 4, are of measure 0. 
All the conditions of the theorem are satisfied by the kernel (B 9): in particular, 

since Tl(w) > 0, we can always assume 60 > 0. Finally, if we remark that 

l(o) = -n/cosh ir = 

is an even function of w, and that it is a decreasing function for so > 0, we reach the 
conclusion that the w-set, where the condition 60 < 0(o) < 61 is satisfied, is the 
union of two intervals. Using this fact and equation (B 7), we can derive equation 
(3.12) from equation (B 12). 
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