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Abstract.
Space-born measuring devices require an accurate determination of the

satellite rest frame.
This frame consists of a clock and a triad of orthonormal axes which provide a

local Carthesian reference system. Aim of this paper is to find the mathematical
representation of this triad in two cases which may correspond to actual satellite
attitudes. First we construct a Fermi frame which can be operationally fixed
by a set of three mutually orthogonal gyroscopes, then we find a frame which
corresponds to the expected attitude of the satellite GAIA which was ESA
approuved to fly not later than 2012. In the latter case we were able to find
an analytical solution accurate to (v/c)3. In order to exploit this solution in the
treatment of GAIA’s astrometrical observations, we illustrate all the steps needed
to deduce the components of this triad vectors.

1. Introduction

New space technologies allow for astrometric accuracies of 1 microarcsecond (µas)
in stellar positions. With such an accuracy we must model and interpret the
observations of satellites like GAIA in a general relativistic context. Future astrometric
catalogues will be based on new astrometric parameters derived from the solution of
the observation equations which link GAIA observations to the astrometric unknowns.
In order to write these equations, the satellite attitude needs to be given in the same
general relativistic framework, namely one has to define a comoving frame which
connects GAIA measurements to the satellite motion and attitude law. This frame
will be termed attitude frame; it consists of a spatial triad of orthonormal axes which
are operationally fixed according to the specific goals of the space mission. Indeed the
mathematical description of an attitude frame is in general a non trivial task.

In this paper we shall first deduce a Fermi frame adapted to a satellite with
arbitrary orbital motion (section 3). This type of frame consists of three mutually
orthogonal unit space-like vectors which are Fermi-Walker transported [1] along the
satellite trajectory and represents the closest approximation to a locally inertial frame.
This solution was obtained exploiting a more general solution for a satelite rest-frame
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recently deduced in [2]. Then we construct the expected attitude frame of the satellite
GAIA (section 4) deducing the mathematical expressions of its components in a way
useable in any numerical astrometric model. The attitude frame, in fact, is essential
to fix the boundary conditions for solving the ray tracing problem in relativistic
astrometry, expressing them in terms of the satellite observations (see [2]); this will
be shown in section 5. Finally in the conclusions we stress how essential is to link
the satellite observations to the actual motion of the satellite with respect to a chosen
general reference system.

In this paper Latin indeces run from 1 to 3, Greek indeces run from 0 to 3.

2. Mathematical preliminaries

The rest-frame of a satellite consists of a clock which measures the satellite proper-time
and a triad of orthonormal axes. The latters are described by four-vectors which are
referred to a coordinate system which in general is not connected to the satellite itself.
The mathematical quantity which defines a rest-frame of a given observer (the satellite
in our case) is a tetrad adapted to that observer, namely a set of four unitary mutually
orthogonal four-vectors one of which is the time-like tangent to the observer’s world-
line; the parameter on this world-line is the observer’s proper time. The remaining
three space-like vectors of the tetrad are defined up to spatial rotations. There are
infinitely many possible orientations of the spatial triad to be fixed in a satellite,
therefore our task is to identify non ambiguously those which correspond to actual
attitudes.

Since we have in mind applications to satellite missions, we fix the background
geometry as that of the Solar System assuming that it is the only source of gravity;
moreover we assume that it generates a weak gravitational field so we shall retain only
terms of first order in the gravitational constant G and consider these terms only up
to the order of (v/c)3.

The space-time geometry is then given by the following line element

ds2 ≡ gαβdxαdxβ = (ηαβ + hαβ + O(h2))dxαdxβ (2.1)

where O(h2) denotes non linear terms in h, the coordinates are x0 = t, x1 = x, x2 =
y, x3 = z the origin being fixed at the barycenter of the Solar System, ηαβ is the
Minkowski metric so that the metric components read:

g00 = −1 + h
2 00 + O(4), g0a = h

3 0a + O(5), gab = 1 + h
2 00δab + O(4). (2.2)

Here h
2 00 = 2U where U is the gravitational potential generated by the sources of

the Solar System and subscripts indicate the order of (v/c) (ex. h
3 0a ∼ O(3)) and

O(n) = O[(v/c)n]. As in [2] we shall carry all the calculations without specifying the
metric coefficients so to assure generality. Unless otherwise stated, we use units such
that c = 1 = G.

Let us fix the satellite’s trajectory in the above space-time geometry as the time-
like, unitary four vector uuu′ (u′αu′α = −1) given by:

u′u′u′ = Ts(∂∂∂t + β1∂∂∂x + β2∂∂∂y + β3∂∂∂z), (2.3)

where ∂∂∂α’s are the coordinate basis vectors relative to the baricentric coordinate
system, βi are the coordinate components of the satellite three-velocity with respect
to the baricenter of the Solar System recalling that we use here subscripts to refer to
contravariant components not to confuse them with power indeces. Finally we define
Ts = 1 + (U + 1

2β2) and β2 = β2
1 + β2

2 + β2
3 .
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3. A Fermi frame

A Fermi frame adapted to a given observer can be obtained from any frame adapted
to the same observer provided we know its Fermi coefficients. The latters, to be
defined shortly, tell how much the tetrad spatial axes must rotate in order to be
reduced to a Fermi frame. We shall apply this procedure to the tetrad adapted to
(2.3) and deduced in [2]. In this case however the construction of a Fermi tetrad
was unexpecteadly complicated; in fact, an algebric solution was possible only if we
confined ourselves to terms of the order of (v/c)2 and set β3 = 0. In a more general
case and to the order of (v/c)3 the solution was so long and cumbersome to descourage
any practical use if not just numerical. We shall therefore present a less accurate but
analytically tractable solution as indicated.

To the order of (v/c)2, the tetrad used in [2], simplifies to

λλλ0̂ = [1 + U +
1
2
β2]∂∂∂t + β[cos ω(t)∂∂∂x + sin ω(t)∂∂∂y]

λλλ1̂ = (1− U)[sinω(t)∂∂∂x − cos ω(t)∂∂∂y] (3.1)

λλλ2̂ = β∂∂∂t +
[
1
2
β2 − U + 1

]
(cosω(t)∂∂∂x + sin ω(t)∂∂∂y)

λλλ3̂ = (1− U)∂∂∂z

where we have set β1 = β cosω(t), β2 = β sin ω(t) and β3 = 0, ω being the angular
velocity of rotation of the frame under consideration. This tetrad is not Fermi
transported because its Fermi coeficients are not all zero. The Fermi coefficients
are defined as

Câb̂ = λâ · ∇0̂λb̂ (3.2)

where the covariant derivative is meant with respect to the tetrad. In the case of (3.1)
the only non zero coefficient is

C2̂1̂ = −ω̇ (3.3)

a dot meaning derivative with respect to coordinate time. Subtracting the Fermi
rotation at each time, the triad {λλλâ} reduces to a Fermi triad:

R1̂ = − β sin ω(t)∂∂∂t − 1
4
β2 sin 2ω(t)∂∂∂x

−
[
β2

2
sin2 ω(t)− U + 1

]
∂∂∂y

R2̂ = β cos ω(t)∂∂∂t +
[
1− U +

β2

2
cos2 ω(t)

]
∂∂∂x (3.4)

+
1
4

sin 2ω(t)β2∂∂∂y

R3̂ = (1− U)∂∂∂z.

It is easy to verify that the Fermi coefficients of (3.4) are all identically zero.
A Fermi triad is defined up to a constant rotation; this freedom corresponds to the

arbitrariness in the operational setting of the Fermi frame by means of three mutually
orthogonal gyroscopes. In most cases the motion of a satellite is complicated by spin
and precession so, unless one is able to handle a stable system of three mutually
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orthogonal and freely rotating gyroscopes, a Fermi frame is difficult to set up. It
is instead more convenient to define a frame which is fixed to the satellite and is
constrained according to criteria of best efficiency for the mission goal.

4. GAIA’s attitude frame

The astrometric satellite GAIA is expected to orbit the Earth-Sun System in the
outer Lagrangian point L2 following a trajectory modulated in the three spatial
directions [3, 4]; all is referred to the Solar System baricentric reference system.
Moreover the satellite rotates at a rate of 1 turn every 6 hours about an axis (its
x axis) which forms a fixed angle α = 50◦ with the Sun direction; the spin axis then
precesses about the Sun direction with a period of 70 days.

At the moment there are two main attempts to describe GAIA’s attitude. The
first is based on a rigorous formulation of the scanning law through the integration
of two differential equations which express the condition for a uniformly revolving
angle and an inertially constant scanning motion about the spin axis [5–7]. The main
limitation of this approach is that the spin axis revolves around the direction to the
Sun as seen from the point L2 and not from the actual position of the satellite. The
second one [8] is an analytical solution that allows one to write a simple and compact
code fully parametrized with the Sun aspect angle and the speed of the Sun centered
cone. Starting from an ecliptic triad, this second approach uses Euler representation
to obtain the spacecraft frame at the point L2. Both approaches need at first to fix
the direction to the Sun as seen from within the satellite rest frame, (figure 1).

Aim of the following is to find GAIA’s attitude frame keeping the approximation
to the order of (v/c)3 as in [2]. We first fix a coordinate system whose origin is located
at the baricenter of the Solar System and the spatial axes are pointing to distance
sources; the latters identify a global Carthesian-like spatial coordinate representation
(x, y, z). The world-line of the baricenter in the space-time(2.1) is given by the unit
four-vector

u = (gtt)−1/2∂∂∂t ≈ (1 + U)∂∂∂t (4.1)

where t is a coordinate time. The observer uuu together with the spatial axes as
specified is termed baricentric obsever and the parameter on its world-line is the
baricentric proper-time. The reference frame so defined is termed Baricentric Celestial
Reference System (BCRS, [9] [10]). Obviously, at each point in space-time there exists
a baricentric observer u who carries a triad of spatial and mutually orthogonal unitary
vectors which point to the same distant sources as for the BCRS. We shall term each
of these frames a local BCRS.

As shown in [2], the spatial triad of a local BCRS at each space-time point is
given to (v/c)3 by the following vectors‡:

λλλ1̂ = h01∂∂∂t + (1− U)∂∂∂x

λλλ2̂ = h02∂∂∂t + (1− U)∂∂∂y (4.2)
λλλ3̂ = h03∂∂∂t + (1− U)∂∂∂z

We need to identify the spatial direction to the geometrical center of the Sun as seen
from within the satellite. To this purpose we first identify this direction with respect

‡ Here we correct a sign misprint in [2].
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Figure 1. The spatial triad λλλâ is comoving with the local baricentric observer uuu
(B= baricenter) defined at the GAIA center-of-mass at each point of its Lissajous
orbit about L2. The λλλ

s 1̂ identifies the instantaneous Sun direction as seen by the

local baricentric observer uuu. This vector will be boosted to the satellite motion
to obtain the Sun direction as seen from on-board of the satellite

to the local BCRS which is defined at each point of the satellite’s trajectory, then we
boost the corresponding triad to adapt it to the motion of the satellite.

Let x0(t), y0(t), z0(t) be the coordinates of the satellite’s center of mass with
respect to the baricenter of the Solar System and x¯(t), y¯(t), z¯(t) those of the Sun
at the same coordinate time t. Here the time dependence is assumed to be known.
The relative spatial position of the Sun with respect to the satellite at the time t is
then:

x′¯ = x¯ − x0

y′¯ = y¯ − y0 (4.3)
z′¯ = z¯ − z0.

We omit the time dependence to ease notation. With respect to a local BCRS, the
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Sun direction is fixed rotating the triad (4.2) by an angle φs around λλλ3̂ and then by
an angle θs around the vector image of λλλ2̂ under the above φs-rotation, where:

φs = tan−1 y′¯
x′̄

, θs = tan−1 z′¯√
x
′2¯ + y

′2¯
. (4.4)

Thus we have the new triad adapted to the observer uuu:

λλλ
s â = R2(θs)R3(φs)λλλâ (4.5)

where

R2(θs) =




cos θs 0 sin θs

0 1 0
− sin θs 0 cos θs


 (4.6)

and

R3(φs) =




cosφs sin φs 0
− sin φs cos φs 0

0 0 1


 (4.7)

It should be noted here that, since the Sun is an extended body, its geometrical
center may be difficult to determine with great precision. The uncertainty in this
measurement may affect the precision of fixing the angles φs and θs from on-board
of the satellite. We assume here that space technology will cope with this problem
satisfactorily.

From (4.5), (4.6) and (4.7), the explicit expressions of the coordinate components
of the vectors of the new triad are given by:

λλλ
s 1̂ = [cos θs(cos φsh01 + sin φsh02) + sin θsh03]∂∂∂t

+ cos φs cos θs(1− U)∂∂∂x

+ sin φs cos θs(1− U)∂∂∂y

+ sin θs(1− U)∂∂∂z (4.8)

λλλ
s 2̂ = − (sinφsh01 + cosφsh02)∂∂∂t

− sin φs(1− U)∂∂∂x

− cos φs(1− U)∂∂∂y (4.9)

λλλ
s 3̂ = − [sin θs(cos φsh01 + sin φsh02)− cos θsh03]∂∂∂t

− cos θs sin θs(1− U)∂∂∂x

− sin φs sin θs(1− U)∂∂∂y

+ cos θs(1− U)∂∂∂z (4.10)

It is easy to verify that the set {uuu,λλλ
s â} forms an orthonormal tetrad; moreover it is

equally straightforward to see that:

cos θs λλλ
s 2̂ =

d

dφs
λλλ
s 1̂ , λλλ

s 3̂ =
d

dθs
λλλ
s 1̂. (4.11)

All quantities in (4.8) to (4.10) are defined at the position (x0, y0, z0) of the satellite
at time t.
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Let us recall that our aim here is to identify a tetrad frame which is adapted to
the satellite and whose spatial triad mirrors its attitude. Recalling that the satellite
four velocity is given by uuu′ as in (2.3), we boost the vectors of the triad {λλλ

s â} along
the satellite relative motion to obtain the following boosted triad (see [11] and fig.2):

λ
bs

α
â = P (u′)α

σ

[
λ
s

σ
â −

γ

γ + 1
νσ

(
νρλ

s ρâ

)]

â=1,2,3

(4.12)

where:

P (u′)α
σ = δα

σ + u
′αu′σ (4.13)

is the operator which projects to the rest-frame of uuu′, να is the relative spatial four-
velocity of uuu′ with respect to the local BCRS observer uuu and it is defined as

να =
1
γ

(u′α − γuα) (4.14)

and γ = −u′αuα is the relative Lorentz factor. The vector λλλ
bs 1̂ identifies the direction

to the Sun as seen from within the satellite. The other vectors of the boosted triad
are related to λλλ

bs 1̂ by the simple relations:

cos θs λλλ
bs 2̂ =

d

dφs
λλλ
bs 1̂ , λλλ

bs 3̂ =
d

dθs
λλλ
bs 1̂. (4.15)

The tetrad {λλλ
bs 0̂ ≡ uuu′, λλλ

bs
â} will be referred to as the Sun-locked frame. The relation

between the components να of the spatial four-velocity ννν and the components βi

appearing in (2.3) is easily established from (2.3) itself and (4.14) and read:

να =
1
γ

[
Ts

(
βiδ

iα + δ0α
)− uαγ

]
. (4.16)

Due to their complexity, the explicit expressions of the components of the vectors λλλ
bs

â

are given in appendix A.
To deduce GAIA’s attitude frame, which we remember is our main goal, we have

to make the following final steps.
i) Rotate the Sun-locked triad by an angle ωpt about the vector λλλ

bs 1̂ which
constantly points to the Sun; ωp is the angular velocity of precession.

ii) Rotate the resulting triad by a fixed angle α about the image of the vector λλλ
bs 2̂

under rotation i).
iii) Rotate the triad obtained after step ii) by an angle ωrt about the image of

the vector λλλ
bs 1̂ under the previous two rotations; ωr is now the angular velocity of the

satellite spin.
The triad resulting from these three steps will be the satellite attitude triad; this is
given by:

EEEâ = R1(ωrt)R2(α)R1(ωpt)λλλ
bs

â â = 1, 2, 3 (4.17)

where:

R1(ωpt) =




1 0 0
0 cos ωpt sin ωpt
0 − sin ωpt cos ωpt


 (4.18)

R2(α) =




cos α 0 sin α
0 1 0

− sin α 0 cos α


 (4.19)
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R1(ωrt) =




1 0 0
0 cos ωrt sin ωrt
0 − sin ωrt cos ωrt


 (4.20)

The explicit expressions of the triad vectors EEEâ are shown in Appendix B. It is clear
that most of the terms entering the attitude triad components are of the order of (v/c)3

however, despite their cumbersome expressions, we expect that this attitude triad can
be exploited without difficulties in a numerical code since all quantities entering the
EEEâ’s are well defined.

5. Observations in GAIA’s attitude frame

The mathematical characterization of GAIA’s attitude triad is essential to solve
the boundary value problem in the process of reconstructing the light trajectory
(see [12–17] and references therein) which connects the satellite to the emitting star.
Although this problem has been illustrated in [2], we shall briefly recall some of the
considerations made in that paper.

A light ray is described by a geodesic whose tangent vector field kkk satisfies the
light like condition kαkα = 0 and the geodetic equation:

kβ∇βkα = 0 (5.1)

where ∇β is the covariant derivative with respect to the coordinate xβ in the metric
(2.1). At each point of its trajectory the light signal strikes the local BCRS uuu; in this
frame the light signal would be seen propagating along a spatial direction (the local
line of sight) given by a vector `̀̀ defined as:

`ρ = P (u)ρ
σkσ (5.2)

where P (u)ρ
σ = δρ

σ +uρuσ is the operator which projects into the rest space of uuu. The
space-like vector `̀̀ is not unitary hence we can always normalize it to ¯̀̀̄̀̄= −`̀̀/(uαkα),
such that ¯̀α ¯̀

α = 1. This operation corresponds to parametrize the light curve with the
proper-time σ of the observer uuu which it crosses at each of its points or equivalently to
fix equal to 1 the photon energy as measured by uuu, namely E(u) = −kαuα = 1. Since
the vector field ¯̀̀̄̀̄ is everywhere orthogonal to uuu, namely `αuα = 0, then it satisfies the
conditions:

¯̀
0 = 0, ¯̀0 = h

3 0i
¯̀i + O(5). (5.3)

From (5.1), (5.2) and (5.3), the differential equation of light propagation which is basic
to the problem of determining the astrometric parameters of a star has a general form
(see [13]):

d¯̀α

dσ
= Fα(∂βh(x, y, z, t), ¯̀i(σ(x)) (5.4)

where Fα are real, non singular, smooth functions of their arguments.
A general solution of (5.4) is

¯̀i(σ) = f i(σ, ¯̀k
0) (5.5)

where ¯̀k
0 are the components of the vector ¯̀̀̄̀̄ at the observation and represent the

baundary values which are necessary to integrate (5.4). These boundary conditions
can only be expressed in terms of the satellite observations. In case of GAIA, the
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Figure 2. The rest frame of GAIA is Lorentz boosted with respect to the rest
frame of the local baricentric observer uuu. The GAIA’s attitude triad EEEâ is defined
in the staellite’s rest frame.

latters are the angles that the incoming light ray forms with the axes of the attitude
triad and defined as:

cos ψ(Eâ,`) ≡ eâ =
P (u′)αβkαEβ

â

(P (u′)αβkαkβ)1/2
(5.6)

where no sum is meant over â; P (u′)αβ , is the operator which projects into the
satellite’s rest-frame defined as:

P (u′)αβ = gαβ + u′αu′β . (5.7)

Recalling (5.2), we easily see that all quantities contained in (5.6) are known except
`i
0 which obviously are the unknowns boundary conditions, as stated. In this case an

analytical solution of (5.6) in terms of `i
0 and up tp (v/c)3 is too long to be written

explicitely. The purpose of this work, however, is to provide all the ingredients needed
to implement a numerical code which will routinely solve the boundary values problem
allowing integration of (5.4) and then the whole relativisitic astrometric model [13] to
become fully operative.
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6. Summary and Conclusions

We have found the mathematical reprentation of a satellite attitude frame in two
different cases which may correspond to possible satellite sets-up; a Fermi frame and
the axpected GAIA’s attitude.

We show that the formal characterization of a Fermi frame is analytically very
difficult and indeed we were able to find a solution only to the order of (v/c)2 in the
post-Newtonian approximation of the background metric. This seems to indicate that
use of a Fermi frame as attitude frame for a satellite may meet with dificulties at high
orders of accuracy.

A better result we obtaind with constrained (not Fermi) frames. The Relativistic
Astrometric Model developed in [13] and ready to be tested to the order of (v/c)3,
requires that GAIA’s attitude is well defined in terms of a spatial triad of orthonormal
vectors adapted to the satellite’s composite motion. This triad, together with an on-
board clock which measures the satellite’s proper-time, forms the attitude frame of the
satellite. The coordinate components of this frame are relative to a global Baricentric
Celestial Reference System (BCRS) which is identified by three spatial axes centered
at the baricenter of the Solar System and pointing to distant cosmic sources chosen
so to assure that the system is kinematically non rotating. The coordinate axes then
define a Carthesian like coordinate system (x, y, z) and we assume that an everywhere
space-like hypersurface exists with equation t(x, y, z) =contant. The function t is
chosen as a coordinate time§ hence, togheter with the set (x, y, z), it provides a
coordinate representation of the space-time. This coordinate system is assumed to fix
the space-time metric form (2.1). At any space-time point there exists an observer
which is at rest with respect to the BCRS since its world-line is parallel to the local
coordinate time axis. The tangent to the observer’s whorld-line is a unitary vector
labelled as uuu and given by (4.1). Assume first that this observer is located at the
origin of the BCRS, then this system can be locally identified by a spatial triad of
unitary and orthonormal vectors given by (4.2) up to (v/c)3. They are orthogonal to
uuu and point to the corresponding coordinate directions. In this case the proper time
of uuu is the baricentric proper-time. As said, such an observer can be defined at each
space-time point and again we can adapt to this observer a local triad of space-like
vectors which point to the local coordinate directions. This frame will be termed local
BCRS; evidently the local BCRS proper-time varies as a function of the position as
can be deduced from (4.1).

The physical observations made within the satellite can only be referred to its
attitude frame, namely that adapted to the satellite composite motion. Thus, in order
to exploit the observations as boundary data essential to the solution of the ray tracing
problem in the astrometric model, one must be able to relate attitude frame quantities
to local BCRS components. This must be done consistently with the requirements of
general relativity; in this paper we show how to do this providing the mathematical
reprentation of the attitude frame of GAIA in a form ready for applications.

§ In [13] we illustrate how one can make the choice of the coordinate time not arbitrary.
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Appendix A

We give here explicitly the boosted triad λλλ
bs â

, specifying the coordinate components of
each vector. Using the notation

λλλ
bs 1̂

= λ
bs

t

1̂
∂∂∂t + λ

bs

x

1̂
∂∂∂x + λ

bs

y

1̂
∂∂∂y + λ

bs

z

1̂
∂∂∂z

λλλ
bs 2̂

= λ
bs

t

2̂
∂∂∂t + λ

bs

x

2̂
∂∂∂x + λ

bs

y

2̂
∂∂∂y + λ

bs

z

2̂
∂∂∂z

λλλ
bs 3̂

= λ
bs

t

3̂
∂∂∂t + λ

bs

x

3̂
∂∂∂x + λ

bs

y

3̂
∂∂∂y + λ

bs

z

3̂
∂∂∂z (6.1)

we have

λ
bs

t

1̂
= {3(cos θs cosφsβ1 + cos θs sin φsβ2 + sin θsβ3)U

+
1
2
β2(cos θs cosφsβ1 + cos θs sin φsβ2 + sin θsβ3)

+ (cos θs cos φsh01 + cos θs sinφsh02 + sin θsh03)
+ [cos θs cos φsβ1 + cos θs sin φsβ2 + sin θsβ3]}

λ
bs

x

1̂
=

{
cos θs cos φs +

1
2
β1(cos θs cosφsβ1 + cos θs sinφsβ2 + sin θsβ3)− U cos θs cos φs

}

λ
bs

y

1̂
=

{
cos θs cos φs +

1
2
β2(cos θs cosφsβ1 + cos θs sinφsβ2 + sin θsβ3)− U cos θs sin φs

}

λ
bs

z

1̂
=

{
sin θs +

1
2
β3(cos θs cos φsβ1 + cos θs sin φsβ2 + sin θsβ3)− U sin θs

}

λ
bs

t

2̂
= {(− sinφsβ1 + cos φsβ2)

+
1
2
β2(− sin φsβ1 + cos φsβ2)

+ (− sin φsh01 + cosφsh02) + 3U(− sinφsβ1 + cos φsβ2)}
λ
bs

x

2̂
=

{
− sin φs +

1
2
β1(− sin φs1¯

+ cos φsβ2) + U sin φs

}

λ
bs

y

2̂
=

{
cosφs +

1
2
β2(− sin φsβ1 + cos φsβ2)− U cos φs

}

λ
bs

z

2̂
=

1
2
β3(− sin φsβ1 + cos φsβ2)

λ
bs

t

3̂
= {(− cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3)

+ 3U(cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3)
+ (− cosφs sin θsh01 − sin φs sin θsh02 + cos θsh03)

+
1
2
β2(− cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3)}

λ
bs

x

3̂
=

{
− cos φs sin θs +

1
2
β1(− cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3) + U cosφs sin θs

}

λ
bs

y

3̂
=

{
− sin φs sin θs +

1
2
β2(− cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3) + U sin φs sin θs

}
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λ
bs

z

3̂
=

{
cos θs +

1
2
β3(− cosφs sin θsβ1 − sin φs sin θsβ2 + cos θsβ3)− U cos θs

}
(6.2)

Appendix B

Here we present the GAIA’s attitude triad EEEâ given by (4.17), with coordinate
components expressed in termes of those of the boosted triad λλλ

bs â
:

Et
1̂

= cos αλ
bs

t

1̂
− sin α sin(ωpt)λ

bs

t

2̂
+ sin α cos(ωpt)λ

bs

t

3̂

Ex
1̂

= cos αλ
bs

x

1̂
− sin α sin(ωpt)λ

bs

x

2̂
+ sin α cos(ωpt)λ

bs

x

3̂

Ey

1̂
= cos αλ

bs

y

1̂
− sin α sin(ωpt)λ

bs

y

2̂
+ sin α cos(ωpt)λ

bs

y

3̂

Ez
1̂

= cos αλ
bs

z

1̂
− sin α sin(ωpt)λ

bs

z

2̂
+ sin α cos(ωpt)λ

bs

z

3̂

Et
2̂

= − sin α sin(ωrt)λ
bs

t

1̂
+ (cos(ωrt) cos(ωpt)− sin(ωrt) sin(ωpt) cos α)λ

bs

t

2̂

+ (cos(ωrt) sin(ωpt) + sin(ωrt) cos(ωpt) cos α)λ
bs

t

3̂

Ex
2̂

= − sin α sin(ωrt)λ
bs

x

1̂
+ (cos(ωrt) cos(ωpt)− sin(ωrt) sin(ωpt) cos α)λ

bs

x

2̂

+ (cos(ωrt) sin(ωpt) + sin(ωrt) cos(ωpt) cos α)λ
bs

x

3̂

Ey

2̂
= − sin α sin(ωrt)λ

bs

y

1̂
+ (cos(ωrt) cos(ωpt)− sin(ωrt) sin(ωpt) cos α)λ

bs

y

2̂

+ (cos(ωrt) sin(ωpt) + sin(ωrt) cos(ωpt) cos α)λ
bs

y

3̂

Ez
2̂

= − sin α sin(ωrt)λ
bs

z

1̂
+ (cos(ωrt) cos(ωpt)− sin(ωrt) sin(ωpt) cos α)λ

bs

z

2̂

+ (cos(ωrt) sin(ωpt) + sin(ωrt) cos(ωpt) cos α)λ
bs

z

3̂

Et
3̂

= − sin α cos(ωrt)λ
bs

t

1̂
− (sin(ωrt) cos(ωpt) + cos(ωrt) sin(ωpt) cos α)λ

bs

t

2̂

+ (− sin(ωrt) sin(ωpt) + cos(ωrt) cos(ωpt) cos α)λ
bs

t

3̂

Ex
3̂

= − sin α cos(ωrt)λ
bs

x

1̂
− (sin(ωrt) cos(ωpt) + cos(ωrt) sin(ωpt) cos α)λ

bs

x

2̂

+ (− sin(ωrt) sin(ωpt) + cos(ωrt) cos(ωpt) cos α)λ
bs

x

3̂

Ey

3̂
= − sin α cos(ωrt)λ

bs

y

1̂
− (sin(ωrt) cos(ωpt) + cos(ωrt) sin(ωpt) cos α)λ

bs

y

2̂

+ (− sin(ωrt) sin(ωpt) + cos(ωrt) cos(ωpt) cos α)λ
bs

y

3̂

Ez
3̂

= − sin α cos(ωrt)λ
bs

z

1̂
− (sin(ωrt) cos(ωpt) + cos(ωrt) sin(ωpt) cos α)λ

bs

z

2̂

+ (− sin(ωrt) sin(ωpt) + cos(ωrt) cos(ωpt) cos α)λ
bs

z

3̂

(6.3)
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